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A NEUMANN TYPE PROBLEM ON AN UNBOUNDED

DOMAIN IN THE HEISENBERG GROUP

Shivani Dubey, Mukund Madhav Mishra, and Ashutosh Pandey

Abstract. We discuss the wellposedness of the Neumann problem on

a half-space for the Kohn-Laplacian in the Heisenberg group. We then
construct the Neumann function and explicitly represent the solution of

the associated inhomogeneous problem.

1. Introduction

1.1. General background and motivation

The Heisenberg group Hn being one of the simplest example of a non-abelian
and a non-compact Lie group finds a special place in the study of harmonic
analysis and potential theory. The potential theoretic aspect demands a notion
of harmonic functions which, on the Heisenberg group, are given by a Laplace
like operator, known as the Kohn-Laplacian of Hn. The Kohn-Laplacian can
either be visualized as the generalization of the well-known Laplace-Beltrami
operator on Riemannian spaces or it can be seen as the unique (up to a mul-
tiplicative constant) homogeneous differential operator of degree two that is
left-invariant and rotation invariant [20]. A fundamental solution for this oper-
ator was obtained by Folland [4]. This existence of the fundamental solution for
the Kohn-Laplacian ensures the hypoellipticity [8] of this operator. The Dirich-
let problem and its wellposedness on Hn have been discussed in [7, 9, 10]. An
integral kernel, called the Green’s function, which is used to solve the associated
inhomogeneous Dirichlet problem, was first obtained by Korányi [13] when the
boundary data enjoys certain symmetry properties. For similar boundary data
and for various domains in the generalised Heisenberg groups and in particular
the Heisenberg group, the Green’s functions have been discussed in [2,6,14,15].
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An equally interesting problem viz. the Neumann problem on Hn is repre-
sented by

(1.1)

{
∆Hnu = 0 in Ω,
∂
∂nu = g on ∂Ω,

where Ω is an open domain in Hn and n denotes the outward unit normal at
the boundary ∂Ω. The above problem for a bounded domain in Hn is discussed
in [3] and in a more generalised set up in [16].

However the study of the Neumann problem on Hn so far has been very
much confined to bounded domains only. The analysis of a similar problem on
an unbounded set up involves many improper integrals and the corresponding
approximations, tackling which poses a different challenge. Hence, in order
to establish the wellposedness of the problem, the situation demands certain
decay conditions on the boundary data. For example, a similar problem in the
classical case requires the boundary data to have a compact support [21].

In this article, we start with a model unbounded domain, namely the upper
half-space Ω = {(ζ, t) ∈ Hn : t > 0} and analyse the Neumann problem. We
then propose an additional condition on the boundary data so that the integrals
converge near infinity and hence obtain the necessary and sufficient conditions
for the solvability of the Neumann problem. Later we construct a Green’s type
function that solves the associated inhomogeneous problem for a circular data.

1.2. Definitions and preliminary results

Consider the set Cn × R = {(ζ, t) : ζ ∈ Cn, t ∈ R} and the following
composition law

(1.2) (ζ, t)(η, s) = (ζ + η, t+ s+ 2=(ζ · η̄)),

where ζ · η̄ is the usual Hermitian inner product in Cn. It can be easily checked
that Equation (1.2) turns Cn × R into a Lie group, known as the Heisenberg
group and denoted by Hn. Let h denote the vector space of left-invariant vector
fields on Hn. The space h is closed with respect to the bracket operation [α, β] =
αβ − βα. With this bracket, h is referred to as the Lie algebra of Hn which is
well discussed in [19]. If z denotes the center in h, then we have the following
stratification

h = v⊕ z,

where v = z⊥, and called the horizontal layer in h. We choose the spanning
set for v and z, respectively, denoted by {Xj , Yj ; 1 ≤ j ≤ n} and {T}, where
Xj , Yj and T are defined as

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t
,

and ζj = xj + ιyj . We define the complex vector fields

Zj =
1

2
(Xj − ιYj) =

∂

∂ζj
+ ιζ̄j

∂

∂t
, j = 1, . . . , n,
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Z̄j =
1

2
(Xj + ιYj) =

∂

∂ζ̄j
− ιζj

∂

∂t
, j = 1, . . . , n.

