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A GENERALIZED SIMPLE FORMULA FOR EVALUATING

RADON-NIKODYM DERIVATIVES OVER PATHS

Dong Hyun Cho

Abstract. Let C[0, T ] denote a generalized analogue of Wiener space,
the space of real-valued continuous functions on the interval [0, T ]. Define

Z~e,n : C[0, T ] → Rn+1 by

Z~e,n(x) =

(
x(0),

∫ T

0
e1(t)dx(t), . . . ,

∫ T

0
en(t)dx(t)

)
,

where e1, . . . , en are of bounded variations on [0, T ]. In this paper we de-

rive a simple evaluation formula for Radon-Nikodym derivatives similar
to the conditional expectations of functions on C[0, T ] with the condi-

tioning function Z~e,n which has an initial weight and a kind of drift.

As applications of the formula, we evaluate the Radon-Nikodym deriva-
tives of various functions on C[0, T ] which are of interested in Feynman

integration theory and quantum mechanics. This work generalizes and

simplifies the existing results, that is, the simple formulas with the con-
ditioning functions related to the partitions of time interval [0, T ].

1. Introduction

Let C0[0, T ] denote the classical Wiener space, the space of real-valued con-
tinuous functions x on the interval [0, T ] with x(0) = 0. When τ : 0 = t0 <
t1 < · · · < tn−1 < tn = T is a partition of [0, T ] and ξj ∈ R for j = 0, 1, . . . , n,
the conditional expectation of time integral in which the paths of C0[0, T ]
pass through the point ξj at each time tj is very useful in the Brownian
motion theory. Park and Skoug [7] derived a simple formula for conditional
Wiener integrals containing the time integral with the conditioning function
Xn : C0[0, T ]→ Rn given by Xn(x) = (x(t1), . . . , x(tn)). Furthermore, they [8]
extended the formula in [7] with the conditioning function Zn : C0[0, T ]→ Rn

given by Zn(x) = (
∫ T
0
e1(t)dx(t), . . . ,

∫ T
0
en(t)dx(t)), where e1, . . . , en are in
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L2[0, T ]. In their simple formulas, they expressed the conditional Wiener in-
tegrals directly in terms of ordinary Wiener integrals, which generalizes Yeh’s
inversion formula [12].

On the other hand, let C[0, T ] denote the space of continuous real-valued
functions on the interval [0, T ]. Ryu [10, 11] introduced a finite positive mea-
sure wα,β;ϕ on C[0, T ], where α, β : [0, T ]→ R are appropriate functions and ϕ
is a finite positive measure on the Borel class B(R) of R. We note that wα,β;ϕ
is exactly the Wiener measure on C0[0, T ] if α(t) = 0, β(t) = t for t ∈ [0, T ]
and ϕ is the Dirac measure concentrated at 0. Let Xτ : C[0, T ] → Rn+1 and
Yτ : C[0, T ]→ Rn be the functions defined by Xτ (x) = (x(t0), x(t1), . . . , x(tn))
and Yτ (x) = (x(t0), x(t1), . . . , x(tn−1)), respectively. In [4,6], the author inves-
tigated properties of the Fourier-transform of the functionW : C[0, T ]×[0, T ]→
R defined by W (x, t) = x(t). In fact, using the Fourier-transform of W , he de-
rived two simple evaluation formulas for Radon-Nikodym derivatives similar to
the conditional expectations of functions on C[0, T ] for the conditioning func-
tions Xτ and Yτ which have a generalized drift α, a generalized variance func-
tion β and an initial weight ϕ. As applications of the formulas, he evaluated the

Radon-Nikodym derivatives of the functions F (x) ≡
∫ T
0

[W (x, t)]mdλ(t)(m ∈
N) and G3(x) ≡ [

∫ T
0
W (x, t)dλ(t)]2 on C[0, T ], where λ is a C-valued Borel

measure.
For x ∈ C[0, T ], let Z~e,n(x) = (x(t0),

∫ T
0
e1(t)dx(t), . . . ,

∫ T
0
en(t)dx(t)),

where e1, . . . , en are of bounded variations on [0, T ]. In this paper we de-
rive a simple evaluation formula for Radon-Nikodym derivatives similar to the
conditional expectations of functions on C[0, T ] for the more generalized condi-
tioning function Z~e,n which also has a kind of drift α, the generalized variance
function β and the initial weight ϕ. As applications of the formula, we evalu-
ate the Radon-Nikodym derivatives of various functions on C[0, T ] which are of
interested in Feynman integration theory and quantum mechanics. In fact, we
calculate the derivatives of F , G3, a cylinder type function and the functions in
a Banach algebra which generalizes the Cameron-Storvick’s one [1]. We note
that W has a kind of drift α with the more generalized variance function β
while it has no drifts on C0[0, T ]. Furthermore, our underlying space C[0, T ]
may not be a probability space so that the results of this paper generalize and
simplify those of [4, 6, 8, 12] and [7] in which the works are the first results
among them.

2. A generalized analogue of Wiener space

In this section, we introduce a generalized analogue of Wiener space which
is our underlying space of this work.

Let α be absolutely continuous on [0, T ] and let β be continuous, strictly
increasing on [0, T ]. Let ϕ be a positive finite measure on B(R). For ~tk =
(t0, t1, . . . , tk) with 0 = t0 < t1 < · · · < tk ≤ T , let J~tk : C[0, T ]→ Rk+1 be the

function given by J~tk(x) = (x(t0), x(t1), . . . , x(tk)). For
∏k
j=0Bj ∈ B(Rk+1),
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the subset J−1~tk
(
∏k
j=0Bj) of C[0, T ] is called an interval I and let I be the set

of all such intervals I. Define a premeasure mα,β;ϕ on I by

mα,β;ϕ(I) =

∫
B0

∫
∏k
j=1 Bj

W(~tk, ~uk, u0)dmk
L(~uk)dϕ(u0),

wheremL is the Lebesgue measure on B(R), and for u0 ∈ R, ~uk = (u1, . . . , uk) ∈
Rk

W(~tk, ~uk, u0) =

[
1∏k

j=1 2π[β(tj)− β(tj−1)]

] 1
2

× exp

{
−1

2

k∑
j=1

[uj − α(tj)− uj−1 + α(tj−1)]2

β(tj)− β(tj−1)

}
.

The Borel σ-algebra B(C[0, T ]) of C[0, T ] with the supremum norm, coincides
with the smallest σ-algebra generated by I and there exists a unique positive
finite measure wα,β;ϕ on B(C[0, T ]) with wα,β;ϕ(I) = mα,β;ϕ(I) for all I ∈ I.
This measure wα,β;ϕ is called a generalized analogue of Wiener measure on
(C[0, T ],B(C[0, T ])) according to ϕ [10, 11].

Now we introduce a useful lemma which is needed in the next section [4].

Lemma 2.1. Let 0 ≤ s1 ≤ s2 ≤ s3 ≤ T . Then the Fourier-transform
F(W (·, s1), W (·, s3) − W (·, s2)) of (W (·, s1),W (·, s3) − W (·, s2)) can be ex-
pressed by

F(W (·, s1),W (·, s3)−W (·, s2))(ξ1, ξ2)

=
1

ϕ(R)
F(W (·, s1))(ξ1)F(W (·, s3)−W (·, s2))(ξ2)

for ξ1, ξ2 ∈ R so that W (·, s1) and W (·, s3) −W (·, s2) are independent if ϕ is
a probability measure.

Let να,β denote the Lebesgue-Stieltjes measure defined by να,β(E) =
∫
E
d(|α|

+β)(t) for each Lebesgue measurable subset E of [0, T ], where |α| denotes the
total variation of α. Define L2

α,β [0, T ] to be the space of functions on [0, T ] that

are square integrable with respect to να,β [9]; that is,

L2
α,β [0, T ] =

{
f : [0, T ]→ R

∣∣∣∣ ∫ T

0

[f(t)]2dνα,β(t) <∞
}
.

The space L2
α,β [0, T ] is a Hilbert space and has the inner product

〈f, g〉α,β =

∫ T

0

f(t)g(t)dνα,β(t).

