Journal of the
Korean Mathematical Society

ISSN(Print) 0304-9914 ISSN(Online) 2234-3008

Ahead of Print Articles

HOME VIEW ARTICLES Ahead of Print Articles
The following are papers that have received final approval and are awaiting to be published. They are listed in the order of their initial submission date.
Papers are published in the order of their initial submission date and will be made available under “Current Issue” once scheduled to be included in a print issue.

Note: Please understand the below list is not in the exact publishing order of the papers as the list does not include papers under internal reviewing process nor those that have not been galley proofed by the authors.

Final published versions of all papers are available under “All Issues” and also under “Current Issue” for papers included in the current issue.

* Paper information have been automatically generated from the information submitted by authors in the online submission system.
  • Online first article June 14, 2024

    Central limit theorems for conditionally strong mixing and conditionally strictly stationary sequences of random variables

    De-Mei Yuan and Xiao-Lin Zeng

    Abstract : From the ordinary notion of upper-tail quantitle function, a new concept called conditionally upper-tail quantitle function given a -algebra is proposed. Some basic properties of this terminology and further properties of conditionally strictly stationary sequences are derived. By means of these properties, several conditional central limit theorems for a sequence of conditionally strong mixing and conditionally strictly stationary random variables are established, some of which are the conditional versions corresponding to earlier results under non-conditional case.

  • Online first article April 11, 2024

    An invariant forth-order curve flow in centro-affine geometry


    Abstract : In this paper, we are devoted to focus on studying a forth order curve flow for a smooth closed curve in centro-affine geometry. Firstly, a new evolutionary equation about this curve flow is proposed. Then the related geometric quantities and some meaningful conclusions are obtained through the equation. Next, we obtain finite order differential inequalities for energy by applying interpolation inequalities, Cauchy Schwartz inequalities, etc. After using a completely new symbolic expression, the n-order differential inequality for energy is considered. Finally, by the means of energy estimation, we prove that the forth order curve flow has a smooth solution all the time for any smooth closed initial curve.

    Show More  
  • Online first article April 11, 2024

    Asymptotic behavior for strongly damped wave equations on $\mathbb R^3$ with memory

    Xuan-Quang Bui, Duong Toan Nguyen, and Trong Luong Vu

    Abstract : We consider the following strongly damped wave equation on $\mathbb{R}^3$ with memory $$ u_{tt} - \alpha \Delta u_{t} - \beta \Delta u +\lambda u - \int_{0}^\infty \kappa'( s) \Delta u(t-s)ds+ f(x,u) +g(x,u_t)=h, $$ where a quite general memory kernel and the nonlinearity $f$ exhibit a critical growth. Existence, uniqueness and continuous dependence results are provided as well as the existence of regular global and exponential attractors of finite fractal dimension.

Current Issue

May, 2024
Vol.61 No.3

Current Issue