Explicitly, the Kohn-Laplacian is given by

∆Hn = −
n∑
j=1

(X2
j + Y 2

j ).

An infinitesimal metric that is consistent with the group structure of Hn, qual-
ifies to be a sub-Riemannian metric which is thoroughly discussed in [11]. As
in [13], this metric is given by an inner product (·, ·)0 on W = span{Xj , Yj ; 1 ≤
j ≤ n} and turns W into an orthonormal system. All vectors in W are called
horizontal and any vector that is not in W is said to have infinite length.

The horizontal gradient of a smooth function F on Hn is defined as the
unique horizontal vector ∇0F such that

(∇0F, v)0 = v · F
for all horizontal vectors v. Equivalently, we have

∇0F =

n∑
j=1

{(XjF )Xj + (YjF )Yj} = 2
n∑
j=1

{(Z̄jF )Zj + (ZjF )Z̄j}.

A horizontal normal unit vector pointing outwards for a domain {F < 0},
where {F = 0} is a hypersurface in Hn, is defined as

(1.3)
∂

∂n0
=

1

||∇0F ||0
∇0F.

For the half-space Ω in particular, F (ζ, t) = t.
From [13], we have

(1.4)
∂

∂n0
= ι

E − Ē
|ζ|

for (ζ, t) ∈ ∂Ω such that |ζ| 6= 0 and E =
∑p
j=1 ζjZj .

In rest of the paper, the points α and β in Hn will denote (ζ, t) and (ζ ′, t′),
respectively.

Theorem 1.1 (Folland [4]). There exists a positive constant c such that

g(α) := c p(α)−2n,

where p is the homogeneous norm on Hn and is given by p(α) = (|ζ|4 + t2)
1
4 .

This g is the fundamental solution for the operator ∆Hn , that is,

∆Hng = −δ.

From [12], the fundamental solution with pole at β can be expressed as

(1.5) gβ(α) = a0

∣∣C(β, α)−Q(β, α)
∣∣−n ,

where C(β, α) = |ζ|2 +
∣∣ζ ′∣∣2 + ι(t′ − t) and Q(β, α) = 2ζ · ζ̄ ′.
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The average of an integrable function f on Hn is defined as

f̄([ζ, t]) =
1

2π

∫ 2π

0

f([eιθζ, t]) dθ.

When f([ζ, t]) = f̄([ζ, t]) for [ζ, t] ∈ Hn, we say that f is circular. Again from
[12], we have

ḡβ(α) = a0

∣∣C(β, α)
∣∣−n F(n

2
;
n

2
;n;

∣∣Q(β, α)
∣∣2∣∣C(β, α)
∣∣2
)
,

where F denotes the Gaussian hypergeometric function [17].

1.3. Main results

The interior homogeneous Neumann problem on Ω is about looking for a
function u in a suitable class CΩ (to be defined later), that satisfies

(1.6)

{
∆Hnu = 0, in Ω,
∂⊥u = g, on ∂Ω,

where g ∈ C(∂Ω). The operator ∂⊥ is similar to the normal operator ∂
∂n0

and
is defined later as a remedy to deal with the characteristic points which we
encounter on our way in this article. Our first task is to prove the following
theorem.

Theorem 1.2. For k ≥ 1, if g ∈ C(∂Ω) such that g(α) = O
(

1
ζk

)
as α nears

infinity, then the interior Neumann problem (1.6) is solvable if and only if∫
∂Ω

g dσ = 0.

In Section 4, we consider an inhomogeneous Neumann problem for Ω and
obtain a Green’s type function (or a Neumann function) G, by means of the
fundamental solution for the Kohn-Laplacian. Finally we look to establish the
necessary and sufficient conditions for the solvability of the following problem

(1.7)

{
∆Hnu = f, in Ω,
∂
∂n0

u = g, on ∂Ω,

where f and g are circular functions.

2. Formulation of the problem and the uniqueness of solution

From here onwards, for the convenience of calculations, we use a slightly
modified operator viz. ∆0 = − 1

4∆Hn and a slightly modified kernel Ψ(β, α) =
2gβ(α). Unless otherwise specified, for functions involving more than one vari-
able, the differentiation and integration will be with respect to α. Before we
move on to formulate the main problem, it is important to look at the points
where the horizontal normal vector is not defined, i.e., the points where ∇0F
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vanishes. These are called the characteristic points. For smooth F , the set of
characteristic points forms a submanifold of dimension at most n.