We note that L2
α,β [0, T ] ⊆ L2

0,β [0, T ], where L2
0,β [0, T ] denotes the space L2

α,β [0,

T ] with α ≡ 0. Since ‖·‖0,β ≤ ‖·‖α,β , the two norms ‖·‖0,β and ‖·‖α,β are equiv-
alent on L2

α,β [0, T ] by the open mapping theorem. Let S[0, T ] be the collection
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of step functions on [0, T ] and let
∫ T
0
φ(t)dx(t) denote the Riemann-Stieltjes

integral. For f ∈ L2
α,β [0, T ], let {φn} be a sequence of the step functions in

S[0, T ] with limn→∞ ‖φn − f‖α,β = 0. Define Iα,β(f) by the L2(C[0, T ])-limit

Iα,β(f)(x) = lim
n→∞

∫ T

0

φn(t)dx(t)

for all x ∈ C[0, T ] for which this limit exists or Iα,β(f)(x) = limn→∞
∫ T
0
φn(t)

dx(t) point-wisely if exists. We note that for ∈ L2
α,β [0, T ], Iα,β(f)(x) exists for

wα,β;ϕ a.e. x ∈ C[0, T ]. Moreover, we have the following theorems [3].

Theorem 2.2. If f is of bounded variation on [0, T ], then Iα,β(f)(x) =
∫ T
0
f(t)

dx(t) for wα,β;ϕ a.e. x ∈ C[0, T ].

Throughout this paper, for x ∈ C[0, T ], we redefine

Iα,β(f)(x) =

∫ T

0

f(t)dx(t)

if
∫ T
0
f(t)dx(t) exists.

Theorem 2.3. Let f, g ∈ L2
α,β [0, T ]. Then we have the followings:

(1)
∫
C0,T ]

Iα,β(f)(x)dwα,β;ϕ(x) = ϕ(R)Iα,β(f)(α).

(2)
∫
C[0,T ]

[Iα,β(f)(x)][Iα,β(g)(x)]dwα,β;ϕ(x) = ϕ(R)[〈f, g〉0,β+[Iα,β(f)(α)]

×[Iα,β(g)(α)].
(3) Iα,β(f) is a normally distributed random variable with the mean Iα,β(f)

(α) and the variance ‖f‖20,β if ϕ(R) = 1. In this case, the covariance

of Iα,β(f) and Iα,β(g) is given by 〈f, g〉0,β.

Let k be a positive integer, let X be an Rk-valued Borel measurable function
defined for wα,β;ϕ a.e. x ∈ C[0, T ] and let F : C[0, T ] → C be integrable. Let
mX be the image measure on the Borel class B(Rk) of Rk induced by X. By the

Radon-Nikodym theorem, there exists an mX -integrable function dµX
dmX

defined

on Rk which is unique up to mX a.e. such that for every B ∈ B(Rk),∫
X−1(B)

F (x)dwα,β;ϕ(x) =

∫
B

dµX
dmX

(~η)dmX(~η).

Define the function dµX
dmX

as the generalized conditional expectation of F given

X and it is denoted by GE[F |X]. We note that GE[F |X] is a Radon-Nikodym
derivative rather than a conditional expectation since mX may not be a prob-
ability measure.

Lemma 2.4. Let X and F be as given above. Let ψ : Rk → Rk be a bijective

Borel measurable function. Then we have for mψ◦X a.e. ~ξ ∈ Rk

GE[F |(ψ ◦X)](~ξ) = GE[F |X](ψ−1(~ξ)).



A SIMPLE FORMULA FOR RADON-NIKODYM DERIVATIVES OVER PATHS 613

Proof. By the definition of generalized conditional expectation and the change
of variable theorem, we have for B ∈ B(Rk)∫

B

GE[F |(ψ ◦X)](~ξ)dmψ◦X(~ξ) =

∫
X−1(ψ−1(B))

F (x)dwα,β;ϕ(x)

=

∫
ψ−1(B)

GE[F |X](~ξ)dmX(~ξ)

=

∫
B

GE[F |X](ψ−1(~ξ))d(mX ◦ ψ−1)(~ξ)

=

∫
B

GE[F |X](ψ−1(~ξ))dmψ◦X(~ξ).

Now, by the uniqueness of Radon-Nikodym derivative, we have this lemma. �

3. A simple formula for the generalized conditional expectation

In this section, we derive a simple evaluation formula for the generalized
conditional expectation.

Let {e1, . . . , en} be a set of functions in L2
α,β [0, T ] such that {e1, . . . , en} is

orthonormal in L2
0,β [0, T ]. Such sets always exist:

Example 3.1. (1) Let {1, t, . . . , tn−1} be a set of polynomials on [0, T ] and
let {f1, . . . , fn} be the set obtained by the Gram-Schmidt orthonormal-
ization process in L2

0,β [0, T ]. Then it is clear that the set {f1, . . . , fn}
satisfies the desired condition.

(2) Let τ : 0 = t0 < t1 < · · · < tn = T be a partition of [0, T ]. For
j = 1, . . . , n, let

gj(s) =
1√

β(tj)− β(tj−1)
χ[tj−1,tj ](s) for s ∈ [0, T ].(1)

Then it is clear that the set {g1, . . . , gn} satisfies the desired condition.
Each gj is also of bounded variation on [0, T ]. Using this orthonormal
set, we will simplify the results related to the simple formulas with the
conditioning functions Xτ and Yτ [4, 6].

Let Vn be the subset of L2
0,β [0, T ] generated by {e1, . . . , en} and let V ⊥n be

the orthogonal complement of Vn. Let P~e,n,β : L2
0,β [0, T ] → Vn and P⊥~e,n,β :

L2
0,β [0, T ]→ V ⊥n be the orthogonal projections, where

P~e,n,βv =

n∑
j=1

〈v, ej〉0,βej for v ∈ L2
0,β [0, T ].

It is clear that P~e,n,βv belongs to L2
α,β [0, T ] for v ∈ L2

0,β [0, T ] and P⊥~e,n,βv
belongs to L2

α,β [0, T ] if v ∈ L2
α,β [0, T ]. Let z0(x) = x(0) for x ∈ C[0, T ]. For

each j = 1, . . . , n, define zj and Zn by zj(x) = Iα,β(ej)(x) and

Z~e,n(x) = (z0(x), z1(x), . . . , zn(x))
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for wα,β;ϕ a.e. x ∈ C[0, T ]. For s ∈ [0, T ], wα,β;ϕ a.e. x ∈ C[0, T ] and ~ξ =
(ξ0, ξ1, . . . , ξn) ∈ Rn+1, let

x~e,n,β(s) = z0(x) + Iα,β(P~e,n,βχ[0,s])(x)

and

~ξ~e,n,β(s) = ξ0 +

n∑
j=1

〈ej , χ[0,s]〉0,βξj .

Note that for 0 ≤ s ≤ t ≤ T , we have by the Schwarz’s inequality

|〈ej , χ[0,s]〉0,β − 〈ej , χ[0,t]〉0,β |2 ≤ ‖ej‖20,β [β(t)− β(s)]

so that x~e,n,β and ~ξ~e,n,β are absolutely continuous on [0, T ] since β is increasing.
Throughout this paper, we assume that each ej is of bounded variation on

[0, T ]. Note that P~e,n,βv(v ∈ L2
0,β [0, T ]) is of bounded variation on [0, T ] and so

is P⊥~e,n,βv if v is of bounded variation on [0, T ]. Moreover, we have the following
properties:

(P1) For wα,β;ϕ a.e. x ∈ C[0, T ] and s ∈ [0, T ], we have by the linearity of
Iα,β , x~e,n,β(s) = z0(x) +

∑n
j=1〈ej , χ[0,s]〉0,βzj(x).

