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Abstract. Let G be an arbitrary, connected, simply connected and uni-
modular Lie group of dimension 3. On the space M(G) of left-invariant

Lorentzian metrics on G, there exists a natural action of the group Aut(G)

of automorphisms of G, so it yields an equivalence relation w on M(G),
in the following way: h1 w h2 ⇔ h2 = φ∗(h1) for some φ ∈ Aut(G).

In this paper a procedure to compute the orbit space Aut(G)/M(G)
(so called moduli space of M(G)) is given.

1. Introduction

The study of the geometry of left-invariant Lorentzian metrics on three-
dimensional Lie groups G goes back to Cordero and Parker [5] and is still far
from complete. There are important and interesting unresolved issues, one
of which is the problem of determining the moduli space defined as the orbit
space of the action of Aut(G) on the space M(G) of left-invariant Lorentzian
metrics on such Lie groups. A complete study on the computation of moduli
spaces is carried out for the Riemannian case by K. Y. Ha and J. B. Lee
in [7]. It is known from the work of Vukmirović in [14] that the Lorentzian
left-invariant metrics on Heisenberg groups H2n+1 of dimension 2n+ 1, admit
three non-isometric classes which generalize the metrics of Rahmani in [12,13].
Later in [9], Kubo, Onda, Taketomi and Tamaru study the moduli space of
left-invariant pseudo-Riemannian metrics on the Lie groups of real hyperbolic
spaces. Also it is determined in a recent paper [8] of Kondo and Tamaru the
moduli space up to isometry and scaling of Lorentzian left-invariant metrics
on certain nilpotent Lie groups. In the literature to date, the moduli space for
Lorentzian left-invariant metrics on unimodular three-dimensional Lie group
has not been explicitly presented. The above observation motivates us to study
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this moduli space and it is interesting to notice that the resulting classification
in this work can be seen as natural generalization of the work in [7].

The main objectives of the present paper are:

(1) to complete the classification in [5] realized in terms of Lie algebras
with an orthonormal basis, by classifying for each three-dimensional,
connected, simply connected, unimodular and non abelian Lie group G
all the Lorentzian left-invariant metrics on G, up to automorphism of
G, and hence achieve a similar study to the one done in the Riemannian
case in [7],

(2) to compute, for each class of these metrics, their curvatures. Moreover,
we provide our more explicit formulas for each Lorentzian left-invariant
generalized Ricci solitons on such Lie groups [4].

There are five three-dimensional, connected, simply connected, unimodular and
non abelian Lie groups characterized by the signature of their Killing form: the
nilpotent Lie group Nil with signature (0, 0, 0), the special unitary group SU(2)

with signature (−,−,−), the universal covering group P̃SL(2,R) of the special
linear group with signature (+,+,−), the solvable Lie group Sol with signature

(+, 0, 0) and the universal covering group Ẽ0(2) of the connected component
of the Euclidean group with signature (−, 0, 0). Let (G, h) be one of these Lie
groups endowed with a Lorentzian left-invariant metric and g its Lie algebra
with a fixed orientation. Denote by 〈 , 〉 the value of h at the neutral element.
The study in [5] is based on a remark first made by Milnor in [10]. Depending
only on 〈 , 〉 and the orientation, there exist a product1 × : g × g −→ g and
a symmetric endomorphism L : g −→ g such that, for any u, v ∈ g, the Lie
bracket on g is given by

(1.1) [u, v] = L(u× v).

Note that L changes to −L when we change the orientation. It is well-known
(see [11]) that there are four types of symmetric endomorphisms on a Lorentzian
vector space. Relying on the type of L, there exists B0 = (e1, e2, e3) an or-
thonormal basis 2 of g with 〈e1, e1〉 = 〈e2, e2〉 = 1 and 〈e3, e3〉 = −1 such that
(1.1) gives one of the following forms: (see [2])

Type diag{a, b, c}: We say that L is of type diag{a, b, c} if it is diagonaliz-
able with eigenvalues [a, b, c] with respect to B0. In terms of these
eigenvalues we deduce that

(1.2) [e1, e2] = −c e3, [e2, e3] = a e1 and [e3, e1] = b e2.

In this case the eigenvalues of the matrix of the Killing form in B0 are
[−2ab, 2ac, 2bc].

1the product × designates the cross product of two vectors u, v in the Lorentzian Lie

algebra g such that 〈u× v, w〉 = det [u v w] , ∀w ∈ g.
2if B0 = (e1, e2, e3) is a positively oriented and orthonormal basis with e3 timelike, then

e1 × e2 = −e3, e2 × e3 = e1 and e3 × e1 = e2.
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Type {azz̄}: L is called of type {azz̄} if it has one real and two complex
conjugate eigenvalues. Then there exist a, α, β ∈ R with β 6= 0 such
that 3

MB0
(L) =

a 0 0
0 α −β
0 β α

 , β 6= 0.

The corresponding Lie algebra is given by:

(1.3) [e1, e2] = −β e2 − α e3, [e2, e3] = a e1 and [e3, e1] = α e2 − β e3.
In this case the eigenvalues of the matrix of the Killing form in B0 are

[2(α2 + β2), 2a
√
α2 + β2,−2a

√
α2 + β2].

Type {ab2}: L is said to be of type {ab2} if its spectrum consists of the two
eigenvalues a and b (one of which has multiplicity two), each associ-
ated to a one-dimensional eigenspace. In the orthonormal basis B0 the
matrix of L takes the form

MB0
(L) =

a 0 0
0 b + 1/2 −1/2
0 1/2 b− 1/2


and the corresponding Lie algebra is given by:

(1.4)

[e1, e2] =
1

2
e2 +

(
1

2
− b

)
e3, [e2, e3] = ae1 and

[e3, e1] =

(
b +

1

2

)
e2 +

1

2
e3,

which gives the eigenvalues of the matrix of the Killing form in B0:
[2b2, (

√
4b2 + 1− 1)a,−(

√
4b2 + 1 + 1)a].

Type {a3}: L is called of type {a3} if it has three equal eigenvalues associated
to a one-dimensional eigenspace. Then there exists a ∈ R such that

MB0
(L) =

 a
√

2/2 0√
2/2 a −

√
2/2

0
√

2/2 a


the corresponding Lie algebra is given by:

(1.5)

[e1, e2] =
1√
2
e2 − ae3, [e2, e3] = ae1 +

1√
2
e2 and

[e3, e1] =
1√
2
e1 + ae2 +

1√
2
e3,

In this case the eigenvalues of MB0
(K) are complicated. But

det(MB0
(K)) = −8a6 and tr(MB0

(K)) = 2(a2 + 1)

which can be used to determine the signature of the Killing form K.

3here and below MB0
(L) denotes the matrix of L with respect to the basis B0.
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Moreover, according to Proposition 2.2 the type of the symmetric endomor-
phism L is an invariant of Lorentzian left-invariant metrics on three-dimensional
unimodular Lie group. Indeed, let h1 and h2 be two Lorentzian left-invariant
metrics on G. Let L1 and L2 be the associated endomorphisms to h1 and h2,
respectively, for a fixed orientation on g. If there exists an automorphism of
the Lie group φ : G −→ G such that h1 = φ∗(h2), then there exists a linear
isometry ψ from (g, 〈 , 〉1) onto (g, 〈 , 〉2) satisfying L2 = ±ψ ◦L1 ◦ψ−1, where
〈 , 〉1 (resp. 〈 , 〉2) denotes the inner product on g induced by the metric h1
(resp. h2). In particular, one can construct an orthonormal basis B of (g, 〈 , 〉1)
and an orthonormal basis C of (g, 〈 , 〉2) such that MB(L1) = ±MC(L2). In
other words, L1 and ±L2 are represented by the same matrix.

Having this consideration in mind and the fact that two similar matrix have
the same complex spectrum, we see that if we have any of the following four
cases:

case 1: the type of L1 is different from that of ±L2.
case 2: L1 and ±L2 are diagonalizable but have different sets of eigenvalues

of spacelike eigenvectors. More in detail: (a1, b1) 6= ± (a2, b2) and
(a1, b1) 6= ± (b2, a2), where a1 and b1 (resp. a2 and b2) given as in
(1.2), and related to an orthonormal basis with respect 〈 , 〉1 = h1(e)
(resp. 〈 , 〉2 = h2(e)).

case 3: L1 and ±L2 are diagonalizable and have the same sets of eigenvalues
of spacelike eigenvectors but the eigenvalue of timelike eigenvector of
L1 is different from that of ±L2, since this eigenvalue depends on the
causal character of its eigenvector.

case 4: L1 and ±L2 are not diagonalizable and have the same type given as in
(1.3), (1.4) and (1.5) but the set of eigenvalues of L1 is different from
that of ±L2.

Then h1 and h2 are not equivalent up to automorphism.
For convenience of the reader, we now provide an extended discussion of the

main steps of the approach used as well as an outline of the paper. The overall
task in order to achieve our goals mentioned above splits into eight steps.

step 1: We take a three-dimensional unimodular Lie group G and we fix a
natural basis B

N
of its Lie algebra g (see Paragraph 2 (Natural basis

in Section 2) where these basis are given).
step 2: We endow G with a Lorentzian left-invariant metric h0 and we denote

by L its associated endomorphism.
step 3: We have to determine what are the possible types and parameters of

±L that are subject to the signature of the Killing form.
step 4: For each possible type of ±L, there exists a positively oriented and

orthonormal basis B0 = (e1, e2, e3) with e3 timelike such that the Lie
bracket of g has one of the forms (1.2), (1.3), (1.4), (1.5).

step 5: We find a basis B1 = (xe1 + ye2 + ze3, ue1 + ve2 +we3, pe1 + qe2 + re3)
in which structure constants of the Lie algebra g are the same structure
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constants described in Paragraph 2 (Natural basis in Section 2) and
related to the fixed basis B

N
. Using this basis B1 we calculate the

automorphism of Lie algebra ρ : g −→ g which sends the orthonormal
basis B0 to B1. Let φ0 be the automorphism of G associated to ρ. We
put h1 = φ∗0(h0).

step 6: In some cases, we use another automorphism φ1 of G such that φ∗1(h1)
has a more reduced form than h1.

step 7: Finally, we get the matrix of φ∗1(h1) in the natural basis B
N

. The matrix
obtainedMB

N
(φ∗0(h0)) orMB

N
(φ∗1(h1)) constitute a list of Lorentzian

left-invariant metrics on G depending on a reduced number of parame-
ters and each Lorentzian left-invariant metric on G is isometric to one
in this list. We find twenty one non-isometric classes of such metrics
which shows that the situation is far more rich than the Riemannian
case [7].

step 8: We compute for each metric in the list the Ricci curvature and the
scalar curvature which determine all the curvature since we are in di-
mension 3. Finally, we exhibit some metrics with distinguished curva-
ture properties.