Let ∂Ω be given as the level set of a smooth function ρ, that is, ∂Ω = {α ∈
Hn : ρ(α) = 0}. Define

CΩ :={f ∈ C2(Ω) ∩ C(Ω̄) : lim
α→α0

∂

∂n0
f(α) exists for all characteristic points

α0 ∈ ∂Ω},

where the limit taken is consistent with the relative topology in Ω̄.
Define the operator ∂⊥ : CΩ → C(Ω) as

∂⊥f(α0) =

{
limα→α0

∂f
∂n0

(α), if α0 is a characteristic point on ∂Ω,
∂f
∂n0

(α0), if α0 is a non-characteristic point on ∂Ω.

The following version of Gaveau’s Green’s formula [7] will be useful for our
analysis. Using classical arguments, it can be verified that this formula holds
good for the fundamental solution and the Green’s function. For further details,
one can refer to [1, 18].

Proposition 2.1. Let f1, f2 ∈ CΩ. Then∫
Ω

(f1∆0f2 − f2∆0f1) dν =

∫
∂Ω

(f1∂
⊥f2 − f2∂

⊥f1) dσ,

where

(2.1) dσ =
||∇0ρ||0
||∇ρ||

ds,

and ds is the surface element on ∂Ω, determined by the Euclidean measure.

Theorem 2.2. A solution of the problem (1.6), if exists, is unique up to ad-
ditive constants.

Proof. As Ω is a H-Caccioppoli set [5], hence using the substitution v∇0u in
the divergence theorem [5, Corollary 7.7], we get the following Green’s first
identity

(2.2)

∫
∂Ω

v∂⊥u dσ =

∫
Ω

(v∆0u−∇0v · ∇0u) dν,

where u, v ∈ C1(Ω̄). Now for any two solutions u1, u2 of Equation (1.6), the
difference u = u1 − u2 is harmonic in Ω and continuous up to boundary. Also
∂⊥u = 0. Using Equation (2.2),∫

Ω

|∇0u|2 dν =

∫
∂Ω

u∂⊥u dσ −
∫

Ω

u(∆0u) dν = 0,

which means ∇0u = 0. Using [16, Lemma 4.3], it can be easily proved that u
is a constant. �
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3. The surface potentials and the existence of solution

For k ≥ 1, define C∗(∂Ω) = {ψ ∈ C(∂Ω) : ψ(α) = O
(

1
ζk

)
as ζ →∞}.

Definition 3.1. For ψ ∈ C∗(∂Ω) and β ∈ Hn \ ∂Ω, define

V (β) :=

∫
∂Ω

ψ(α)Ψ(β, α) dσ(α) and Ṽ (β) :=

∫
∂Ω

ψ(α)∂⊥Ψ(β, α) dσ(α).

Both V and Ṽ are ∆0-harmonic and respectively called the single- and double-
layer potentials with density ψ.

Lemma 3.2. For β ∈ ∂Ω and ψ ∈ C∗(∂Ω), the integral

V (β) =

∫
∂Ω

ψ(α)Ψ(β, α) dσ(α)

exists and V is continuous throughout Hn.

Proof. We have Ψ(β, α) = 2c p(β−1α)
−2n

. For each β ∈ ∂Ω and some ε > 0,
let Ωβ(ε) = {α ∈ ∂Ω : p(β−1α) ≤ ε}. As Ωβ(ε) is bounded and ψ ∈ L∞(∂Ω),
we have∣∣∣∣∣

∫
Ωβ(ε)

ψ(α)Ψ(β, α) dσ

∣∣∣∣∣ ≤ 2c sup
α∈Ωβ(ε)

∣∣ψ(α)
∣∣ ∫

Ωβ(ε)

p(β−1α)−2n dσ.

As Ψ(β, α) admits a pole at α = β, hence by taking a sufficiently small Korányi-
like ball around β and using the polar coordinates for Hn [13], it can be easily
verified that the integral exists on Ωβ(ε).

Using Equation (2.1) and [12, Eq. (3.7)], we obtain

dσ =
|ζ|
2
ds.