(P2) For wα,β;ϕ a.e. x ∈ C[0, T ] and s ∈ [0, T ], we have by Theorem 2.2,

x(s)−x~e,n,β(s) =
∫ T
0

(χ[0,s]−P~e,n,βχ[0,s])(u)dx(u) =
∫ T
0

(P⊥~e,n,βχ[0,s])(u)

dx(u) = Iα,β(P⊥~e,n,βχ[0,s])(x) so that Iα,β(P⊥~e,n,βχ[0,·])(x) belongs to

C[0, T ].
(P3) For 0 ≤ s1 ≤ s2 ≤ T , 〈P⊥~e,n,βχ[0,s1],P⊥~e,n,βχ[0,s2]〉0,β = β(s1) − β(0) −∑n

l=1〈χ[0,s1], el〉0,β〈χ[0,s2], el〉0,β .

Theorem 3.2. If ϕ(R) = 1, then {Iα,β(P⊥~e,n,βχ[0,s]) : 0 ≤ s ≤ T} and zj are
stochastically independent for j = 0, 1, 2, . . . , n.

Proof. For s ∈ [0, T ] and j = 1, . . . , n, we have by the orthonormality of ejs

〈P⊥~e,n,βχ[0,s], ej〉0,β = 〈χ[0,s], ej〉0,β −
n∑
l=1

〈χ[0,s], el〉0,β〈el, ej〉0,β

= 〈χ[0,s], ej〉0,β − 〈χ[0,s], ej〉0,β = 0

so that the independence of {Iα,β(P⊥~e,n,βχ[0,s]) : 0 ≤ s ≤ T} and zj fol-
lows from Theorem 2.3. To complete the proof, we must prove that z0 and
Iα,β(P⊥~e,n,βχ[0, s]) are independent. Let F denote the Fourier transform and

for l ∈ N, let τj = T
l j for j = 0, 1, . . . , l. Then for ξ1, ξ2 ∈ R, we have by

Lemma 2.1, (P2) and the dominated convergence theorem

F(z0, Iα,β(P⊥~e,n,βχ[0,s]))(ξ1, ξ2)

=

∫
C[0,T ]

exp{i[ξ1z0(x) + ξ2Iα,β(P⊥~e,n,βχ[0,s])(x)]}dwα,β;ϕ(x)
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= lim
l→∞

∫
C[0,T ]

exp

{
i

[
ξ1W (x, 0) + ξ2

l∑
j=1

(P⊥~e,n,βχ[0,s])(τj)[W (x, τj)

−W (x, τj−1)]

]}
dwα,β;ϕ(x)

= F(W (·, 0))(ξ1)

∫
C[0,T ]

exp

{
iξ2 lim

l→∞

l∑
j=1

(P⊥~e,n,βχ[0,s])(τj)[W (x, τj)

−W (x, τj−1)]

}
dwα,β;ϕ(x)

= F(z0)(ξ1)F(Iα,β(P⊥~e,n,βχ[0, s]))(ξ2)

which completes the proof. �

By Theorem 3.2 and (P1), we have the following corollary.

Corollary 3.3. {Iα,β(P⊥~e,n,βχ[0,s]) : 0 ≤ s ≤ T} and {x~e,n,β(s) : 0 ≤ s ≤ T}
are stochastically independent if ϕ(R) = 1.

Using the same process used in the proof of [8, Theorem 2] and [4, Theorem
4] with aid of (P2), Theorem 3.2 and Corollary 3.3, we have the following
theorem.

Theorem 3.4. Let ϕ0 = 1
ϕ(R)ϕ and suppose that F : C[0, T ]→ C is integrable.

Then we have for mZ~e,n a.e. ~ξ ∈ Rn+1

GE[F |Z~e,n](~ξ) =

∫
C[0,T ]

F (Iα,β(P⊥~e,n,βχ[0,·])(x) + ~ξ~e,n,β)dwα,β;ϕ0
(x).

For s, t ∈ [tj−1, tj ], let γj(t) =
β(t)−β(tj−1)
β(tj)−β(tj−1)

and Φj(s, t) = [β(tj)−β(s)]γj(t).

For s ∈ [0, T ], ~η ∈ Rn and ~ξ = (ξ0, ξ1, . . . , ξn) ∈ Rn+1, let

Ξ(n, ~ξ)(s)

= ξ0 +

n∑
j=1

χ(tj−1,tj ](s)

[j−1∑
l=1

ξl
√
β(tl)− β(tl−1) +

β(s)− β(tj−1)√
β(tj)− β(tj−1)

ξj

]
and

Ξtn(~η)(s) = χ[0,tn−1)(s)Ξ(n− 1, ~η)(s) + χ[tn−1,tn](s)Ξ(n− 1, ~η)(tn−1).

For x ∈ C[0, T ], define the polygonal functions Pβ(x) and Ptn,β(x) of x by

Pβ(x)(s)(2)

= χ{0}(s)x(0) +

n∑
j=1

χ(tj−1,tj ](s)[x(tj−1) + γj(s)[x(tj)− x(tj−1)]]
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and

Ptn,β(x)(s) = χ[0,tn−1)(s)Pβ(x)(s) + χ[tn−1,tn](s)Pβ(x)(tn−1)(3)

for s ∈ [0, T ]. Similarly, the polygonal functions Pβ(~ξ) and Ptn,β(~ξ) on [0, T ] are
defined by (2) and (3), respectively, with replacing x(tj) by ξj for j = 0, 1, . . . , n.
Throughout this paper, we will use the notation ~g in place of ~e when ej is
replaced by gj which is given by (1).

Corollary 3.5. Let F : C[0, T ]→ C be integrable. Then the followings hold:

(1) For mZ~g,n a.e. ~ξ ∈ Rn+1, we have

GE[F |Z~g,n](~ξ) =

∫
C[0,T ]

F (x− Pβ(x) + Ξ(n, ~ξ))dwα,β;ϕ0
(x),(4)

where mZ~g,n is the measure on B(Rn+1) induced by Z~g,n.
(2) For mmZ~g,n−1

a.e. ~η ∈ Rn, we have

GE[F |Z~g,n−1](~η) =

∫
C[0,T ]

F (x− Ptn,β(x) + Ξtn(~η))dwα,β;ϕ0(x).(5)

Proof. For wα,β;ϕ a.e. x ∈ C[0, T ], we have x~g,n,β(0) = x(0) = Pβ(x)(0) and
for s ∈ (tj−1, tj ]

x~g,n,β(s)

= z0(x) +

n∑
l=1

〈gl, χ[0,s]〉0,βIα,β(gl)(x)

= x(0) +

n∑
l=1

1

β(tl)− β(tl−1)

∫ s

0

χ[tl−1,tl](u)dβ(u)

∫ T

0

χ[tl−1,tl](u)dx(u)

= x(0) +

j−1∑
l=1

[x(tl)− x(tl−1)] + γj(s)[x(tj)− x(tj−1)] = Pβ(x)(s)

by Theorem 2.2 and (P1). We also have ~ξ~g,n,β(0) = ξ0 = Ξ(n, ξ)(0) and for
~ξ = (ξ0, ξ1, . . . , ξn) ∈ Rn+1

~ξ~g,n,β(s) = ξ0 +

n∑
l=1

ξl〈gl, χ[0,s]〉0,β

= ξ0 +

n∑
l=1

ξl√
β(tl)− β(tl−1)

∫ s

0

χ[tl−1,tl](u)dβ(u)

= ξ0 +

j−1∑
l=1

ξl
√
β(tl)− β(tl−1) +

β(s)− β(tj−1)√
β(tj)− β(tj−1)

ξj = Ξ(n, ~ξ)(s)

so that x~g,n,β = Pβ(x) and ~ξ~g,n,β = Ξ(n, ~ξ). By (P2) and Theorem 3.4, we
have (4).
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To prove (5), it suffices to prove by the above process that ~η~g,n−1,β = Ξtn(~η)
and x~g,n−1,β = Ptn,β(x) for wα,β;ϕ a.e. x ∈ C[0, T ]. Indeed, we clearly have
x~g,n−1,β(s) = Ptn,β(x)(s) and ~η~g,n−1,β(s) = Ξtn(~η)(s) for s ∈ [0, tn−1). More-
over, for s ∈ [tn−1, tn], we have by Theorem 2.2 and (P1)

x~g,n−1,β(s)

= x(0) +

n−1∑
l=1

1

β(tl)− β(tl−1)

∫ s

0

χ[tl−1,tl](u)dβ(u)

∫ T

0

χ[tl−1,tl](u)dx(u)

= x(0) +

n−1∑
l=1

[x(tl)− x(tl−1)] = x(tn−1) = Ptn,β(x)(s).