We note that the fifth and sixth step, namely the finding for automorphisms
φ0 and φ1 represent one of the most difficult tasks of our work, especially when

G = P̃SL(2,R). For that reason we have used the software Maple and the
expression of the group of automorphisms of the three-dimensional unimodular
Lie algebra given in [7]. All the computations in the entire article have been
checked by Maple.

The paper is organized as follows. In Section 2, we precise the models of
the three-dimensional unimodular Lie group G we will use in this paper. In
Section 3, we perform for each Lie group G the steps mentioned above and we
give its list of Lorentzian left-invariant metrics. For Nil the list contains three

non-isometric classes of metrics, for SU(2) one class, for P̃SL(2,R) seven non-

isometric classes, for Sol seven non-isometric classes and for Ẽ0(2) three non-
isometric classes. These non-isometric classes are expressed by the twenty-one
formulas from (nil-) to (ee3) and the classification calculated within this study
is therefore summarised in the tables below. In Section 4, we provide for each
class of metrics found in Section 3 its Ricci curvature, scalar curvature and the
signature of the Ricci curvature. We provide Table 1 describing the possible
signature of the Ricci curvature and the metrics realizing these signatures.
Finally, the paper concludes in Section 5 with a comparison to related work
and a discussion of the constant curvature, Einstein, locally symmetric, semi-
symmetric not locally symmetric and generalized Ricci soliton metrics on G
which have been determined in [1,3,4] by giving their Lie algebras as in (1.2),
(1.3), (1.4), (1.5). Here we supply their corresponding metrics in the resulting
list (see from Theorems 5.1 to 5.7).
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Lie n su(2) sol
algebras
Natural [X, Y ] = Z, [�x, �y] = 2�z, [X1, X2] = X2,
basis [Z, Y ] = 0, [�y, �z] = 2�x, [X1, X3] = −X3,

[Z,X] = 0. [�z, �x] = 2�y. [X2, X3] = 0.
Lie

groups Nil SU(2) Sol
nil+ nil− nil0 su sol1 sol2 sol3 sol4 sol5 sol6 sol7

Lorentzian
left-invariant

metrics
⎛⎜⎜⎝

1 0 0
0 −1 0
0 0 λ

⎞⎟⎟⎠

⎛⎜⎜⎝

1 0 0
0 1 0
0 0 −λ

⎞⎟⎟⎠

⎛⎜⎜⎝

1 0 0
0 0 1
0 1 0

⎞⎟⎟⎠

⎛⎜⎜⎝

�1 0 0
0 �2 0
0 0 −�3

⎞⎟⎟⎠

⎛⎜⎜⎜⎝

4
u2−v2

0 0
0 1 u

v
0 u

v
1

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

4
v2−u2

0 0
0 u

v
−1

0 −1 u
v

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

1
u+v

0 0
0 − v

u
1

0 1 1

⎞⎟⎟⎟⎠

⎛⎜⎜⎝

1
u
0 0

0 −1 0
0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎜⎝

0 0 − 2
u

0 1 1
− 2
u
1 1

⎞⎟⎟⎟⎠

⎛⎜⎜⎝

u2 0 0
0 u 1
0 1 0

⎞⎟⎟⎠

⎛⎜⎜⎝

0 0 1
0 1 0
1 0 0

⎞⎟⎟⎠
(modulo

automorphism)
�1 ≥ �2 > 0 −v < u < v −v < u < v u > 0

Parameters λ > 0 λ > 0 �3 > 0 v > 0 v > 0 v > 0 u > 0 u > 0 u ≠ 0
Symmetric diag diag ab2 diag diag diag azz̄ azz̄ ab2 ab2 a3

endomorphisms (a, 0, 0) (0, 0, c) a = 0 (a, b, c) (a, b, 0) (a, 0, c) a = 0 a = 0 a < 0 a = 0 a = 0
L a > 0 c > 0 b = 0 a > 0, b > 0 a > 0 a > 0 ℜe(z) > 0 ℜe(z) = 0 b = 0 b ≠ 0

c < 0 b < 0 c > 0 ℑm(z) > 0 ℑm(z) > 0

Signature (+,−,−) (+,+,+) (0, 0, 0) (+,+,+) (+,−,−) (+,−,−) (+,−,−) (−, 0, 0) (+,−,−) (−, 0, 0) (−, 0, 0)
of if �1 < �2 + �3 if u ≠ 0 if u > 0 if u > 0

Ricci (+,−,−) (−, 0, 0) (+,+,+) (+, 0, 0)
curvature if �1 > �2 + �3 if u = 0 if u < 0 if u < 0

(+, 0, 0) (0, 0, 0)
if �1 = �2 + �3 if u = 0

Signature s = λ∕2 s = λ∕2 s = 0 s > 0 s = v2∕2 s = u2∕2 s = −2v s = −2u s = u2∕2
of scalar s > 0 s > 0 s > 0 s > 0 if u ≠ 0 s < 0 s < 0 s > 0 s = 0 s = 0
curvature s = 0 if u = 0

Lie
algebras

sl(2,ℝ) e0(2)

Natural [X1, X2] = 2X3, [X1, X2] = X3,
basis [X3, X1] = 2X2, [X1, X3] = −X2,

[X3, X2] = 2X1. [X3, X2] = 0.

Lie groups P̃SL(2,ℝ) Ẽ0(2)
Lorentzian sll1 sll2 sll3 sll4 sll5 sll6 sll7 ee1 ee2 ee3

left-inv.

metrics
⎛⎜⎜⎝

−�1 0 0
0 �2 0
0 0 �3

⎞⎟⎟⎠

⎛⎜⎜⎝

�1 0 0
0 −�2 0
0 0 �3

⎞⎟⎟⎠
K

⎛⎜⎜⎜⎝

M β 0
β N 0
0 0 a2α

N

⎞⎟⎟⎟⎠
K

⎛⎜⎜⎜⎝

−N 0 β
0 a2α

N
0

β 0 M

⎞⎟⎟⎟⎠
K

⎛⎜⎜⎝

u 0 v
0 M 0
v 0 u

⎞⎟⎟⎠
K

⎛⎜⎜⎝

M −a 0
−a N 0
0 0 8a

b

⎞⎟⎟⎠
K

⎛⎜⎜⎝

M N 0
N S R
0 R 4a4

⎞⎟⎟⎠

⎛⎜⎜⎝

0 1 0
1 u 0
0 0 v

⎞⎟⎟⎠

⎛⎜⎜⎝

0 −1 0
−1 u 0
0 0 v

⎞⎟⎟⎠

⎛⎜⎜⎝

0 1 0
1 0 0
0 0 u

⎞⎟⎟⎠
(modulo
automor- �1 > 0 �1 > 0 K = 4

a2α
√
α2+β2

K = 16
v2−u2

a ≠ 0 K = 2
a4(1+2a2)

u ≥ v u < 0 u > 0

phism) �2 ≥ �3 > 0 �2 > 0, �3 > 0. M = β2−α2√
α2+β2

M = 2(u + v) b ≠ 0 M = 1 − 4a4 v > 0 v > 0

N =
√
α2 + β2 −v < u < v K = 1

2ab
N = (1 + 2a2)

3
2

Parameters α > 0, β > 0 α < 0, β > 0 v > 0 M = a − 8 S = 4a4 + 6a2 + 1
N = a + 8 R = 2a3

√
2, a > 0

Symmetric diag diag a2zz̄ a2zz̄ a2zz̄ ab2 a3 diag diag ab2

endomor- (a, b, c) (a, b, c) a ≠ 0 a ≠ 0 a ≠ 0 a ≠ 0 a ≠ 0 (a, b, 0) (a, 0, c) a > 0
phisms a > 0, b > 0 a < 0, b > 0 ℜe(z) > 0 ℜe(z) < 0 ℜe(z) = 0 b ≠ 0 a > 0, b > 0 a > 0, c < 0 b = 0
L c > 0 c < 0 ℑm(z) > 0 ℑm(z) > 0 ℑm(z) > 0

Signature (+,+,+) (+,−,−) (+,−,−) (+,−,−) (+,−,−) (+,−,−) (0, 0, 0) (+,+,+) (+,−,−)
of if �3 < �1 − �2 if �1 < �2 − �3 a2 ≠ 2 ℜe(z) if a ≠ 2b if u = v if u < −v

Ricci (+,−,−) (−, 0, 0) (−, 0, 0) (+,−,−). (+,−,−)
curvature if �3 > �1 − �2 if �1 > �2 − �3 a2 = 2 ℜe(z) if a = 2b if u ≠ v if u > −v

(+, 0, 0) (+, 0, 0)
if �3 = �1 − �2 if �1 = �2 − �3 if u = −v

(−, 0, 0)
if �3 = −�1 + �2 if �1 = �2 + �3

Scalar s = 2[(
√
�1+

√
�2)2+��3][(

√
�1−

√
�2)2+��3]

�1�2�3
s = 1

2
a4 − 2a2α − 2β2 s = u

2
s = 1

2
a(a − 4b) s = − 3

2
a2 s = (u−v)2

2v
s = (u−v)2

2v
s = u

2
curvature � = −1 � = 1 s < 0 s ≥ 0 s > 0 s > 0

2. Preliminaries

Throughout this paper, G will always be a connected, simply connected,
unimodular, three-dimensional and non abelian Lie group. Denote by h, a left-
invariant Lorentzian metric on G, determined by inner product 〈 , 〉 = h(e) of
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signature (2, 1) on the Lie algebra g of G. Let ∇ : g×g −→ g be the Levi-Civita
connection associated to (G, h). From Koszul formula we get

(2.1) 2〈∇uv, w〉 = 〈[u, v], w〉+ 〈[w, u], v〉+ 〈[w, v], u〉.