The following expression for the gauge norm follows from Equation (1.5).

(3.1) p(β−1α) =
∣∣C(β, α)−Q(β, α)

∣∣ 12 .
Set Ω′ = ∂Ω \ Ωβ(ε) and consider∫

Ω′
ψ(α)Ψ(β, α) dσ = c

∫
Ω′
ψ(α)

∣∣∣|ζ|2 +
∣∣ζ ′∣∣2 + ι(t′ − t)− 2ζ · ζ̄ ′

∣∣∣−n|ζ| ds.
On the boundary, t = 0 and therefore,∫

Ω′
ψ(α)Ψ(β, α) dσ = c

∫
Ω′

ψ(α) |ζ|∣∣∣|ζ|2 +|ζ ′|2 − 2ζ · ζ̄ ′ + ιt′
∣∣∣n ds.

As ψ ∈ C∗(∂Ω), the integral exists. It is to note that ds is a Radon measure and
hence the uniform continuity of convolutions of two integrable functions can be
established through a routine proof. As a particular case, V is continuous. �
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Lemma 3.3. The kernel Ψ satisfies the following.

∫
∂Ω

∂⊥Ψ(β, α) dσ(α) =


−2, β ∈ Ω,

−1, β ∈ ∂Ω,

0, β ∈ Hn \ Ω̄.

Proof. For β ∈ ∂Ω and Ωβ(ε) as defined in Lemma 3.2, using Proposition 2.1
on Ω \ Ωβ(ε) and substituting f1 = Ψ(·, β), f2 = 1, we get∫

∂(Ω\Ωβ(ε))

∂⊥Ψ(β, α) dσ(α) = 0,

i.e., ∫
∂Ω\Ωβ(ε)

∂⊥Ψ(β, α) dσ(α) = − lim
ε→0

∫
Ω∩∂Ωβ(ε)

∂⊥Ψ(β, α) dσ(α)

= −1

2
lim
ε→0

∫
∂Ωβ(ε)

∂⊥Ψ(β, α)dσ(α).

From [12, Eq. (1.15)], we get
∫
∂Ω
∂⊥Ψ(β, α) dσ(α) = −1. Further using appro-

priate substitutions in Proposition 2.1, the results can be proved for β ∈ Ω and
Hn \ Ω. �

Corollary 3.4. For ψ ∈ C∗(∂Ω) and β ∈ ∂Ω,∫
∂Ω

ψ(α)∂⊥Ψ(β, α) dσ(α) <∞.

We now proceed to probe the double-layer potential Ṽ for its continuity
around the boundary ∂Ω. For that, we consider a neighbourhood Nh0

(∂Ω) of
∂Ω for a sufficiently small h0 > 0 such that

Nh0
(∂Ω) = {γ + hγ̂ : γ ∈ ∂Ω and h ∈ [−h0, h0]}.

Lemma 3.5. Define

u(β) =

∫
∂Ω

{ψ(α)− ψ(γ)}∂⊥Ψ(β, α) dσ(α)

for β ∈ Nh0
(∂Ω) \ ∂Ω. For γ ∈ ∂Ω, as h → 0+, we have u(γ + hγ̂) → u(γ)

uniformly over compact neighbourhoods of γ in Nh0
(∂Ω).

Proof. For α = (ζ, t) such that |ζ| 6= 0, let

K(β, α) = 2ζ2ζ ′
2 − 3ζζ̄ ′|ζ|2 − ζζ̄ ′

∣∣ζ ′∣∣2 + ι|ζ|2 (t− t′).

With a certain amount of work using Equation (1.4), we obtain

(3.2)
∂

∂n0
Ψ(β, α) = −ι4nc p(β−1α)

−2(n+2)

|ζ|
K(β, α).
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Let Br(γ) denote the Korányi-like ball in Hn, centered at γ and having radius
r. Set

Ω1 = ∂Ω ∩Br(γ), Ω2 = ∂Ω \ Ω1,

and let r < p(β−1γ) = λ (say). For β 6= α, using Equation (3.2)∣∣∣∣∣
∫

Ω1

∂⊥Ψ(β, α) dσ(α)

∣∣∣∣∣ ≤ 4nc

∫
Ω1

K(β, α) p(β−1α)
−2(n+2)

|ζ|
dσ(α).