Similarly, we have ~η~g,n−1,β(s) = η0 +
∑n−1
l=1 ηl

√
β(tl)− β(tl−1) = Ξ(n − 1, ~η)

(tn−1) = Ξtn(~η)(s), where ~η = (η0, η1, . . . , ηn−1), so that x~g,n−1,β = Ptn,β(x)
and ~η~g,n−1,β = Ξtn(~η) as desired. �

We now have Theorem 4 in [4] as a corollary of Theorem 3.4.

Corollary 3.6. Let F : C[0, T ]→ C be integrable. Then the followings hold:

(1) For mXτ a.e. ~ξ ∈ Rn+1, GE[F |Xτ ](~ξ) is given by the right-hand side

of (4) with replacing Ξ(n, ~ξ) by Pβ(~ξ).
(2) For mYτ a.e. ~η ∈ Rn, GE[F |Yτ ](~η) is given by the right-hand side of

(5) with replacing Ξtn(~η) by Ptnβ(~η).

Proof. For ~ξ = (ξ0, ξ1, . . . , ξn) ∈ Rn+1, define φ : Rn+1 → Rn+1

φ(~ξ) =

(
ξ0,

ξ1 − ξ0√
β(t1)− β(t0)

,
ξ2 − ξ1√

β(t2)− β(t1)
, . . . ,

ξn − ξn−1√
β(tn)− β(tn−1)

)
which is a bijective, bi-continuous function. Since Z~g,n = φ ◦Xτ , we have for

mXτ a.e. ~ξ ∈ Rn+1

GE[F |Xτ ](~ξ) = GE[F |Z~g,n](φ(~ξ))

=

∫
C[0,T ]

F (x− Pβ(x) + Ξ(n, φ(~ξ)))dwα,β;ϕ0
(x)

by Lemma 2.4 and (4). We also have Ξ(n, φ(~ξ))(0) = ξ0 = Pβ(~ξ)(0) and

Ξ(n, φ(~ξ))(s) = ξ0 +

j−1∑
l=1

(ξl − ξl−1) + γj(s)(ξj − ξj−1) = Pβ(~ξ)(s)

for s ∈ (tj−1, tj ] so that Ξ(n, φ(~ξ)) = Pβ(~ξ), which implies (1). For ~η =
(η0, η1, . . . , ηn−1) ∈ Rn, let

φ1(~η) =

(
η0,

η1 − η0√
β(t1)− β(t0)

,
η2 − η1√

β(t2)− β(t1)
, . . . ,

ηn−1 − ηn−2√
β(tn−1)− β(tn−2)

)
.
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To prove (2), it suffices to show, by the above process, that Ξtn(φ1(~η)) =
Ptn,β(~η) by (5). Indeed, we have Ξtn(φ1(~η))(s) = P~tn,β(~η)(s) for s ∈ [0, tn−1).

Moreover, for s ∈ [tn−1, tn], we have

Ξtn(φ1(~η))(s) = η0 +

n−1∑
l=1

(ηl − ηl−1) = ηn−1 = P~tn,β(~η)(s)

so that we also have Ξtn(φ1(~η)) = Ptn,β(~η) as desired. �

Letting n = 1 in (5), we have the following corollary.

Corollary 3.7. We have for mz0 a.e. η ∈ R

GE[F |z0](η) =

∫
C[0,T ]

F (x− x(0) + η)dwα,β;ϕ0(x).

Remark 3.8. By Corollary 3.6 and Theorem 2.3 of [6], we have for mYτ a.e.
~η = (η0, η1, . . . , ηn−1) ∈ Rn∫

C[0,T ]

F (x− Ptn,β(x) + Ptn,β(~η))dwα,β;ϕ0(x)

= GE[F |Yτ ](~η) =

∫
R
W(ηn−1, ηn)GE[F |Xτ ](~ηn)dmL(ηn),

where ~ηn = (η0, η1, . . . , ηn−1, ηn) and

W(ηn−1, ηn)

=

[
1

2π[β(tn)− β(tn−1)]

] 1
2

exp

{
− [ηn − ηn−1 − α(tn) + α(tn−1)]2

2[β(tn)− β(tn−1)]

}
.

4. Applications to the time integrals

In this section we apply the simple formulas as given in the previous section,
to various functions, in particular, the time integrals on C[0, T ].

Example 4.1. For m ∈ N and t ∈ [0, T ], let Ft(x) = [x(t)]m for x ∈ C[0, T ]
and suppose that

∫
R |u|

mdϕ(u) <∞. Then Ft is wα,β;ϕ-integrable by Theorem
7 of [4]. Now by Theorems 2.2, 2.3, 3.4 and Theorem 7 of [4], we have for mZ~e,n

a.e. ~ξ ∈ Rn+1,

GE[Ft|Z~e,n](~ξ)(6)

=

∫
C[0,T ]

[Iα,β(P⊥~e,n,βχ[0,t])(x) + ~ξ~e,n,β(t)]mdwα,β;ϕ0
(x)

=

[m2 ]∑
k=0

m!

2kk!(m− 2k)!
[~ξ~e,n,β(t) + Iα,β(P⊥~e,n,βχ[0,t])(α)]m−2k‖P⊥~e,n,βχ[0,t]‖2k0,β ,

where [·] denotes the greatest integer function. In addition, we have

Iα,β(P⊥~g,n,βχ[0,t])(α) = α(t)− α~g,n,β(t) = α(t)− Pβ(α)(t)
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by (P2) and Corollary 3.5. For t ∈ [tj−1, tj ], we also have by (P3)

‖P⊥~g,n,βχ[0,t]‖20,β = β(t)− β(0)−
j−1∑
k=1

[β(tk)− β(tk−1)]2

β(tk)− β(tk−1)
− [β(t)− β(tj−1)]2

β(tj)− β(tj−1)

= Φj(t, t).

By Corollary 3.5, we now have for mZ~g,n a.e. ~ξ ∈ Rn+1

GE[Ft|Z~g,n](~ξ) =

[m2 ]∑
k=0

m!

2kk!(m− 2k)!
[Ξ(n, ~ξ)(t) + α(t)(7)

− Pβ(α)(t)]m−2k[Φj(t, t)]
k ≡ G1(t, ~ξ).

Note that we can obtain [6, Theorem 3.6] and [4, Theorem 7] by Corollary 3.6.

Example 4.2. Let the assumptions be as given in Example 4.1. Then for
mZ~e,n−1

a.e. ~η ∈ Rn, GE[Ft|Z~e,n−1](~η) is given by

GE[Ft|Z~e,n−1](~η)

=

[m2 ]∑
k=0

m!

2kk!(m− 2k)!
[~η~e,n−1,β(t) + Iα,β(P⊥~e,n−1,βχ[0,t])(α)]m−2k

× ‖P⊥~e,n−1,βχ[0,t]‖2k0,β
by Theorems 2.2, 2.3 and 3.4 if we use the same process in the proof of Theorem
7 in [4]. In addition, using the same process in Example 4.1 with aid of Corollary
3.5, we can prove that for t ∈ [tj−1, tj ] (j = 1, . . . , n − 1) and for mZ~g,n−1

a.e.
~η ∈ Rn, GE[Ft|Z~g,n−1](~η) is given by the right-hand side of (7) with replacing

Ξ(n, ~ξ)(t) and Pβ(t) by Ξtn(~η)(t) and Ptn,β(t), respectively. Moreover, we have
for t ∈ [tn−1, tn]

Iα,β(P⊥~g,n−1,βχ[0,t])(α) = α(t)− Ptn,β(α)(t) = α(t)− α(tn−1)

by (P2) and Corollary 3.5. We also have by (P3)

‖P⊥~g,n−1,βχ[0,t]‖20,β = β(t)− β(0)−
n−1∑
k=1

[β(tk)− β(tk−1)]2

β(tk)− β(tk−1)
= β(t)− β(tn−1).