For any u, v ∈ g, ∇u : g −→ g is skew-symmetric and [u, v] = ∇uv−∇vu. Let
R be the Riemannian curvature tensor of (G, h) defined for tangent vectors u, v
by R(u, v) = ∇[u,v]− [∇u,∇v]. The Ricci curvature is the symmetric tensor ric
defined, for any tangent vectors u and v as the trace of the map: w 7→ R(u,w)v
and the Ricci operator Ric : g −→ g is given by the relation 〈Ric(u), v〉 =
ric(u, v). The scalar curvature is given by s = tr(Ric).
Recall that:

(1) (G, h) is called flat if R = 0;
(2) (G, h) has constant sectional curvature if there exists a constant λ such

that, for any u, v, w ∈ g,

R(u, v)w = λ (〈v, w〉u− 〈u,w〉v) .

(3) (G, h) is called Einstein if there there exists a constant λ such that
Ric = λIdg.

(4) (G, h) is called locally symmetric if, for any u, v, w ∈ g,

∇u(R)(v, w) := [∇u,R(v, w)]− R(∇uv, w)− R(v,∇uw) = 0.

(5) (G, h) is called semi-symmetric if, for any u, v, a, b ∈ g,

[R(u, v),R(a, b)] = R(R(u, v)a, b) + R(a,R(u, v)b).

(6) (G, h) is said to be generalized Ricci soliton (see [4] and references
therein) if there exist u ∈ g and real constants α0, β0, λ0 such that

Lu 〈 , 〉+ 2α0 u
[ � u[ − 2β0 ric = 2λ0 〈 , 〉,

Lu denotes the Lie derivative in the direction of u and u[ denotes a
1-form such that u[(v) = 〈u, v〉.
Adopting the notation in [4], one has:
(K) the Killing vector field equation when α0 = β0 = λ0 = 0;
(H) the homothetic vector field equation when α0 = β0 = 0;

(RS) the Ricci soliton equation when α0 = 0, β0 = 1;
(E-W) a special case of the Einstein-Weyl equation in conformal geometry

when α0 = 1, β0 = −1;
(PS) the equation for a metric projective structure with a skew-sym-

metric Ricci tensor representative in the projective class when
α0 = 1, β0 = −1

2 , and λ0 = 0;
(VN-H) the vacuum near-horizon geometry equation of a spacetime when

α0 = 1, β0 = 1
2 , with λ0 playing the role of the cosmological

constant.
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Natural basis. Before focusing our attention on the classification of metrics,
we should devote a few lines to the description of G as well as to structure
constants of its Lie algebra related to the natural basis denoted B

N
.

I– The nilpotent Lie group Nil known as Heisenberg group whose Lie al-
gebra will be denoted by n. We have

Nil =


1 x z

0 1 y
0 0 1

 : x, y, z ∈ R

 and n =


0 x z

0 0 y
0 0 0

 : x, y, z ∈ R


and the non-vanishing Lie brackets in the canonical basis B

N
={X,Y, Z}

are given by [X,Y ] = Z. The Killing form is trivial.

II– The special unitary group

SU(2) =

{(
a+ ib −c+ id
c+ id a− ib

)
: a2 + b2 + c2 + d2 = 1

}

whose Lie algebra su(2) =

{(
iz y + ix

−y + xi −zi

)
: x, y, z ∈ R

}
.

In the natural basis

B
N

=

{
σx =

(
0 i
i 0

)
, σy =

(
0 1
−1 0

)
, σz =

(
−i 0
0 i

)}
,

we have

(2.2) [σx, σy] = 2σz, [σy, σz] = 2σx and [σz, σx] = 2σy.

The Killing form has signature (−,−,−).

III– The universal covering group P̃SL(2,R) of SL(2,R) whose Lie algebra
is sl(2,R). In the natural basis

B
N

=

{
X1 =

(
0 1
−1 0

)
, X2 =

(
0 1
1 0

)
, X3 =

(
1 0
0 −1

)}
,

we have

(2.3) [X1, X2] = 2X3, [X3, X1] = 2X2 and [X3, X2] = 2X1.

The Killing form has signature (+,+,−).

IV– The solvable Lie group Sol =


ex 0 y

0 e−x z
0 0 1

 : x, y, z ∈ R

 whose

Lie algebra is sol =


x 0 y

0 −x z
0 0 0

 : x, y, z ∈ R

. In the natural
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basis

B
N

=

X1 =

1 0 0
0 −1 0
0 0 0

 , X2 =

0 0 1
0 0 0
0 0 0

 , X3 =

0 0 0
0 0 1
0 0 0

 ,

we have

(2.4) [X1, X2] = X2, [X1, X3] = −X3 and [X2, X3] = 0.

The Killing form has signature (+, 0, 0).

V– The universal covering group Ẽ0(2) of the Lie group

E0(2) =


 cos(θ) sin(θ) x
− sin(θ) cos(θ) y

0 0 1

 : θ, x, y ∈ R

 .

Its Lie algebra is

e0(2) =


 0 θ x
−θ 0 y
0 0 0

 : θ, x, y ∈ R

 .

In the natural basis

B
N

=

X1 =

0 −1 0
1 0 0
0 0 0

 , X2 =

0 0 1
0 0 0
0 0 0

 , X3 =

0 0 0
0 0 1
0 0 0

 ,

we have

(2.5) [X1, X2] = X3, [X1, X3] = −X2 and [X2, X3] = 0.

The Killing form has signature (−, 0, 0).

Remark 2.1. Obviously, we can see from the above calculus that two three-
dimensional unimodular non abelian Lie algebras are isomorphic if and only
their Killing forms have the same signature.

We are now ready to define the following equivalence relations.

Definition 1. Let g be a unimodular Lie algebra of dimension 3. Define
an equivalence relation on the set of Lorentzian inner products on g that
(g, 〈 , 〉1) w (g, 〈 , 〉2) if and only if there exists a Lie algebra automorphism
φ ∈ Aut(g) such that φ∗(〈 , 〉1) = 〈 , 〉2, i.e.,

〈
φ−1(u), φ−1(v)

〉
1

= 〈u, v〉2 or

equivalently 〈u, v〉1 = 〈φ(u), φ(v)〉2 for all u, v ∈ g.

Definition 2. Let l = (g, 〈 , 〉1) and p = (g, 〈 , 〉2) be two oriented Lorentzian
three-dimensional unimodular Lie algebras. Let L1 and L2 be symmetric en-
domorphisms of l and p, respectively. We say that L1 and L2 are equiv-
alent that we will denote as L1 ≡ L2 if there exists a pseudo-orthogonal
matrix Φ ∈ O(2, 1) such that MB2

(L2) = det(Φ) · ΦMB1
(L1)Φ−1, where

B1 = (e1, e2, e3) (resp. B2 = (v1, v2, v3)) is a positively oriented and orthonor-
mal basis of l (resp. p) with e3 (resp. v3) timelike.
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This last equivalence relation ≡ does not depend on the basis B1 and B2 and
we see that ≡ follows from the fact that O(2, 1) is a group. More in detail, we
find that

(1) Reflexivity arises from the fact that Id ∈ O(2, 1).
(2) Symmetry arises from the fact that if φ ∈ O(2, 1), then φ−1 ∈ O(2, 1).
(3) Transitivity arises from the fact that if φ ∈ O(2, 1) and ψ ∈ O(2, 1),

then φψ ∈ O(2, 1).

The symmetric endomorphism L contains the complete information about
the Lorentzian left-invariant metrics on Lie group. More precisely the following
reduces the problem of determining the isometric classes of metrics to that of
finding the equivalence classes of a set of symmetric endomorphisms.

Proposition 2.2. Let g be an oriented three-dimensional unimodular Lie al-
gebra. Then the equivalence classes of the Lorentzian Lie algebras (g, 〈 , 〉)
correspond bijectively to the equivalence classes of L the associated symmetric
endomorphisms.

Proof. For each Lorentzian inner product 〈 , 〉, let

[(g, 〈 , 〉)] = {(g, φ∗〈 , 〉) : φ ∈ Aut(g)} .
And for each L the symmetric endomorphism of (g, 〈 , 〉), let

[L] =
{

det(Φ) · ΦMB(L) Φ−1 : Φ ∈ O(2, 1)
}
,

where B = (e1, e2, e3) is a positively oriented and orthonormal basis with re-
spect to the inner product 〈 , 〉 with e3 timelike. The bijection is

{[(g, 〈 , 〉)] : 〈 , 〉 Lorentzian inner product} → {[L] : L symmetric endomorphism of (g, 〈 , 〉)}

[(g, 〈 , 〉)] 7→ [L] .

Indeed, the following assertions are equivalent

(i) there exists a Lie algebra automorphism φ : g −→ g such that 〈 , 〉2 =
φ∗(〈 , 〉1).

(ii) there exists an isomorphism φ : g −→ g such that L2 = det(φ) ·φL1φ
−1

and 〈 , 〉2 = φ∗(〈 , 〉1).
(iii) if B1 (resp. B2) is a positively oriented and orthonormal basis with

respect to 〈 , 〉1 (resp. 〈 , 〉2), then there exists a matrix Φ ∈ O(2, 1)
such that MB2(L2) = det(Φ) · ΦMB1(L1)Φ−1.

(i)⇔(ii)
Let ×1 and ×2 be two cross products (see footnote in 1) associated to 〈 , 〉1
and 〈 , 〉2, respectively.