As λ− r ≤ p(β−1α), we get∣∣∣∣∣
∫

Ω1

∂⊥Ψ(β, α) dσ(α)

∣∣∣∣∣ ≤ 4nc sup
α∈Ω1

∣∣K(β, α)
∣∣ ∫

Ω1

1

r(λ− r)2(n+2)
dσ(α),

≤
4nc supα∈Ω1

∣∣K(β, α)
∣∣

(λ− 1)2(n+2)
|Ω1| ,(3.3)

where |Ω1| denotes the surface measure of Ω1. Using mean value theorem, we
have ∣∣∣∂⊥Ψ(β, α)− ∂⊥Ψ(γ, α)

∣∣∣ ≤ c1 ∣∣∣∇γ(∂⊥Ψ(β, α))
∣∣∣ p(γ−1β),

≤ c2
p(γ−1β)

(p(γ−1α))2(n+2)

for some suitable constants c1 and c2. Now,

(3.4)

∫
Ω2

∣∣∣∂⊥Ψ(β, α)− ∂⊥Ψ(γ, α)
∣∣∣ dσ(α) ≤ c2

∫
Ω2

p(γ−1β)

(p(γ−1α))2(n+2)
dσ(α).

Using Equation (3.1), we obtain

p(γ−1β)

(p(γ−1α))2(n+2)
=

∣∣∣∣∣∣
∣∣ζ ′∣∣2 +

∣∣ζ ′′∣∣2 + ι(t′′ − t′)− 2ζ ′ · ζ̄ ′′(
|ζ ′′|2 +|ζ|2 + ι(t− t′′)− 2ζ ′′ · ζ̄

)2(n+2)

∣∣∣∣∣∣ ,
where γ = (ζ ′′, t′′). Clearly the term on the right-hand side in Equation (3.4)
remains bounded on Ω2. Combining Equation (3.3) and Equation (3.4), we get∣∣u(β)− u(γ)

∣∣ =

∫
∂Ω

{ψ(α)− ψ(γ)}
(
∂⊥Ψ(β, α)− ∂⊥Ψ(γ, α)

)
dσ(α),

≤ c3
(

max
α∈Ω1

∣∣ψ(α)− ψ(γ)
∣∣+ p(γ−1β)

∫
Ω2

1

r2(n+2)
dσ(α)

)
.

For any ε > 0, ψ being uniformly continuous gives us the liberty to choose a
δ > 0 so that Bδ(γ) ⊆ Ω1 and

max
α∈Ω1

∣∣ψ(α)− ψ(γ)
∣∣ < ε

2c3
.

Choosing δ < ε
2c3f(r) , where f(r) =

∫
Ω2

1
r2n+2 dσ(α), we observe that∣∣u(β)− u(γ)
∣∣ < ε,
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whenever p(γ−1β) < δ. �

Theorem 3.6. For β ∈ ∂Ω, the double layer potential Ṽ takes following lim-
iting values:

lim
γ→β

Ṽ (γ) =

{∫
∂Ω
ψ(α) ∂⊥Ψ(β, α) dσ(α)− ψ(β), γ ∈ Ω,∫

∂Ω
ψ(α) ∂⊥Ψ(β, α) dσ(α) + ψ(β), γ ∈ Hn \ Ω̄.

Proof. Using Corollary 3.4, the integral defined above is a continuous function
on ∂Ω. We can write Ṽ as

Ṽ (β) = u(β) + ψ(γ)ω(β), β = γ + hγ̂ ∈ Nh0
(∂Ω),

where u is as defined in Lemma 3.5 and ω(β) =
∫
∂Ω
∂⊥Ψ(β, α) dσ(α). The

remaining part of the proof now follows using Lemma 3.5. �

Corollary 3.7. The double-layer potential Ṽ can be extended in a continuous
manner from Ω to Ω̄ and from Hn \ Ω̄ to Hn \ Ω.

Theorem 3.8. For β ∈ ∂Ω, the single layer potential V satisfies the following:

lim
γ→β

∂⊥V (γ) =

{∫
∂Ω
ψ(α) ∂⊥Ψ(β, α) dσ(α)− ψ(β), γ ∈ Ω,∫

∂Ω
ψ(α) ∂⊥Ψ(β, α) dσ(α) + ψ(β), γ ∈ Hn \ Ω̄.