Now, we have

GE[Ft|Z~g,n−1](~η) =

[m2 ]∑
k=0

m!

2kk!(m− 2k)!
[Ξtn(~η)(tn−1) + α(t)(8)

− α(tn−1)]m−2k[β(t)− β(tn−1)]k ≡ G2(t, ~η)

by Corollary 3.5. Using Corollary 3.6, we can also prove that for mYτ a.e.
~η = (η0, η1, . . . , ηn−1) ∈ Rn, GE[Ft|Yτ ](~η) is given by (8) with replacing
Ξtn(~η)(tn−1) by ηn−1. In particular, letting n = 1, we have for mz0 a.e. η ∈ R

GE[F0|z0](η) = ηm.(9)
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Note that, in Theorem 3.7 of [6], GE[Ft|Yτ ](~η) is expressed by

GE[Ft|Yτ ](~η) =

[m2 ]∑
k=0

[m2 −k]∑
l=0

m!

2k+lk!l!(m− 2k − 2l)!
[ηn−1 + α(t)

− α(tn−1)]m−2k−2l[Φn(t, t)]k
[

[β(t)− β(tn−1)]2

β(tn)− β(tn−1)

]l
≡ K(~η)

which coincides with our present result as above by the following calculation:
We have by the binomial expansion theorem

K(~η) =

[m2 ]∑
k=0

[m2 ]∑
l=k

m!

2lk!(l − k)!(m− 2l)!
[ηn−1 + α(t)− α(tn−1)]m−2l[Φn(t, t)]k

×
[

[β(t)− β(tn−1)]2

β(tn)− β(tn−1)

]l−k
=

[m2 ]∑
l=0

l∑
k=0

m!

2ll!(m− 2l)!

(
l

k

)
[ηn−1 + α(t)− α(tn−1)]m−2l[Φn(t, t)]k

×
[

[β(t)− β(tn−1)]2

β(tn)− β(tn−1)

]l−k
=

[m2 ]∑
l=0

m!

2ll!(m− 2l)!
[ηn−1 + α(t)− α(tn−1)]m−2l

[
Φn(t, t)

+
[β(t)− β(tn−1)]2

β(tn)− β(tn−1)

]l
=

[m2 ]∑
l=0

m!

2ll!(m− 2l)!
[ηn−1 + α(t)− α(tn−1)]m−2l[β(t)− β(tn−1)]l

so that the formula in Theorem 3.4 can be used to simply the generalized
conditional expectations which are evaluated by the formulas in [4, 6], that is,
the formulas in this paper generalize and simplify those in [4, 6].

Now we can obtain the following example by Example 4.1.

Example 4.3. For m ∈ N, let F (x) =
∫ T
0

[x(t)]mdλ(t) for x ∈ C[0, T ], where
λ is a finite complex measure on the Borel class of [0, T ], and suppose that∫
R |u|

mdϕ(u) <∞. Then for mZ~e,n a.e. ~ξ ∈ Rn+1, GE[F |Z~e,n](~ξ) is given by

GE[F |Z~e,n](~ξ) =

∫ T

0

GE[Ft|Z~e,n](~ξ)dλ(t),
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where GE[Ft|Z~e,n](~ξ) is expressed by (6). In addition, we have for mZ~g,n a.e.
~ξ = (ξ0, ξ1, . . . , ξn) ∈ Rn+1

GE[F |Z~g,n](~ξ) =

n∑
j=0

[Ξ(n, ~ξ)(tj)]
mλ({tj}) +

n∑
j=1

∫
(tj−1,tj)

G1(t, ~ξ)dλ(t),(10)

where G1(t, ~ξ) is given by the right-hand side of (7). We note that [4, Theorem
8] can be obtained from (10) by Corollary 3.6. In particular, if α(t) = Pβ(α)(t)
and λ(t) = β(t) for t ∈ [0, T ], then we have by Lemma 2.4, Corollary 3.6 and
Corollary 3.9 of [6]

GE[F |Z~g,n](~ξ)

= GE[F |Xτ ](φ−1(~ξ))

=

n∑
j=1

[m2 ]∑
k=0

m−2k∑
l=0

m!(l + k)![β(tj)− β(tj−1)]
l
2+k+1[Ξ(n, ~ξ)(tj−1)]m−2k−lξlj

2kl!(m− 2k − l)!(l + 2k + 1)!

≡ Ψn(~ξ).

Example 4.4. Let the assumptions be as given in Example 4.3. Then for
mZ~e,n−1

a.e. ~η ∈ Rn, GE[F |Z~e,n−1](~η) is given by

GE[F |Z~e,n−1](~η) =

∫ T

0

GE[Ft|Z~e,n−1](~η)dλ(t)

from Example 4.2. In addition, for mZ~g,n−1
a.e. ~η = (η0, η1, . . . , ηn−1) ∈ Rn,

we have by Example 4.2

GE[F |Z~g,n−1](~η) =

n−1∑
j=0

[Ξtn(~η)(tj)]
mλ({tj}) +

n−1∑
j=1

∫
(tj−1,tj)

G1(t, ~η)dλ(t)

+

∫
(tn−1,T ]

G2(t, ~η)dλ(t),

where G1 and G2 are given by (7) and (8), respectively. We note that [6,
Theorem 3.8] can be obtained from the above equality by Corollary 3.6. In
particular, letting n = 1, we have for mz0 a.e. η ∈ R

GE[F |z0](η) =

[m2 ]∑
k=0

m!

2kk!(m− 2k)!

∫ T

0

[η + α(t)− α(0)]m−2k[β(t)− β(0)]kdλ(t)

by (9). Moreover, if the support of λ is contained in {t0, t1, . . . , tn}, then GE[F |
Z~g,n−1](~η) is reduced to

GE[F |Z~g,n−1](~η) =

n−1∑
j=0

λ({tj})[Ξtn(~η)(tj)]
m + λ({tn})G2(tn, ~η).
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Note that the final result of [6, Theorem 3.8] can be also obtained from the
above equality by Corollary 3.6. Furthermore, if α(t) = Ptn,β(α)(t) and λ(t) =
β(t) for t ∈ [0, T ], then we have by (8) and Corollary 3.9 of [6]

GE[F |Z~g,n−1](~η) = Ψn−1(~η) +

[m2 ]∑
l=0

m!

2l(l + 1)!(m− 2l)!
(11)

× [Ξtn(~η)(tn−1)]m−2l[β(tn)− β(tn−1)]l+1.

By Lemma 2.4, Corollary 3.6 and (11), we have for mYτ a.e. ~η ∈ Rn

GE[F |Yτ ](~η)(12)

= GE[F |Z~g,n−1](φ1(~η))

=

n−1∑
j=1

[m2 ]∑
k=0

m−2k∑
l=0

m!(l + k)![β(tj)− β(tj−1)]k+1ηm−2k−lj−1 (ηj − ηj−1)l

2kl!(m− 2k − l)!(l + 2k + 1)!

+

[m2 ]∑
l=0

m!

2l(l + 1)!(m− 2l)!
ηm−2ln−1 [β(tn)− β(tn−1)]l+1.

Note that in Corollary 3.9 of [6], the last term of (12) is expressed by

[m2 ]∑
k=0

[m2 −k]∑
l=0

m!(2l + k)!ηm−2k−2ln−1 [β(tn)− β(tn−1)]l+k+1

2l+kl!(m− 2k − 2l)!(2l + 2k + 1)!
≡ K1(ηn−1).

Indeed, we have by Chu Shih-Chieh’s identity [2]

K1(ηn−1) =

[m2 ]∑
k=0

[m2 ]∑
l=k

m!(2l − k)!ηm−2ln−1 [β(tn)− β(tn−1)]l+1

2l(l − k)!(m− 2l)!(2l + 1)!

=

[m2 ]∑
l=0

l∑
k=0

m!(2l − k)!ηm−2ln−1 [β(tn)− β(tn−1)]l+1

2l(l − k)!(m− 2l)!(2l + 1)!