φ ∈ Aut(g) and 〈 , 〉2 = φ∗(〈 , 〉1)

⇔ φ ([u, v]) = [φ(u), φ(v)] and 〈 , 〉2 = φ∗(〈 , 〉1)

⇔ φ (L1(u×1 v)) = L2 (φ(u)×2 φ(v)) and 〈 , 〉2 = φ∗(〈 , 〉1)

⇔ φ (L1(u×1 v)) = det(φ) · L2 (φ(u×1 v)) and 〈 , 〉2 = φ∗(〈 , 〉1),
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where the last line follows by the fact that,

〈φ(u)×2 φ(v), φ(w)〉2 = det [φ(u) φ(v) φ(w)] = det(φ) det [u v w]

= det(φ) 〈u×1 v, w〉1 = det(φ) 〈φ(u×1 v), φ(w)〉2 ,

hence

φ ∈ Aut(g) and 〈 , 〉2 = φ∗(〈 , 〉1)

⇔ φL1 = det(φ) · L2φ and 〈 , 〉2 = φ∗(〈 , 〉1)

⇔ L2 = det(φ) · φL1φ
−1 and 〈 , 〉2 = φ∗(〈 , 〉1).

(ii)⇔(iii)
Let B1 = (e1, e2, e3) with e3 timelike, and B2 = (v1, v2, v3) with v3 timelike.
Then

(2.6) L2 = det(φ) · φL1φ
−1 ⇔MB2

(L2) = det(Φ) · ΦMB1
(L1) Φ−1,

where Φ =MB1,B2(φ) and Φ−1 =MB2,B1(φ−1).
To clarify this point, it is enough to see here that the left-hand side of

equation (2.6) transforms into a matrix form with respect to the two basis
B1, B2 and vice versa.

On the other hand, we set φ(ej) =
∑3
i=1 aijvi, ∀j = 1, 2, 3 and let δij denotes

the Kronecker symbol corresponding to the Minkowski metric.

Φ =MB1,B2
(φ) ∈ O(2, 1)⇔ (aij)16i,j63

∈ O(2, 1)

⇔

〈
3∑
k=1

akivk,

3∑
k=1

akjvk

〉
2

= δij , ∀i, j = 1, 2, 3

⇔ 〈φ(ei), φ(ej)〉2 = 〈ei, ej〉1 , ∀i, j = 1, 2, 3

⇔ 〈 , 〉2 = φ∗(〈 , 〉1). �

3. Lorentzian left-invariant metrics

The aim of this section is give an overview of our main tool we employ to
provide a classification of metrics for each G keeping in mind the description
of main steps given in Introduction (see step 1), the structure constants of its
Lie algebra in the natural basis B

N
and Definition 2.

3.1. Lorentzian left-invariant metrics on Nil

We have exactly three forms of non-equivalent symmetric endomorphisms L
associated with Nil.

I– L is of type diag(0, 0, c) with c > 0. In the orthonormal basis B0 given
in (1.2), we have [e1, e2] = −c e3. We consider the automorphism of the
Lie algebra ρ : n −→ n given by

ρ(X) = e1, ρ(Y ) = e2 and ρ(Z) = −c e3.
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Let φ0 : G −→ G be the automorphism of the Lie group associated to
ρ−1. The matrix of φ∗0(h0) in the natural basis B

N
is specified by

(nil-) MB
N

(φ∗0(h0)) =

1 0 0
0 1 0
0 0 −λ

 , λ = c2 > 0.

II– L is of type diag(a, 0, 0) with a > 0. In the orthonormal basis B0 given
in (1.2), we have [e2, e3] = a e1. We consider the automorphism of the
Lie algebra ρ : n −→ n given by

ρ(X) = e2, ρ(Y ) = e3 and ρ(Z) = a e1.

Let φ0 be the automorphism of the Lie group associated to ρ−1. The
matrix of φ∗0(h0) in the natural basis B

N
is specified by

(nil+) MB
N

(φ∗0(h0)) =

1 0 0
0 −1 0
0 0 λ

 , λ = a2 > 0.

III– L is of type {ab2} with a = b = 0. In the orthonormal basis B0 given
in (1.4), we have [e1, e2] = [e3, e1] = 1

2 (e2 + e3).
We consider the automorphism of the Lie algebra ρ : n −→ n given by

ρ(X) = e1, ρ(Y ) =

√
2

2
(e2 − e3) and ρ(Z) =

√
2

2
(e2 + e3).

Let φ0 be the automorphism of the Lie group associated to ρ−1. The
matrix of φ∗0(h0) in the natural basis B

N
is specified by

(nil0) MB
N

(φ∗0(h0)) =

1 0 0
0 0 1
0 1 0

 .

Theorem 3.1. The left-invariant Lorentzian metric on Nil is equivalent up to
automorphism to the metric whose associated matrix in B

N
is exactly one of

the three forms given by (nil-), (nil+) and (nil0).

Remark 3.2. Theorem 3.1 confirms the results in [13], which states that up
homothety, there are exactly three non-isometric metrics. These metrics are
represented in matrix form in [14].

3.2. Lorentzian left-invariant metric on SU(2)

We have exactly one form of non-equivalent symmetric endomorphisms L
associated with SU(2).
L is of type diag{a, b, c} with a > 0, b > 0 and c < 0.
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Notice that we assume here that a > b since diag{a, b, c} ≡ diag{b, a, c}
in view of Definition 2. In the orthonormal basis B0 given in (1.2), we have
[e1, e2] = −ce3, [e2, e3] = ae1 and [e3, e1] = be2.

We consider the automorphism of the Lie algebra ρ : su(2) −→ su(2) given
by

ρ(σx) =
2√
−cb

e1 =
√
µ1e1, ρ(σy) =

2√
−ca

e2 =
√
µ2e2 and

ρ(σz) =
2√
ab
e3 =

√
µ3e3.

Let φ0 be the automorphism of the Lie group associated to ρ−1. The matrix
of φ∗0(h0) in B

N
is given by

(su) MB
N

(φ∗0(h0)) =

µ1 0 0
0 µ2 0
0 0 −µ3

 , µ1 > µ2 > 0, µ3 > 0.

Theorem 3.3. The left-invariant Lorentzian metric on SU(2) is equivalent up
to automorphism to the metric whose associated matrix in B

N
is exactly of the

form given by (su).

3.3. Lorentzian left-invariant metrics on P̃SL(2,R)

Notice that the set of equivalence class representatives of symmetric endo-

morphisms associated with P̃SL(2,R) admits exactly five forms.

I– L is of type diag{a, b, c} with a > 0, b > 0 and c > 0, where in addition
we assume that a > b since diag{a, b, c} ≡ diag{b, a, c} in view of
Definition 2. In the orthonormal basis B0 given in (1.2), we have

[e1, e2] = −ce3, [e2, e3] = ae1 and [e3, e1] = be2.

We consider the automorphism of the Lie algebra ρ : sl(2,R) −→
sl(2,R) given by

ρ(X1) =
2√
ab
e3 =

√
µ1e3, ρ(X2) =

2√
ca
e2 =

√
µ2e2 and

ρ(X3) = − 2√
cb
e1 = −√µ3e1.

ρ−1 induces an automorphism of the Lie group φ0. The matrix of
φ∗0(h0) in B

N
is specified by

(sll1) MB
N

(φ∗0(h0)) =

−µ1 0 0
0 µ2 0
0 0 µ3

 , µ1 > 0, µ2 > µ3 > 0.
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II– L is of type diag{a, b, c} with a < 0, b > 0 and c < 0. We remember
that

[e1, e2] = −ce3, [e2, e3] = ae1 and [e3, e1] = be2.

We consider the automorphism of the Lie algebra ρ : sl(2,R) −→
sl(2,R) given by

ρ(X1) =
2√
−cb

e1 =
√
µ1e1, ρ(X2) =

2√
−ab

e3 =
√
µ2e3 and

ρ(X3) = − 2√
ac
e2 = −√µ3e2.

ρ−1 induces an automorphism of the Lie group φ0. The matrix of
φ∗0(h0) in B

N
is specified by

(sll2) MB
N

(φ∗0(h0)) =

µ1 0 0
0 −µ2 0
0 0 µ3

 , µ1 > 0, µ2 > 0, µ3 > 0.

III– L is of type {azz̄} with a 6= 0. We remark that, from Definition 2:

MB0
(L) =

a 0 0
0 α −β
0 β α

 ≡
−a 0 0

0 −α −β
0 β −α

 ≡
a 0 0

0 α β
0 −β α

 ,

where z = α+ iβ.
In terms of the parameters a, α and β, this translate into (a, α, β) ≡
(−a,−α, β) ≡ (a, α,−β). We therefore assume that a > 0 and β > 0.
Thereby we get L is of type {a2zz̄} with a 6= 0 and β > 0.
In the orthonormal basis B0 given in (1.3), we have

[e1, e2] = −βe2 − αe3, [e2, e3] = a2e1 and [e3, e1] = αe2 − βe3, a 6= 0, β > 0.

We distinguish three cases:

i. If α > 0. We consider the automorphism of the Lie algebra ρ :
sl(2,R) −→ sl(2,R) given by

ρ(X1) =
2

a
√
α(α2 + β2)

(βe2 + αe3), ρ(X2) =
2

a
√
α
e2 and

ρ(X3) = − 2√
α2 + β2

e1.

ρ−1 induces an automorphism of the Lie group φ0. The matrix of
φ∗0(h0) in B

N
is specified by

MB
N

(φ∗0(h0)) =
4

a2α
√
α2 + β2


β2−α2√
α2+β2

β 0

β
√
α2 + β2 0

0 0 a2α√
α2+β2

 ,(sll3)
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α > 0, β > 0.

ii. If α < 0. We consider the automorphism of the Lie algebra ρ :
sl(2,R) −→ sl(2,R) given by

ρ(X1) =
2

a
√
|α|

e2, ρ(X2) = − 2√
α2 + β2

e1 and

ρ(X3) =
2

a
√
|α|(α2 + β2)

(−βe2 − αe3).