Proof. As ∇βΨ(β, α) = ∇αΨ(β, α), we have

(∇V (β)) · γ̂ + Ṽ (β) =

∫
∂Ω

ψ(α) (∇αΨ(β, α)) · {γ̂ + β̂} dσ(α),

where β = γ+hγ̂ ∈ Nh0
(∂Ω). Using Theorem 3.6, analogous to the double-layer

potential Ṽ , the right-hand side can be shown to be continuous on Nh0
(∂Ω).

The proof now follows from Theorem 3.6. �

Theorem 3.9. The following limit holds uniformly for all β in ∂Ω:

lim
ε→0+

{∇Ṽ (β + εβ̂)−∇Ṽ (β − εβ̂)} · β̂ = 0.

Proof. The theorem can be proved along similar lines to the proof of Theo-
rem 3.6. �

Define the integral operators W, W̃ : C∗(∂Ω)→ C∗(∂Ω) as

(Wψ)(β) :=

∫
∂Ω

ψ(α)(∂⊥Ψ(β, α))α dσ(α),

(W̃φ)(β) :=

∫
∂Ω

φ(α)(∂⊥Ψ(β, α))β dσ(α),

where β ∈ ∂Ω. We define the dual system 〈C∗(∂Ω), C∗(∂Ω)〉 as

〈φ, ψ〉 :=

∫
∂Ω

φψ dσ.

As Ω has a smooth boundary, Corollary 3.4 implies that W and W̃ are compact
operators. Also, W and W̃ are adjoint with respect to the above dual system.
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Theorem 3.10. Nullity of each of the operators I +W and I + W̃ is one.

Proof. The proof follows along similar lines as that of [3, Theorem 3.9]. �

Theorem 3.11. If g ∈ C∗(∂Ω), then any solution φ of the integral equation

φ(β) +

∫
∂Ω

φ(α)∂⊥Ψ(β, α) dσ = g(β), β ∈ ∂Ω,

is also in C∗(∂Ω). For such φ, the single-layer potential

V (β) =

∫
∂Ω

φ(α)Ψ(β, α) dσ, β ∈ Ω,

acts as a solution for the interior Neumann problem (1.6).

Proof. As g ∈ C∗(∂Ω), the single-layer potential V is well defined. The proof
now follows from Theorem 3.8. �

Now we find ourselves in a position to prove the first part of our main result
in this section.

Proof of Theorem 1.2. (Necessity) This can be proved using Proposition 2.1 by
substituting f1 = 1 and for a solution u of the problem (1.6).

(Sufficiency) The Fredholm’s theorem indicates that the inhomogeneous

problem φ + W̃φ = g admits a solution if and only if g is orthogonal to a
solution of ψ +Wψ = 0. Using Theorem 3.10, it is equivalent to saying∫

∂Ω

g dσ = 0.

Finally using Theorem 3.11, the Neumann problem (1.6) has a solution. �

4. The Neumann function and explicit representation of the
solution

Definition 4.1. The Neumann function for the pair (∆0,Ω) is defined as a
function G that satisfies{

∆0G(β, α) = δβ , in Ω,
∂⊥G(β, α) = 0, on ∂Ω.

Lemma 4.2. Let β∗ denote the reflection of the point β with respect to the
boundary of the half-space Ω, i.e., β∗ = [ζ ′,−t′]. Then for α 6= β, G(β, α) =
ḡβ(α)+ḡβ∗(α) acts as the Neumann function when applied to circular functions.

Proof. As ḡβ∗(α) is harmonic in Ω, we first observe

∆0G(β, α) = ∆0(ḡβ(α)) = δβ .

Next we have

ḡβ(α) = a0

∣∣C(β, α)
∣∣−n F(n

2
;
n

2
;n;

∣∣Q(β, α)
∣∣2∣∣C(β, α)
∣∣2
)
,
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ḡβ∗(α) = a0

∣∣C(β∗, α)
∣∣−n F(n

2
;
n

2
;n;

∣∣Q(β∗, α)
∣∣2∣∣C(β∗, α)
∣∣2
)
.