=

[m2 ]∑
l=0

m!l!ηm−2ln−1 [β(tn)− β(tn−1)]l+1

2l(m− 2l)!(2l + 1)!

l∑
k=0

(
2l − k
l

)

=

[m2 ]∑
l=0

m!l!ηm−2ln−1 [β(tn)− β(tn−1)]l+1

2l(m− 2l)!(2l + 1)!

(
2l + 1

l + 1

)

=

[m2 ]∑
l=0

m!

2l(l + 1)!(m− 2l)!
ηm−2ln−1 [β(tn)− β(tn−1)]l+1

which coincides with the last term of (12).

Example 4.5. Let s1, s2 ∈ [0, T ] and let G(s1, s2, x) = x(s1)x(s2) for x ∈
C[0, T ]. Then G(s1, s2, ·) is wα,β;ϕ-integrable by [4, Theorem 5] so that we
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have for mZ~e,n a.e. ~ξ ∈ Rn+1

GE[G(s1, s2, ·)|Z~e,n](~ξ)

=

∫
C[0,T ]

[Iα,β(P⊥~e,n,βχ[0,s1])(x) + ~ξ~e,n,β(s1)]

× [Iα,β(P⊥~e,n,βχ[0,s2])(x) + ~ξ~e,n,β(s2)]dwα,β;ϕ0(x)

= 〈P⊥~e,n,βχ[0,s1],P
⊥
~e,n,βχ[0,s2]〉0,β

+ [~ξ~e,n,β(s1) + Iα,β(P⊥~e,n,βχ[0,s1])(α)][~ξ~e,n,β(s2) + Iα,β(P⊥~e,n,βχ[0,s2])(α)]

by Theorems 2.3 and 3.4.

Lemma 4.6. Let s1 ∈ [tj−1, tj ], s2 ∈ [tk−1, tk] for 1 ≤ j ≤ k ≤ n.

(1) If j 6= k, then we have 〈P⊥~g,n,βχ[0,s1],P⊥~g,n,βχ[0,s2]〉0,β = 0.

(2) If j = k and s1 ≤ s2, then 〈P⊥~g,n,βχ[0,s1],P⊥~g,n,βχ[0,s2]〉0,β = Φj(s2, s1).

Proof. Suppose that j 6= k. Now we have s1 ≤ s2 and we have by (P3)

〈P⊥~g,n,βχ[0,s1],P
⊥
~g,n,βχ[0,s2]〉0,β = β(s1)− β(0)−

j−1∑
l=1

[β(tl)− β(tl−1)]2

β(tl)− β(tl−1)

− [β(s1)− β(tj−1)][β(tj)− β(tj−1)]

β(tj)− β(tj−1)
= 0

which proves (1). If j = k and s1 ≤ s2, then we have by (P3)

〈P⊥~g,n,βχ[0,s1],P
⊥
~g,n,βχ[0,s2]〉0,β = β(s1)− β(0)−

j−1∑
k=1

[β(tk)− β(tk−1)]2

β(tk)− β(tk−1)

− [β(s1)− β(tj−1)][β(s2)− β(tj−1)]

β(tj)− β(tj−1)

= Φj(s2, s1)

which proves (2). �

Lemma 4.7. Under the assumptions as in Lemma 4.6, we have the followings:

(1) If j 6= k, then 〈P⊥~g,n−1,βχ[0,s1],P⊥~g,n−1,βχ[0,s2]〉0,β = 0.

(2) If 1 ≤ j = k ≤ n− 1 and s1 ≤ s2, then

〈P⊥~g,n−1,βχ[0,s1],P
⊥
~g,n−1,βχ[0,s2]〉0,β = Φj(s2, s1).

(3) If j = k = n and s1 ≤ s2, then 〈P⊥~g,n−1,βχ[0,s1],P⊥~g,n−1,βχ[0,s2]〉0,β =

β(s1)− β(tn−1).

Proof. The proofs of (1) and (2) are similar to the proofs of (1) and (2),
respectively, in Lemma 4.6. To complete the proof, it suffices to prove (3).
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Indeed we have

〈P⊥~g,n−1,βχ[0,s1],P
⊥
~g,n−1,βχ[0,s2]〉0,β = β(s1)− β(0)−

n−1∑
l=1

[β(tl)− β(tl−1)]2

β(tl)− β(tl−1)

= β(s1)− β(tn−1).

which completes the proof. �

Example 4.8. Let s1 ∈ [tj−1, tj ], s2 ∈ [tk−1, tk] for 1 ≤ j ≤ k ≤ n and let
G(s1, s2, x) = x(s1)x(s2) for x ∈ C[0, T ]. Then, by Corollary 3.5, Example 4.5
and Lemma 4.6, we have the followings:

(1) If j 6= k, then for mZ~g,n a.e. ~ξ ∈ Rn+1, we have

GE[G(s1, s2, ·)|Z~g,n](~ξ).

= [Ξ(n, ~ξ)(s1) + α(s1)− Pβ(α)(s1)][Ξ(n, ~ξ)(s2) + α(s2)− Pβ(α)(s2)].

(2) If j = k and s1 ≤ s2, then we have for mZ~g,n a.e. ~ξ ∈ Rn+1

GE[G(s1, s2, ·)|Z~g,n](~ξ)

= [Ξ(n, ~ξ)(s1) + α(s1)− Pβ(α)(s1)][Ξ(n, ~ξ)(s2) + α(s2)− Pβ(α)(s2)]

+ Φj(s2, s1).

Example 4.9. Let the assumptions be as in Example 4.8. Then, by Corollary
3.5, Examples 4.2, 4.5 and Lemma 4.7, we have the followings:

(1) If 1 ≤ j < k ≤ n− 1, then for mZ~g,n−1
a.e. ~η ∈ Rn, we have

GE[G(s1, s2, ·)|Z~g,n−1](~η)

= [Ξtn(~η)(s1) + α(s1)− Ptn,β(α)(s1)][Ξtn(~η)(s2) + α(s2)− Ptn,β(α)(s2)].

(2) If 1 ≤ j = k ≤ n− 1 and s1 ≤ s2, then for mZ~g,n−1
a.e. ~η ∈ Rn,

GE[G(s1, s2, ·)|Z~g,n−1](~η)

= [Ξtn(~η)(s1) + α(s1)− Ptn,β(α)(s1)][Ξtn(~η)(s2) + α(s2)− Ptn,β(α)(s2)]

+ Φj(s2, s1).

(3) If 1 ≤ j ≤ n− 1 and k = n, then for mZ~g,n−1
a.e. ~η ∈ Rn, we have

GE[G(s1, s2, ·)|Z~g,n−1](~η)

= [Ξtn(~η)(s1) + α(s1)− Ptn,β(α)(s1)][Ξtn(~η)(tn−1) + α(s2)− α(tn−1)].

(4) If j = k = n and s1 ≤ s2, then for mZ~g,n−1
a.e. ~η ∈ Rn, we have

GE[G(s1, s2, ·)|Z~g,n−1](~η)

= [Ξtn(~η)(tn−1) + α(s1)− α(tn−1)][Ξtn(~η)(tn−1) + α(s2)− α(tn−1)]

+ β(s1)− β(tn−1).

In particular, we have for mz0 a.e. η ∈ R
GE[G(s1, s2, ·)|z0](η) = [η + α(s1)− α(0)][η + α(s2)− α(0)] + β(s1)− β(0).
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Remark 4.10. Note that [4, Theorem 5] and [6, Theorem 3.2] can be also ob-
tained from Corollary 3.6.

We now have the following theorem from [6, Theorem 3.3], Theorem 3.4 and
Example 4.5.

Theorem 4.11. For x ∈ C[0, T ], let G3(x) = [
∫ T
0
x(t)dλ(t)]2, where λ is a fi-

nite complex measure on the Borel class of [0, T ]. Suppose that
∫ T
0

[α(t)]2d|λ|(t)
<∞ and

∫
R u

2dϕ(u) <∞. Then for mZ~e,n a.e. ~ξ ∈ Rn+1, we have

GE[G3|Z~e,n](~ξ) =

∫ T

0

∫ T

0

〈P⊥~e,n,βχ[0,s1],P
⊥
~e,n,βχ[0,s2]〉0,βdλ

2(s1, s2)

+

[∫ T

0

[~ξ~e,n,β(s) + Iα,β(P⊥~e,n,βχ[0,s])(α)]dλ(s)

]2
.