ρ−1 induces an automorphism of the Lie group φ0. The matrix of
φ∗0(h0) in B

N
is specified by

MB
N

(φ∗0(h0)) =
4

a2α
√
α2 + β2


−
√
α2 + β2 0 β

0 a2α√
α2+β2

0

β 0 α2−β2√
α2+β2

 ,(sll4)

α < 0, β > 0.

iii. If α = 0. We consider the automorphism of the Lie algebra ρ :
sl(2,R) −→ sl(2,R) given by

ρ(X1) =
1

β
e2 +

2

a2
e3, ρ(X2) =

2

β
e1 and ρ(X3) =

1

β
e2 −

2

a2
e3.

ρ−1 induces an automorphism of the Lie group φ0. The matrix of
φ∗0(h0) is given

MB
N

(φ∗0(h0)) =
1

a4β2

a4 − 4β2 0 a4 + 4β2

0 4a4 0
a4 + 4β2 0 a4 − 4β2

 .

By putting u = a4 − 4β2 and v = a4 + 4β2, therefore we get the
desired matrix

(sll5) MB
N

(φ∗0(h0)) =
16

v2 − u2

u 0 v
0 2(u+ v) 0
v 0 u

 , v > 0, −v < u < v.

IV– L is of type {ab2} with a 6= 0 and b 6= 0. In the orthonormal basis B0

given in (1.4), we have

[e1, e2] =
1

2
e2 +

(
1

2
− b

)
e3, [e2, e3] = ae1 and [e3, e1] =

(
b +

1

2

)
e2 +

1

2
e3.

We consider the automorphism of the Lie algebra ρ : sl(2,R) −→
sl(2,R) given by

ρ(X1) =

(
1

2
+

1

4b
− 2

ab

)
e2 +

(
−1

2
+

1

4b
− 2

ab

)
e3,
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ρ(X2) =

(
−1

2
− 1

4b
− 2

ab

)
e2 +

(
1

2
− 1

4b
− 2

ab

)
e3,

ρ(X3) = −2

b
e1.

Let φ0 be the automorphism of the Lie group associated to ρ−1. The
matrix of φ∗0(h0) in B

N
is specified by

(sll6) MB
N

(φ∗0(h0)) =
1

2ab

a− 8 −a 0
−a a + 8 0
0 0 8a

b

 , a 6= 0,b 6= 0.

V– L is of type {a3} with a 6= 0. We observe directly from Definition 2
that

MB0(L) =

 a
√

2/2 0√
2/2 a −

√
2/2

0
√

2/2 a

 ≡
 −a

√
2/2 0√

2/2 −a −
√

2/2

0
√

2/2 −a


which we can write as a ≡ (−a). From this point, we assume below
that L is of type {a3} with a > 0.
In the orthonormal basis B0 given in (1.5), we have

[e1, e2] =
1√
2
e2−ae3, [e2, e3] = ae1+

1√
2
e2 and [e3, e1] =

1√
2
e1+ae2+

1√
2
e3.

We consider the automorphism of the Lie algebra ρ : sl(2,R) −→
sl(2,R) given by

ρ(X1) =
1

a2

(√
2e2 − 2ae3

)
, ρ(X2) =

1

a2
√

2a2 + 1

(
2ae1 +

√
2(2a2 + 1)e2

)
,

ρ(X3) =
2
√

2√
2a2 + 1

e1.

ρ−1 induces an automorphism of the Lie group φ0. The matrix of
φ∗0(h0) in B

N
is specified by

(sll7)

MB
N

(φ∗0(h0)) =
2

a4(1 + 2a2)

 1− 4a4 (1 + 2a2)
3
2 0

(1 + 2a2)
3
2 4a4 + 6a2 + 1 2a3

√
2

0 2a3
√

2 4a4

 , a > 0.

Theorem 3.4. The left-invariant Lorentzian metric on P̃SL(2,R) is equivalent
up to automorphism to the metric whose associated matrix in B

N
is exactly one

of the seven forms given by (sll1),. . . ,(sll7).
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3.4. Lorentzian left-invariant metrics on Sol

We have five possibilities:

I– L is of type diag(a, b, 0) with a > 0, b < 0. In the orthonormal basis
B0 given in (1.2), we have

[e1, e2] = 0, [e2, e3] = ae1 and [e3, e1] = be2, a > 0, b < 0.

We consider the automorphism of the Lie algebra ρ : sol −→ sol given
by

ρ(X1) = − 1√
−ab

e3, ρ(X2) = e1 −
b√
−ab

e2 and ρ(X3) = e1 +
b√
−ab

e2.

Let φ0 be the automorphism of the Lie group associated to ρ−1 and we
put h1 = φ∗0(h0). We have

MB
N

(h1) =
1

a

 1
b 0 0
0 a− b a+ b
0 a+ b a− b

 .

We can reduce this metric by considering the automorphism of the Lie
algebra Q : sol −→ sol given by

MB
N

(Q) =


−1 0 0

0 0
√

a
a−b

0
√

a
a−b 0

 .

Consider φ1 the automorphism of Sol associated to Q−1. The matrix
of φ∗1(h1) in B

N
is specified by

MB
N

(φ∗1(h1)) =MB
N

(Q)TMB
N

(h1)MB
N

(Q) =

 1
ab 0 0
0 1 a+b

a−b
0 a+b

a−b 1

 .

We put u = a+ b and v = a− b, therefore we get the desired matrix

(sol1) MB
N

(φ∗1(h1)) =

 4
u2−v2 0 0

0 1 u
v

0 u
v 1

 , v > 0, −v < u < v.

II– L is of type diag(a, 0, b) with a > 0 and b > 0. In the orthonormal
basis B0 given in (1.2), we have

[e1, e2] = ae3, [e2, e3] = be1 and [e3, e1] = 0, a < 0, b > 0.

We consider the automorphism of the Lie algebra ρ : sol −→ sol given
by

ρ(X1) = − 1√
−ab

e2, ρ(X2) = e3 −
b√
−ab

e1 and ρ(X3) = e3 +
b√
−ab

e1.
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ρ−1 induces an automorphism of the Lie group φ0 and we put h1 =
φ∗0(h0). We have

MB
N

(h1) =
1

a

− 1
b 0 0

0 −a− b −a+ b
0 −a+ b −a− b

 .

We can reduce this metric by considering the automorphism of the Lie
algebra Q : sol −→ sol given by

MB
N

(Q) =


−1 0 0

0 0
√

a
a−b

0
√

a
a−b 0

 .

Consider φ1 the automorphism of Sol associated to Q−1. The matrix
of φ∗1(h1) in B

N
is specified by

MB
N

(φ∗1(h1)) =MB
N

(Q)TMB
N

(h1)MB
N

(Q) =

− 1
ab 0 0
0 a+b

b−a −1

0 −1 a+b
b−a

 .

We put u = a+b and v = b−a and therefore we get the desired matrix

(sol2) MB
N

(φ∗1(h1)) =

 4
v2−u2 0 0

0 u
v −1

0 −1 u
v

 , v > 0, −v < u < v.

III– L is of type {azz̄} with a = 0. A same argument as was used in item III–

for P̃SL(2,R) in Subsection 3.3 shows that α > 0 and β > 0.
In the orthonormal basis B0 given in (1.3), we have

[e1, e2] = −βe2 − αe3, [e2, e3] = 0 and [e3, e1] = αe2 − βe3, α > 0, β > 0.

We distinguish two cases:

i. If α 6= 0. We consider the automorphism of the Lie algebra ρ :
sol −→ sol given by

ρ(X1) =
1√

α2 + β2
e1, ρ(X2) = e3 +

β −
√
α2 + β2

α
e2 and

ρ(X3) = e3 +
β +

√
α2 + β2

α
e2.
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ρ−1 induces an automorphism of the Lie group φ0 and we put
h1 = φ∗0(h0). We have

MB
N

(h1) =


1

α2+β2 0 0

0 − 2β(−β+
√
α2+β2)

α2 −2

0 −2
2β(β+

√
α2+β2)

α2

 .

We can reduce this metric by considering the automorphism of the
Lie algebra Q : sol −→ sol given by

MB
N

(Q) =


1 0 0

0 −
√
2

√
β(β+
√
β2+α2)

2α 0

0 0 α
√
2

2

√
β(β+
√
β2+α2)

 .

Consider φ1 the automorphism of Sol associated to Q−1 and we
lead to the following relation.

(sol3) MB
N

(φ∗1(h1)) =

 1
u+v 0 0

0 − v
u 1

0 1 1

 , u = α2 > 0, v = β2 > 0.

ii. If α = 0. Then we take the automorphism of the Lie algebra
ρ : sol −→ sol given by

ρ(X1) =
1

β
e1, ρ(X2) = e3, and ρ(X3) = e2 with β > 0.

Let φ0 be the automorphism of the Lie group associated to ρ−1.
We have

(sol4) MB
N

(φ∗0(h0)) =

 1
u 0 0
0 −1 0
0 0 1

 , u = β2 > 0.

IV– L is of type {ab2} with a < 0 and b = 0. In the orthonormal basis B0

given in (1.4), we have

[e1, e2] =
1

2
e2 +

1

2
e3, [e2, e3] = −ae1 and [e3, e1] =

1

2
e2 +

1

2
e3 with a > 0

We consider the automorphism of the Lie algebra ρ : sol −→ sol given
by

ρ(X1) =

√
2a

a
e3, ρ(X2) =

√
2a e1 + e2 + e3 and ρ(X3) = −

√
2a e1 + e2 + e3.
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ρ−1 induces an automorphism of the Lie group φ0 and we put h1 =
φ∗0(h0). We have

MB
N

(h1) =
1

a

 −2 −
√

2a −
√

2a

−
√

2a 2 a2 −2 a2

−
√

2a −2 a2 2 a2

 , a > 0.

We can reduce this metric by considering the automorphism of the Lie
algebra Q : sol −→ sol given by

MB
N

(Q) =


1 0 0

√
2(3−2 a)
8a
√
a

−
√
2a

2a 0

−
√
2(2 a+1)
8a
√
a

0
√
2a
2a

 .

Consider φ1 the automorphism of Sol associated to Q−1. The matrix
of φ∗1(h1) in B

N
is specified by

(sol5) MB
N

(φ∗1(h1)) =

 0 0 − 2
a

0 1 1
− 2

a 1 1

 , a > 0.