E
(∣∣C(β, α)

∣∣2 )
=

n∑
j=1

ζj

(
∂

∂ζj
+ ιζ̄j

∂

∂t

)(
ζj

2ζ̄j
2

+
∣∣ζ ′∣∣4 + t2 + t′2 + 2ζj ζ̄j

∣∣ζ ′∣∣2 − 2tt′
)

= 2|ζ|2 (|ζ|2 +
∣∣ζ ′∣∣2 + ι(t− t′)).

Similarly, Ē
(∣∣C(β, α)

∣∣2 ) = 2|ζ|2 (|ζ|2 +
∣∣ζ ′∣∣2 − ι(t − t′)) and therefore Equa-

tion (1.4) implies that

∂⊥
(∣∣C(β, α)

∣∣2 ) = −4|ζ| (t− t′).

Using elementary relations of Gaussian hypergeometric functions, we get

∂⊥(ḡβ(α)) = 2n|ζ| a0(t− t′)
∣∣C(β, α)

∣∣−(n+2)
F

(
n

2
+ 1;

n

2
;n;

∣∣Q(β, α)
∣∣2∣∣C(β, α)
∣∣2
)
.

Going through similar steps,

∂⊥(ḡβ∗(α)) = 2n|ζ| a0(t+ t′)
∣∣C(β∗, α)

∣∣−(n+2)
F

(
n

2
+ 1;

n

2
;n;

∣∣Q(β∗, α)
∣∣2∣∣C(β∗, α)
∣∣2
)
.

As
∣∣C(β, α)

∣∣2 =
∣∣C(β∗, α)

∣∣2 on the boundary ∂Ω, we get

∂⊥
(
ḡβ(α) + ḡβ∗(α)

)
= 0 on ∂Ω. �

Theorem 4.3. The inhomogeneous Neumann boundary value problem

(4.1)

{
∆0u = f, in Ω,
∂⊥u = g, on ∂Ω,

where f and g are circular functions such that f is bounded and g ∈ C∗(∂Ω),
is solvable if and only if

(4.2)

∫
Ω

f(α) dν(α) =

∫
∂Ω

g(α) dσ(α).

The solution is given by following representation formula

(4.3) u(β) =

∫
Ω

G(β, α)f(α) dν(α)−
∫
∂Ω

G(β, α)g(α) dσ(α).

Proof. (Necessity) Using Proposition 2.1 with a solution u of Equation (4.1)
and f2 = 1, we have ∫

Ω

f(α) dν(α) =

∫
∂Ω

g(α) dσ(α).
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(Sufficiency) Firstly, consider the following inhomogeneous boundary value
problem

(4.4)

{
∆0u1 = f, in Ω,
u1 = 0, on ∂Ω,

where f ∈ C(Ω). This problem clearly admits a solution and hence ∂⊥u1 exists
on ∂Ω. Here, it can be observed that ∂⊥u1 ∈ C∗(∂Ω).

Now consider the following homogeneous Neumann problem, where u2 ∈ CΩ

(4.5)

{
∆0u2 = 0, in Ω,
∂⊥u2 = g̃, on ∂Ω,

where g̃ = g − ∂⊥u1. As one can easily show that this problem possesses a
solution, we have ∫

∂Ω

g̃ = 0,

which gives
∫
∂Ω
g =

∫
∂Ω
∂⊥u1. Using Proposition 2.1, we finally get∫
Ω

f(α) dν(α) =

∫
∂Ω

g(α) dσ(α).

(Representation) From the above discussion, we can conclude that the fol-
lowing problems

(4.6)

{
∆0u1 = f, in Ω,
∂⊥u1 = 0, on ∂Ω,

and

(4.7)

{
∆0u2 = 0, in Ω,
∂⊥u2 = g, on ∂Ω,

admit a solution. Let ũ1 and ũ2, respectively, denote the solutions of problem
(4.6) and problem (4.7). Using the substitutions f1 = ũ1(α) and f2 = G(β, α)
in Proposition 2.1, we get

ũ1 =

∫
Ω

G(β, α)f(α) dν(α).

Similarly ũ2 = −
∫
∂Ω
G(β, α)g(α) dσ(α). It can be checked now that u = ũ1+ũ2

is a solution of the problem (4.1). �
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