Using the same method as used in the proofs in Theorems 3.3 and 3.5 of [6]
with aid of Lemmas 4.6 and 4.7, Examples 4.8 and 4.9, and Theorem 4.11, we
can prove the following corollary.

Corollary 4.12. Let the assumptions be as given in Theorem 4.11.

(1) For mZ~g,n a.e. ~ξ ∈ Rn+1, we have

GE[G3|Z~g,n](~ξ) =

∫ T

0

∫ T

0

Λ(s1 ∨ s2, s1 ∧ s2)dλ2(s1, s2)

+

[∫ T

0

[Ξ(n, ~ξ)(s) + α(s)− Pβ(α)(s)]dλ(s)

]2
,

where Λ(s, t) =
∑n
j=1 χ[tj−1,tj ]2(s, t)Φj(s, t) for (s, t) ∈ [0, T ]2, s1∨s2 =

max{s1, s2} and s1 ∧ s2 = min{s1, s2}.
(2) For mZ~g,n−1

a.e. ~η = (η0, η1, . . . , ηn−1) ∈ Rn, we have

GE[G3|Z~g,n−1](~η)

=

∫ tn−1

0

∫ tn−1

0

Λ(s1 ∨ s2, s1 ∧ s2)dλ2(s1, s2) +

∫ T

tn−1

∫ T

tn−1

[β(s1 ∧ s2)

− β(tn−1)]dλ2(s1, s2) +

[∫ tn−1

0

[Ξtn(~η)(s) + α(s)− Pβ(α)(s)]dλ(s)

+

∫
(tn−1,T ]

[α(t)− α(tn−1) + Ξtn(~η)(tn−1)]dλ(t)

]2
.

In particular, for mz0 a.e. η ∈ R we have

GE[G3|z0](η)

=

∫ T

0

∫ T

0

[β(s1 ∧ s2)− β(0)]dλ2(s1, s2) +

[∫ T

0

[α(t)− α(0) + η]dλ(t)

]2
.



626 D. H. CHO

Remark 4.13. Theorems 3.3 and 3.5 of [6] can be also obtained from Corollaries
3.6 and 4.12 so that Theorem 4.11 extends the results of [6].

5. More applications of the simple formula

In this section we apply the simple formulas as given in the previous section,
to the cylinder type functions and the functions in a Banach algebra [5] which
are of significant in Feynman integration theory and quantum mechanics. For
these purposes, we need the following lemma.

Lemma 5.1. For f ∈ L2
α,β [0, T ], we have for wα,β;ϕ a.e. x ∈ C[0, T ]

Iα,β(f)(Iα,β(P⊥~e,n,βχ[0,·])(x)) = Iα,β(P⊥~e,n,βf)(x).

Proof. Let {φl}∞l=1 be a sequence in S[0, T ] such that liml→∞ ‖φl − f‖α,β = 0.
Since the two norms ‖ · ‖0,β and ‖ · ‖α,β are equivalent on L2

α,β [0, T ] and P⊥~e,n,β
is bounded with the norm ‖ · ‖0,β , we have liml→∞ ‖P⊥~e,n,βφl−P⊥~e,n,βf‖α,β = 0.

By Corollary 3.11 of [3], we have liml→∞ Iα,β(P⊥~e,n,βφl) = Iα,β(P⊥~e,n,βf) in

L2(C[0, T ]) so that without loss of generality, we have for wα,β;ϕ a.e. x ∈ C[0, T ]

Iα,β(P⊥~e,n,βf)(x) = lim
l→∞

Iα,β(P⊥~e,n,βφl)(x).

For each l ∈ N, let φl have the form φl(t) =
∑rl
k=1 clkχIlk(t) for t ∈ [0, T ],

where rl ∈ N, clk ∈ R and the intervals Ilk = (tlk−1, tlk] ⊆ [0, T ] are mutually
disjoint. Now, we have by (P2)

Iα,β(P⊥~e,n,βf)(x)

= lim
l→∞

rl∑
k=1

clkIα,β(P⊥~e,n,βχ(tlk−1,tlk])(x)

= lim
l→∞

rl∑
k=1

clk[Iα,β(P⊥~e,n,βχ[0,tlk])(x)− Iα,β(P⊥~e,n,βχ[0,tlk−1])(x)]

= lim
l→∞

Iα,β(φl)(Iα,β(P⊥~e,n,βχ[0,·])(x))

= Iα,β(f)(Iα,β(P⊥~e,n,βχ[0,·])(x))

which is the desired result. �

5.1. The cylinder type functions

Let {v1, v2, . . . , vr} be an orthonormal subset of L2
α,β [0, T ]. For convenience,

let

Iα,β(~v)(x) = (Iα,β(v1)(x), . . . , Iα,β(vr)(x)) for x ∈ C[0, T ].

Let Fr be the cylinder type function of the form given by

Fr(x) = fr(Iα,β(~v)(x))
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for wα,β;ϕ a.e. x ∈ C[0, T ], where fr : Rr → C is Borel measurable. Assume

that Fr is integrable on C[0, T ]. Then we have for mZ~e,n a.e. ~ξ ∈ Rn+1

GE[Fr|Z~e,n](~ξ) =

∫
C[0,T ]

Fr(Iα,β(P⊥~e,n,βχ[0,·])(x) + ~ξ~e,n,β)dwα,β;ϕ0
(x)

=

∫
C[0,T ]

fr(Iα,β(v1)(Iα,β(P⊥~e,n,βχ[0,·])(x) + ~ξ~e,n,β), . . . ,

Iα,β(vr)(Iα,β(P⊥~e,n,βχ[0,·])(x) + ~ξ~e,n,β))dwα,β;ϕ0(x)

=

∫
C[0,T ]

fr(Iα,β(P⊥~e,n,β~v)(x) + Iα,β(~v)(~ξ~e,n,β))dwα,β;ϕ0(x)

by Theorem 3.4 and Lemma 5.1.

(1) Suppose that P⊥~e,n,βvj = 0 for j = 1, . . . , r, that is, vj ∈ Vn for j =

1, . . . , r. In this case, we have for mZ~e,n a.e. ~ξ ∈ Rn+1

GE[Fr|Z~e,n](~ξ) =

∫
C[0,T ]

fr(Iα,β(~v)(~ξ~e,n,β))dwα,β;ϕ0
(x) = Fr(~ξ~e,n,β).

(2) Suppose that P⊥~e,n,βvj 6= 0 for some j, that is, vj 6∈ Vn for some j. Let

{w1, . . . , wr1} be a maximal independent set obtained from {P⊥~e,n,βvl :

l = 1, . . . , r}. Now, for j = 1, . . . , r, let P⊥~e,n,βvj =
∑r1
l=1 αjlwl be the

linear combination of the wls and let A~e = [αlj ]r1×r be the transpose of
the coefficient matrix of the combinations. Then we have by Theorem
3.6 of [3]

GE[Fr|Z~e,n](~ξ) =

∫
C[0,T ]

fr

(( r1∑
l=1

α1lIα,β(wl)(x), . . . ,

r1∑
l=1

αrlIα,β(wl)(x)

)
+ Iα,β(~v)(~ξ~e,n,β)

)
dwα,β;ϕ0

(x)

=

[
1

(2π)r1 |M~e|

] 1
2
∫
Rr1
fr(~uA~e+Iα,β(~v)(~ξ~e,n,β)) exp

{
−1

2
〈M−1~e [~u

− Iα,β(~w)(α)], ~u− Iα,β(~w)(α)〉r1
}
dmr1

L (~u),

where M~e = [〈wi, wj〉0,β ]r1×r1 , Iα,β(~w)(α) = (Iα,β(w1)(α), . . . , Iα,β
(wr1)(α)) and 〈·, ·〉r1 denotes the dot product on Rr1 . In particular,
if {P⊥~e,n,βvj : j = 1, . . . , r} itself is an orthonormal set in L2