V– L is of type {ab2} with a = 0 and b 6= 0. In the orthonormal basis B0

given in (1.4), we have

[e1, e2] =
1

2
e2 +

(
1

2
− b

)
e3, [e2, e3] = 0 and [e3, e1] =

(
b +

1

2

)
e2 +

1

2
e3.

We set the automorphism of the Lie algebra ρ : sol −→ sol to be:

ρ(X1) =
1

b
e1, ρ(X2) = (2b + 1)e2 + (1− 2b)e3 and ρ(X3) = e2 + e3.

ρ−1 induces an automorphism of the Lie group φ0 and we put h1 =
φ∗0(h0). We have

MB
N

(h1) =

 1
b2 0 0
0 8b 4b
0 4b 0

 .

Taking the following automorphism of the Lie algebra Q : sol −→ sol

MB
N

(Q) =

 1 0 0

0
√
2

4b 0

0 0
√
2
2

 .

We can reduce h1 to h2 in the following way. Consider φ1 the auto-
morphism of Sol associated to Q−1.
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The matrix of φ∗1(h1) in B
N

is specified by

(sol6) MB
N

(φ∗1(h1)) =

λ2 0 0
0 λ 1
0 1 0

 , λ =
1

b
6= 0.

VI– L is of type {a3} with a = 0. In the orthonormal basis B0 given in
(1.5), we have

[e1, e2] =
1√
2
e2, [e2, e3] =

1√
2
e2 and [e3, e1] =

1√
2
e1 +

1√
2
e3.

We can then define the automorphism of the Lie algebra ρ : sol −→ sol
as

ρ(X1) =
√

2e1, ρ(X2) = e2 and ρ(X3) = e3 + e1.

Let φ0 be the automorphism of the Lie group associated to ρ−1 and we
put h1 = φ∗0(h0). We have

MB
N

(h1) =

 2 0
√

2
0 1 0√
2 0 0

 .

We can reduce this metric by considering the automorphism of the Lie
algebra Q : sol −→ sol given by

MB
N

(Q) =

 1 0 0
0 1 0

−
√
2
2 0

√
2
2

 .

Consider φ1 the automorphism of Sol associated to Q−1. The matrix
of φ∗1(h1) in B

N
is specified by

(sol7) MB
N

(φ∗1(h1)) =

0 0 1
0 1 0
1 0 0

 .

Theorem 3.5. The left-invariant Lorentzian metric on Sol is equivalent up to
automorphism to the metric whose associated matrix in B

N
is exactly one of

the seven forms given by (sol1),. . . ,(sol7).

Remark 3.6. The metric (sol7) defines in [6] a maximum Lorentzian and non-
Riemannian geometry designated by Lorentz-SOL.

3.5. Lorentzian left-invariant metrics on Ẽ0(2)

There are three possibilities:
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I– L is of type diag(a, b, 0) with a > 0 and b > 0. Applying the relation
diag(a, b, 0) ≡ diag(b, a, 0), we further deduce that a > b.
In the orthonormal basis B0 given in (1.2), we have

[e1, e2] = 0, [e2, e3] = ae1 and [e3, e1] = be2, a > b > 0.

As usual we can then define the automorphism of the Lie algebra ρ :
e0(2) −→ e0(2) as

ρ(X1) =
1√
ab
e3, ρ(X2) = e1 −

b√
ab
e2 and ρ(X3) = e1 +

b√
ab
e2.

ρ−1 induces an automorphism of the Lie group φ0 and we put h1 =
φ∗0(h0). We have

MB
N

(h1) =
1

a

− 1
b 0 0

0 a+ b a− b
0 a− b a+ b

 , a > b > 0.

We can reduce this metric by considering the automorphism of the Lie
algebra Q : e0(2) −→ e0(2) given by

MB
N

(Q) =

 1 0 0
1

2
√
ab

√
ab
2 −

√
ab
2

1
2
√
ab

√
ab
2

√
ab
2

 .

Consider φ1 the automorphism of Ẽ0(2) associated to Q−1. The matrix
of φ∗1(h1) in B

N
is specified by

(ee1) MB
N

(φ∗1(h1)) =

0 1 0
1 u 0
0 0 v

 , u = ab > v = b2 > 0.

II– L is of type diag(a, 0, b) with a > 0 and b < 0. In the orthonormal
basis B0 given in (1.2), we have

[e1, e2] = ae3, [e2, e3] = be1 and [e3, e1] = 0, a > 0, b > 0.

We consider the automorphism of the Lie algebra ρ : e0(2) −→ e0(2)
given by

ρ(X1) =
1√
ab
e2, ρ(X2) = e3 −

b√
ab
e1 and ρ(X3) = e3 +

b√
ab
e1.

ρ−1 induces an automorphism of the Lie group φ0 and we put h1 =
φ∗0(h0). We have

MB
N

(h1) =
1

a

 1
b 0 0
0 −a+ b −a− b
0 −a− b −a+ b

 .
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We can reduce this metric by considering the automorphism of the Lie
algebra Q : e0(2) −→ e0(2) given by

MB
N

(Q) =

 1 0 0
1

2
√
ab

√
ab
2 −

√
ab
2

1
2
√
ab

√
ab
2

√
ab
2

 .

Consider φ1 the automorphism of Ẽ0(2) associated to Q−1. The matrix
of φ∗1(h1) in B

N
is specified by

(ee2) MB
N

(φ∗1(h1)) =

 0 −1 0
−1 −u 0
0 0 v

 , u = ab > 0, v = b2 > 0.

III– L is of type {ab2} with a > 0 and b = 0. In the orthonormal basis B0

given in (1.4), we have

[e1, e2] =
1

2
e2 +

1

2
e3, [e2, e3] = ae1 and [e3, e1] =

1

2
e2 +

1

2
e3.

We consider the automorphism of the Lie algebra ρ : e0(2) −→ e0(2)
given by

ρ(X1) =

√
2a

a
e3, ρ(X2) =

√
2ae1 + e2 + e3 and ρ(X3) = −

√
2ae1 + e2 + e3.

Let φ0 be the automorphism of Lie group associated to ρ−1 and we put
h1 = φ∗0(h0). We have

MB
N

(h1) = −1

a

 2
√

2a
√

2a√
2a −2a2 2a2√
2a 2a2 −2a2

 .

We can reduce this metric by considering the automorphism of the Lie
algebra Q : e0(2) −→ e0(2) given by

MB
N

(Q) =

 1 0 0

−
√
2a
4a −

√
2a
4 −

√
2a
4

−
√
2a
4a −

√
2a
4 −

√
2a
4

 .

Consider φ1 the automorphism of Ẽ0(2) associated to Q−1. The matrix
of φ∗1(h1) in B

N
is specified by

(ee3) MB
N

(φ∗1(h1)) =

0 1 0
1 0 0
0 0 u

 , u = a2 > 0.
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Theorem 3.7. The left-invariant Lorentzian metric on Ẽ0(2) is equivalent up
to automorphism to the metric whose associated matrix in B

N
is exactly one of

the three forms given by (ee1), (ee2) and (ee3).

4. Curvature of Lorentzian left-invariant metrics

In this section, we give for each metric whose matrix is given by one of the
formulas (nil-), . . . , (ee3) its Ricci tensor, its signature and the scalar curvature.

4.1. Curvature of Lorentzian left-invariant metrics on Nil

There are three classes of metrics on Nil given by the formulas (nil-), (nil+)
and (nil0). Here are their Ricci curvature and scalar curvature.

Proposition 4.1. (1) The Ricci curvature and the scalar curvature of the
metric (nil-) are expressed by

MB
N

(ric) =
1

2

λ 0 0
0 λ 0
0 0 λ2

 , s =
1

2
λ.

In particular, ric > 0 and s > 0.
(2) The Ricci curvature and the scalar curvature of the metric (nil+) are

expressed by

MB
N

(ric) =
1

2

λ 0 0
0 −λ 0
0 0 −λ2

 , s =
1

2
λ.

The signature of ric is (+,−,−) and s > 0.
(3) The metric (nil0) is flat.

4.2. Curvature of Lorentzian left-invariant metrics on SU(2)

There is one class of metrics on SU(2) given by the formula (su). Here is its
Ricci curvature and scalar curvature.

Proposition 4.2. The Ricci curvature and the scalar curvature of the metric
on SU(2) given by (su) are expressed by

MB
N

(ric) = diag [σ1, σ2, σ3] , where σ1 = − 2(µ1−µ2−µ3)(µ1+µ2+µ3)
µ2µ3

,

σ2 = 2(µ1+µ2+µ3)(µ1−µ2+µ3)
µ1µ3

, and σ3 = − 2(µ1−µ2−µ3)(µ1−µ2+µ3)
µ1µ2

s =
2((
√
µ1+
√
µ2)

2+µ3)((
√
µ1−
√
µ2)

2+µ3)

µ1µ2µ3
> 0.

Moreover, the signature of ric is given by

sign(ric) =

 (+,+,+) if µ1 < µ2 + µ3,
(+,−,−) if µ1 > µ2 + µ3,
(+, 0, 0) if µ1 = µ2 + µ3.
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4.3. Curvature of Lorentzian left-invariant metrics on P̃SL(2,R)

There are seven classes of metrics on P̃SL(2,R) given by the formulas (sll1),
. . . , (sll7). Here are their Ricci curvature and scalar curvature.

Proposition 4.3. The Ricci curvature and the scalar curvature of the metric

(sll1) on P̃SL(2,R) are expressed by

MB
N

(ric) = diag

[
2(µ2

1 − (µ2 − µ3)2)

µ2µ3
,−2(µ2

2 − (µ1 − µ3)2)

µ1µ3
,−2(µ2

3 − (µ2 − µ1)2)

µ1µ2

]
,

s =
2[(
√
µ1 +

√
µ2)2 − µ3][(

√
µ1 −

√
µ2)2 − µ3]

µ1µ2µ3
.

When µ1 = µ2 = µ3 = µ then ric = − 2
µh and in fact the metric has constant

sectional curvature − 1
µ . Moreover, the signature of ric is given by

sign(ric) =


(+,+,+) if µ3 < µ1 − µ2,
(+, 0, 0) if µ3 = µ1 − µ2,
(+,−,−) if µ3 > µ1 − µ2, µ1 6= µ2 − µ3,
(−, 0, 0) if µ1 = µ2 − µ3.

Proposition 4.4. The Ricci curvature and the scalar curvature of the metric

(sll2) on P̃SL(2,R) are expressed by

MB
N

(ric) = diag [σ1, σ2, σ3] , where σ1 = − 2(µ1−µ2−µ3)(µ1+µ2+µ3)
µ2µ3

,

σ2 = − 2(µ1+µ2+µ3)(µ1−µ2+µ3)
µ1µ3

, and σ3 = 2(µ1−µ2−µ3)(µ1−µ2+µ3)
µ1µ2

s =
2((
√
µ1+
√
µ2)

2+µ3)((
√
µ1−
√
µ2)

2+µ3)

µ1µ2µ3
> 0.

Moreover, the signature of ric is given by

sign(ric) =


(+,+,+) if µ1 < µ2 − µ3,
(+, 0, 0) if µ1 = µ2 − µ3,
(+,−,−) if µ1 > µ2 − µ3, µ1 6= µ2 + µ3,
(−, 0, 0) if µ1 = µ2 + µ3.

Proposition 4.5. The Ricci curvature and the scalar curvature of the metric
(sll3) are expressed by

MB
N

(ric) =


2(a2−2α)(a2(β2−α2)+4αβ2)

a2α(α2+β2)
2(a4−4α2)β

a2α
√
α2+β2

0

2(a4−4α2)β

a2α
√
α2+β2

2(a2−2α)
α 0

0 0 − 2(a4+4β2)
α2+β2

 ,

s =
1

2
a4 − 2a2α− 2β2.

Moreover det(ric) = 8
(a4+4 β2)

2
(a2−2α)

2

a4(α2+β2)2
, which is strictly positive if a2 6= 2α.

Since −2 a4+4 β2

α2+β2 < 0, then the signature of ric is (+,−,−) if a2 6= 2α and
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(−, 0, 0) otherwise. The operator of Ricci is of type {azz̄} if a2 6= 2α and
otherwise is diagonalizable.

Proposition 4.6. The Ricci curvature and the scalar curvature of the metric
(sll4) are expressed by

MB
N

(ric) =


2(2α−a2)

α 0 2(a4−4α2)β

a2α
√
α2+β2

0 − 2(a4+4β2)
α2+β2 0

2(a4−4α2)β

a2α
√
α2+β2

0 − 2(a2−2α)(a2(β2−α2)+4αβ2)
a2α(α2+β2)

 ,

s =
1

2
a4 − 2a2α− 2β2.

The signature of ric is (+,−,−). The operator of Ricci is of type {azz̄}.

Proposition 4.7. The Ricci curvature and the scalar curvature of the metric
(sll5) are expressed by

MB
N

(ric) =

 4v
v−u 0 4v

v−u
0 16v

u−v 0
4v
v−u 0 4(v−2u)

u−v

 , s =
u

2
.

The signature of ric is (+,−,−).

Proposition 4.8. The Ricci curvature and the scalar curvature of the metric
(sll6) are expressed by

MB
N

(ric) =
1

4b

(a + 2b− 8)(a− 2b) 4b2 − a2 0
4b2 − a2 (a + 2b + 8)(a− 2b) 0

0 0 − 8a2

b

 ,

s =
1

2
a(a− 4b).

The Ricci curvature has signature (+,−,−) if a 6= 2b and (−, 0, 0) if a = 2b.

Proposition 4.9. The Ricci curvature and the scalar curvature of the metric
(sll7) are expressed by

MB
N

(ric) =


2a2−9

a2
−6 a2−9

a2
√
2 a2+1

− 6
√
2√

2 a2+1a

−6 a2−9
a2
√
2 a2+1

−4 a4−14 a2−9
2 a4+a2 − (6 a2+6)

√
2

2 a3+a

− 6
√
2√

2 a2+1a
− (6 a2+6)

√
2

2 a3+a
−4 a2−8
2 a2+1

 , s = −3

2
a2.

The operator Ric is of type {a3}. From the relations det(MB
N

(ric)) = 8 and

tr(MB
N

(ric)) = −2 (a2+9)
a2 , we deduce that the signature of ric is (+,−,−).
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4.4. Curvature of Lorentzian left-invariant metrics on Sol

There are seven classes of metrics on Sol given by the formulas (sol1), . . .,
(sol7). Here are their Ricci curvature and scalar curvature.

Proposition 4.10. The Ricci curvature and the scalar curvature of the metric
(sol1) are expressed by

MB
N

(ric) =

 2v2

u2−v2 0 0

0 − 1
2u

2 − 1
2uv

0 − 1
2uv − 1

2u
2

 , s =
1

2
v2.

The signature of ric is given by

sign(ric) =

{
(+,−,−) if u 6= 0,
(−, 0, 0) if u = 0.

Proposition 4.11. The Ricci curvature and the scalar curvature of the metric
(sol2) are expressed by

MB
N

(ric) =

 2u2

v2−u2 0 0

0 − 1
2uv

1
2u

2

0 1
2u

2 − 1
2uv

 , s =
1

2
u2.

This metric is flat if u = 0. For u 6= 0, the signature of ric is given by

sign(ric) =

{
(+,−,−) if u > 0,
(+,+,+) if u < 0.

Proposition 4.12. The Ricci curvature and the scalar curvature of the metric
(sol3) are expressed by

MB
N

(ric) =

 − 2v
v+u 0 0

0 2v 2v
0 2v −2u

 , s = −2v.

The Ricci curvature has signature (+,−,−) and the Ricci operator is of type
{azz̄}.

Proposition 4.13. The Ricci curvature and the scalar curvature of the metric
(sol4) are expressed by

MB
N

(ric) =

 −2 0 0
0 0 0
0 0 0

 , s = −2u.

Proposition 4.14. The Ricci curvature and the scalar curvature of the metric
(sol5) are expressed by

MB
N

(ric) =

 −2 a 0
a − 1

2a2 − 1
2a2

0 − 1
2a2 − 1

2a2

 , s =
1

2
a2.
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The Ricci operator is of type {ab2}. From the relations det(MB
N

(ric)) = a4

2

and tr(MB
N

(ric)) = −2− a2, we deduce that the signature of ric is (+,−,−).

Proposition 4.15. The Ricci curvature and the scalar curvature of the metric
(sol6) are expressed by

MB
N

(ric) =

 0 0 0
0 − 2

λ 0
0 0 0

 , s = 0.

We have Ric2 = 0 and this metric is semi-symmetric.

Proposition 4.16. The Ricci curvature and the scalar curvature of the metric
(sol7) are expressed by

MB
N

(ric) =

 −2 0 0
0 0 0
0 0 0

 , s = 0.

We have Ric2 = 0 and this metric is semi-symmetric.

4.5. Curvature of Lorentzian left-invariant metrics on Ẽ0(2)

There are three classes of metrics on Ẽ0(2) given by the formulas (ee1), (ee2)
and (ee3). Here are their Ricci curvature and scalar curvature.

Proposition 4.17. The Ricci curvature and the scalar curvature of the metric
(ee1) are expressed by

MB
N

(ric) =

 v−u
v

v2−u2

2v 0
v2−u2

2v
u(v2−u2)

2v 0

0 0 u2−v2
2

 , s =
(u− v)2

2v
.

This metric is flat when u = v. For u > v the Ricci curvature has signature
(+,−,−).

Proposition 4.18. The Ricci curvature and the scalar curvature of the metric
(ee2) are expressed by

MB
N

(ric) =

 v+u
v

u2−v2
2v 0

u2−v2
2v

u(u2−v2)
2v 0

0 0 u2−v2
2

 , s =
(u+ v)2

2v
.

The signature of ric is given by

sign(ric) = (+,−,−) if u < v,

sign(ric) = (+,+,+) if u > v and

sign(ric) = (+, 0, 0) if u = v.
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Proposition 4.19. The Ricci curvature and the scalar curvature of the metric
(ee3) are expressed by

MB
N

(ric) =

 1 u
2 0

u
2 0 0

0 0 −u
2

2

 , s =
u

2
.

The operator of Ricci is of type {ab2} and the signature of ric is (+,−,−).

Table 1 gives the possible signatures of Ricci curvature of Lorentzian left-
invariant metrics on three-dimensional unimodular Lie groups and the metrics
realizing these signatures.

Table 1. Signatures of Ricci curvature on 3D Lorentzian uni-
modular Lie groups.

Signature of
Ricci curvature

Metrics realizing this
signature Remarks

(0, 0, 0) (nil0),[(sol2),u = 0],[(ee1),u = v] These metrics are flat.

(+,+,+) (nil-),(su),(sll1),(sll2),(sol2),(ee2)

(+,−,−)

(nil+),(su),(sll1),(sll2),(sll3),(sll4),
(sll5),(sll6),(sll7),(sol1),(sol2)
(sol3),(sol5),(ee1),(ee2),(ee3)

The metric (sll1) has negative constant
sectional curvature for µ1 = µ2 = µ3.
The metric (sll7) is a shrinking Ricci soliton.

(+, 0, 0) (su),(sll1),(sll2),(sol6),(ee2)

(−, 0, 0)

(sll1),(sll2),(sll3),
(sll6),(sol1), (sol4),

(sol6),(sol7)

The metrics (sol6) and (sol7) are steady Ricci
soliton and semi-symmetric not locally symmetric,
[(sll6),a = b 6= 0] is a shrinking Ricci soliton.