0,β [0, T ],
then we have

GE[Fr|Z~e,n](~ξ) =

(
1

2π

) r
2
∫
Rr
fr(~u) exp

{
−1

2
‖~u− Iα,β(~v)(~ξ~e,n,β)

− Iα,β(P⊥~e,n,β~v)(α)‖2r
}
dmr

L(~u).
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(3) Replacing ej by gj , we can obtain GE[Fr|Z~g,n](~ξ) and GE[Fr|Xτ ](~ξ)

by Corollaries 3.5 and 3.6, where ~ξ~e,n,β is replaced by Ξ(n, ~ξ) and Pβ(~ξ),
respectively. We can also obtain GE[Fr|Z~g,n−1](~η) and GE[Fr|Yτ ](~η)

for ~η ∈ Rn by the same corollaries, where ~ξ~e,n,β is replaced by Ξtn(~η)
and Ptn,β(~η), respectively. In each case, A~e, M~e and ~w depend on the
gjs. In aprticular, we have for mz0 a.e. η ∈ R

GE[F |z0](η) =

[
1

(2π)r|M1|

] 1
2
∫
Rr
f(~u) exp

{
−1

2
〈M−11 [~u

− Iα,β(~v)(α)], ~u− Iα,β(~v)(α)〉r
}
dmr

L(~u)

by Corollary 3.7 and Theorem 3.6 of [3], where M1 = [〈vi, vj〉0,β ]r×r.

5.2. The functions in a Banach algebra

In this subsection we give an additional condition that |α|′(t) +β′(t) > 0 for
t ∈ [0, T ]. LetMα,β be the class of complex measures of finite variations on the
Borel class B(L2

α,β [0, T ]) of L2
α,β [0, T ]. If µ ∈ Mα,β , then we set ‖µ‖ = varµ,

the total variation of µ over L2
α,β [0, T ]. Now let S̄α,β;ϕ be the space of functions

of the form

F (x) =

∫
L2
α,β [0,T ]

exp{iIα,β(f)(x)}dµ(f)(13)

for all x ∈ C[0, T ] for which the integral exists, where µ ∈Mα,β . Here we take
‖F‖ = inf{‖µ‖}, where the infimum is taken for all µ’s so that F and µ are
related by (13). We note that S̄α,β;ϕ is a Banach algebra [5].

For F ∈ S̄α,β;ϕ given by (13), we have for mZ~e,n a.e. ~ξ ∈ Rn+1

GE[F |Z~e,n](~ξ)

=

∫
C[0,T ]

F (Iα,β(P⊥~e,n,βχ[0,·])(x) + ~ξ~e,n,β)dwα,β;ϕ0
(x)

=

∫
L2
α,β [0,T ]

∫
C[0,T ]

exp{i[Iα,β(P⊥~e,n,βf)(x) + Iα,β(f)(~ξ~e,n,β)]}dwα,β;ϕ0
(x)

dµ(f)

=

∫
L2
α,β [0,T ]

exp

{
−1

2
‖P⊥~e,n,βf‖20,β + i[Iα,β(P⊥~e,n,βf)(α) + Iα,β(f)(~ξ~e,n,β)]

}
dµ(f)

by Theorem 2.3 and Lemma 5.1. Replacing ej by gj , we can obtain GE[F |Z~g,n]

(~ξ) and GE[F |Xτ ](~ξ) by Corollaries 3.5 and 3.6, where ~ξ~e,n,β is replaced by

Ξ(n, ~ξ) and Pβ(~ξ), respectively. We can also obtain GE[Fr|Z~g,n−1](~η) and

GE[Fr|Yτ ](~η) for ~η ∈ Rn by the same corollaries, where ~ξ~e,n,β is replaced by
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Ξtn(~η) and Ptn,β(~η), respectively. In each case, P⊥~e,n,β depends on the gjs. In
particular, we have for mz0 a.e. η ∈ R

GE[F |z0](η) =

∫
L2
α,β [0,T ]

exp

{
−1

2
‖f‖20,β + iIα,β(f)(α)

}
dµ(f)

by Corollary 3.7.

Remark 5.2. (1) Note that for f ∈ L2
α,β [0, T ] and ~ξ = (ξ0, ξ1, . . . , ξn) ∈

Rn+1, we have the following more detailed expressions:

(a) Iα,β(f)(~ξ~e,n,β) =
∑n
j=1 ξj〈f, ej〉0,β ,

(b) Iα,β(P⊥~e,n,βf)(α) = Iα,β(f)(α)−
∑n
j=1〈f, ej〉0,βIα,β(ej)(α) and

(c) ‖P⊥~e,n,βf‖20,β = ‖f‖20,β −
∑n
j=1〈f, ej〉20,β

by Theorem 2.2 and the mean value theorem for the Riemann-Stieltjes
integral.

(2) For mYτ a.e. ~η ∈ Rn, we have by (2) of Corollary 3.6

GE[F |Yτ ](~η) =

∫
L2
α,β [0,T ]

exp

{
−1

2
‖P⊥~g,n−1,βf‖20,β

+ i[Iα,β(P⊥~g,n−1,βf)(α) + Iα,β(f)(Ptn,β(~η))]

}
dµ(f).

In view of Remark 3.8, the above equality can be also obtained by
Theorem 2.3 of [6] using the following long calculations: For ~ηn =
(η0, η1, . . . , ηn−1) ∈ Rn and ~ηn = (η0, η1, . . . , ηn−1, ηn) ∈ Rn+1, we
have by formulas as above in (1)

exp

{
−1

2
‖P⊥~g,n,βf‖20,β + i[Iα,β(P⊥~g,n,βf)(α) + Iα,β(f)(Pβ(~ηn))]

}
= exp

{
−1

2

[
‖f‖20,β −

n∑
j=1

〈f, gj〉20,β
]

+ i

[
Iα,β(f)(α)−

n∑
j=1

〈f, gj〉0,β

× Iα,β(gj)(α) + Iα,β(Ptn,β(~η)) + 〈f, gn〉0,β
ηn − ηn−1√

β(tn)− β(tn−1)

]}
and by the Fourier-transform of normal random variable, we also have∫

R
W(ηn−1, ηn) exp

{
i〈f, gn〉0,β

ηn − ηn−1√
β(tn)− β(tn−1)

}
dmL(ηn)

= exp

{
−1

2
〈f, gn〉20,β + 〈f, gn〉0,βIα,β(gn)(α)

}
.

Hence we have by Theorem 2.3 of [6]

GE[F |Yτ ](~η) =

∫
R
W(ηn−1, ηn)GE[F |Xτ ](~ηn)dmL(ηn)
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=

∫
L2
α,β [0,T ]

exp

{
−1

2

[
‖f‖20,β −

n−1∑
j=1

〈f, gj〉20,β
]

+ i

[
Iα,β(f)(α)

−
n−1∑
j=1

〈f, gj〉0,βIα,β(gj)(α) + Iα,β(Ptn,β(~η))

]}
dµ(f)

=

∫
L2
α,β [0,T ]

exp

{
−1

2
‖P⊥~g,n−1,βf‖20,β + i[Iα,β(P⊥~g,n−1,βf)(α)

+ Iα,β(f)(Ptn,β(~η))]

}
dµ(f)

which is the desired result. Once again we note that the formulas in this
paper can be used to simply the generalized conditional expectations
which are evaluated by the formulas in [4, 6–8,12].

References

[1] R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman inte-
grable functionals, in Analytic functions, Kozubnik 1979 (Proc. Seventh Conf., Kozub-

nik, 1979), 18–67, Lecture Notes in Math., 798, Springer, Berlin, 1980.

[2] C. C. Chen and K. M. Koh, Principles and Techniques in Combinatorics, World
Scientific Publishing Co., Inc., River Edge, NJ, 1992. https://doi.org/10.1142/

9789814355162

[3] D. H. Cho, Measurable functions similar to the Itô integral and the Paley-Wiener-
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