5. Lorentzian left-invariant generalized Ricci solitons

Having discussed the set of equivalence class representatives under w, in
what follows we would like to incorporate related work in [1, 3, 4]. In par-
ticular, we continue with this classification to the study of three-dimensional
unimodular Lie groups which are of constant curvature, Einstein, locally sym-
metric, semi-symmetric not locally symmetric and generalized Ricci soliton. In
summary, we have the following results:

Theorem 5.1 ([3]). Let h be a Lorentzian left-invariant metric on a three-
dimensional unimodular Lie group. Then the following assertions are equi-
valent:

(1) The metric h is locally symmetric.
(2) The metric h is Einstein.
(3) The metric h has constant sectional curvature.
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Moreover, a metric satisfying one of these assertions is either flat and is iso-
metric to the metric (nil0), [(sol2), u = 0] or [(ee1), u = v]; or it has a negative
constant sectional curvature and is isometric to [(sll1), µ1 = µ2 = µ3].

Theorem 5.2 ([1,3]). The metrics (sol6) and (sol7) are the unique, up to an
automorphism, Lorentzian semi-symmetric not locally symmetric left-invariant
metrics on a three-dimensional unimodular Lie group.

Till the end of this section we keep the notations and use the results of [4].

Theorem 5.3 ([4]). With the notation introduced in (K), (H), (RS), (E-W),
(PS) and (VN-H), these metrics are the only Lorentzian left-invariant general-
ized Ricci solitons, up to automorphism, on Nil.

a) The metric (nil-) satisfies the relations

Lu h = 0 if and only if u ∈ span(Z);(5.1)

Lu h+ 2α0 u
[ � u[ − 2β0 ric(h) = −β0 λh, where u = ±

√
α0 β0

α0
X.(5.2)

and hence Eq. (5.1) involves (K) and Eq. (5.2) involves (VN-H).
b) The metric (nil+) satisfies the relations

Lu h = 0 if and only if u ∈ span(Z);(5.3)

Lu h+ 2α0 u
[ � u[ − 2β0 ric(h) = −β0 λh, where u = ±

√
−α0 β0

α0
X.(5.4)

and hence Eq. (5.3) involves (K) and Eq. (5.4) involves (E-W).
c) The metric (nil0) is flat such that Lu h = 0, if and only if u ∈ span(Z);

which leads to (K).

Theorem 5.4 ([4]). With the notation above, these metrics are the only
Lorentzian left-invariant generalized Ricci solitons, up to automorphism, on
SU(2). The metric (su) satisfies the relations

Lu h = 0 if and only if u ∈ span(σz);(5.5)

Lu h+ 2α0 u
[ � u[ − 2β0 ric(h) = −4 β0(2µ1+µ3)

µ1
2 h,(5.6)

where u = ±2

√
α0β0µ3(µ1+µ3)

α0µ3µ1
σz,

and hence Eq. (5.5) involves (K) and Eq. (5.6) involves (VN-H).

Theorem 5.5 ([4]). With the notation above, these metrics are the only
Lorentzian left-invariant generalized Ricci solitons, up to automorphism, on

P̃SL(2,R).

a) The metric [(sll1), µ1 = µ2] satisfies the relations

Lu h = 0(5.7)

if and only if u ∈ g and µ3 = µ2 or u ∈ span(X1) and µ3 6= µ2.

Lu h+ u2−u3

2 β0u3
u[ � u[ − 2β0 ric(h) = 4 β0(2u2−u3)

u2
2 h,(5.8)

where u = ± 4 β0

u2
X3.
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and hence Eq. (5.7) involves (K); Eq. (5.8) involves (VN-H) if µ2 6= µ3.
b) The metric [(sll1), µ1 = µ3] satisfies the relation

Lu h+ µ2−µ3

−2 β0µ2
u[ � u[ − 2β0 ric(h) = −4 β0(−2µ3+µ2)

µ3
2 h,(5.9)

where u = ± 4 β0

µ3
X2.

and hence Eq. (5.9) involves (E-W) if µ2 6= µ3.
c) The metric [(sll1), µ2 = µ3] satisfies the relations

Lu h = 0 if and only if u ∈ span(X3) and µ1 6= µ2.(5.10)

Lu h+ 2α0 u
[ � u[ − 2β0 ric(h) = −4 β0(−2µ3+µ1)

µ3
2 h,(5.11)

where u = ± 4
√
α0β0µ1(µ1−µ3)

α0µ1µ3
X1.

and hence (5.10) involves (K); Eq. (5.11) involves (E-W) if µ1 6 µ3

and (VN-H) if µ1 > µ3.
d) The metric [(sll4), 2α = −a2 ] satisfies the relation

(5.12) Lu h− 3
4 β0

u[ � u[ − 2β0ric(h) = −8 (3α2−β2)
3 β0h,

where u = FX1 +
−2
√

9α4+10α2β2+β4

3 β0X2

+ F

(√
α2+β2β+

√
9α4+10α2β2+β4

)√
α2+β2

√
α2+β2(3α2+β2)+

√
9α4+10α2β2+β4β

X3;

with F = ± 4

√
β2(5α2+β2)+

√
α2+β2β

√
9α4+10α2β2+β4

3 β0.

e) The metric [(sll6), b = −3a] satisfies the relation

Lu h+ 2u[ � u[ + 2 ric(h) = 7 b2

9 h,(5.13)

where u = ±
√
6 b3b
24 (X1 +X2)− b2

3 X3.

and hence Eq. (5.13) involves (E-W).
f) The metric [(sll6), b = 3a] satisfies the relation

Lu h+ 2u[ � u[ − ric(h) = 5 b2

18 h,(5.14)

where u = ±
√
−b3b
24 (X1 +X2)− b2

6 X3.

and hence Eq. (5.14) involves (VN-H).
g) The metric [(sll6), a = b] satisfies the relations

Lu h+ 2α0u
[ � u[ − 2β0ric(h) = a2β0h,(5.15)

where u = ±
√
−2α0β0aa

2

8α0
(X1 +X2).

Lu h− 2β0ric(h) = a2β0h,(5.16)

where u = t (X1 +X2)− a2β0

2 X3. ∀t ∈ R.
and hence Eq. (5.15) involves (E-W) if a > 0 and involves (VN-H) if
a < 0. Eq. (5.16) involves (RS).
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h) The metric [(sll6), a = 2b] satisfies the relation

Lu h− 1
4 β0

u[ � u[ − 2β0ric(h) = 0,(5.17)

where u = ±
√
−2 aa2β0

4 (X1 +X2)− a2β0

2 X3.

i) The metric (sll7) satisfies the relation

Lu h+ ric(h) = − 1
2a2h,(5.18)

with u = a
√
2

4 X1 + (2a3−a)
√
2

4
√
2a2+1

X2 − a2√
2a2+1

X3

and hence Eq. (5.18) involves (RS).

Theorem 5.6 ([4]). With the notation above, these metrics are the only
Lorentzian left-invariant generalized Ricci solitons, up to automorphism, on
Sol.

a) The metric [(sol1), u = 0] satisfies the relation

Lw h− 3
4 β0

w[ � w[ − 2β0 ric(h) = −2 β0v
2

3 h,(5.19)

where w = β0v
2

3 X1 ± 4 β0v
3 X3.

b) The metric (sol4) satisfies the relation

Lw h+ 2α0 w
[ � w[ + 3

4α0
ric(h) = −u

α0
h,(5.20)

where w = −u
2α0

X1 ±
√
u

α0
X2.

c) The metric (sol5) satisfies the relations

Lu h+ 2α0 u
[ � u[ + 1

2α0
ric(h) = a2

4α0
h,(5.21)

where u =
(
√
3−1) a

4α0(
√
3−2)

(
X2 + (

√
3− 2)X3

)
.

Lu h+ 2α0 u
[ � u[ + 2

α0
ric(h) = a2

α0
h,(5.22)

where u = a
2α0

(X2 +X3) .

and hence Eq. (5.22) involves (E-W).
d) The metric (sol6) satisfies the relation

Lu h− 2β0 ric(h) = 0 where u = 2 β0

λ2 X1.(5.23)

and hence Eq. (5.23) involves (RS).
e) The metric (sol7) satisfies the relation

Lu h− 2β0ric(h) = 0, u = 2β0X3.(5.24)

and hence Eq. (5.24) involves (RS).

Theorem 5.7 ([4]). With the notation above, these metrics are the only
Lorentzian left-invariant generalized Ricci solitons, up to automorphism, on

Ẽ0(2). The metric (ee3) satisfies the relation

Lw h+ 2α0 w
[ � w[ + 2

α0
ric(h) = u

α0
h, where w = 1

α0
X3.(5.25)
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and hence Eq. (5.25) involves (E-W).
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[14] S. Vukmirović, Classification of left-invariant metrics on the Heisenberg group, J. Geom.

Phys. 94 (2015), 72–80. https://doi.org/10.1016/j.geomphys.2015.01.005

Mohamed Boucetta

Department of Mathematics
University Cadi Ayyad Faculty of Sciences and Techniques Marrakech

BP 549 Marrakech, Morocco

Email address: m.boucetta@uca.ac.ma

https://doi.org/10.1016/j.difgeo.2017.08.009
https://doi.org/10.1023/A:1006612120550
https://doi.org/10.1023/A:1006612120550
https://doi.org/10.1007/s10474-008-7194-7
https://doi.org/10.1007/s10474-008-7194-7
https://doi.org/10.1007/s00009-017-1019-2
https://doi.org/10.1007/s10711-010-9480-0
https://doi.org/10.1007/s10711-010-9480-0
https://doi.org/10.1002/mana.200610777
https://doi.org/10.1002/mana.200610777
http://projecteuclid.org/euclid.hmj/1487991627
https://doi.org/10.1016/S0001-8708(76)80002-3
https://doi.org/10.1016/0393-0440(92)90033-W
https://doi.org/10.1016/0393-0440(92)90033-W
https://doi.org/10.1007/s10711-005-9030-3
https://doi.org/10.1016/j.geomphys.2015.01.005


684 M. BOUCETTA AND A. CHAKKAR

Abdelmounaim Chakkar

Department of Mathematics

University Cadi Ayyad Faculty of Sciences and Techniques Marrakech
BP 549 Marrakech, Morocco

Email address: abdelmounaim.chakkar@edu.uca.ma


