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SYMPLECTIC FILLINGS OF QUOTIENT SURFACE

SINGULARITIES AND MINIMAL MODEL PROGRAM

Hakho Choi, Heesang Park, and Dongsoo Shin

Abstract. We prove that every minimal symplectic filling of the link of

a quotient surface singularity can be obtained from its minimal resolution
by applying a sequence of rational blow-downs and symplectic antiflips.

We present an explicit algorithm inspired by the minimal model program
for complex 3-dimensional algebraic varieties.

1. Introduction

Let (X, 0) be a quotient surface singularity. A symplectic filling of X is a
symplectic filling of the link L of X, that is, a symplectic 4-manifold W with L
as its boundary such that the induced contact structure on L coming from the
symplectic structure of the interior of W is compatible with the Milnor fillable
contact structure on L.

Lisca [9] classify symplectic fillings of cyclic quotient surface singularities (up
to symplectic deformation equivalence) as complements of certain symplectic
spheres (depending only on the singularities) in certain rational symplectic 4-
manifolds. Bhupal-Ono [2] (refer Bhupal-Ono [3] also) classify that of non-cyclic
quotient surface singularities also as the complements. Meanwhile, Bhupal-
Ozbagci [4] show that every minimal symplectic filling of X can be constructed
from the minimal resolution of X by a sequence of rational blow-downs in
some sense. For this, they construct a positive allowable Lefschetz fibration
over the disk on each minimal symplectic fillings of any cyclic quotient surface
singularity. Using a similar strategy, Choi-Park [5] prove a similar result for
non-cyclic quotient surface singularities.

On the other hand, PPSU [14] prove a comparable result to Bhupal-Ozbagci
[4] and Choi-Park [5] by using techniques from algebraic geometry. PPSU [14,
Theorem 11.3] show that minimal symplectic fillings of quotient surface singu-
larities are exactly their Milnor fibers: For any minimal symplectic filling W of
a quotient surface singularity X there is a smoothing π : (X ⊂ X ) → (0 ∈ D)
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over a small disk D(⊂ C) such that the Milnor fiber of the smoothing π (i.e.,
a general fiber Xt = π−1(t) (t 6= 0)) is diffeomorphic to the symplectic fill-
ing W . By the way, KSB [8, Theorem 3.9] show that every Milnor fiber of
a quotient surface singularity X is a general fiber of a Q-Gorenstein smooth-
ing of a certain special partial resolution (called, P -resolution) of X and that
every P -resolution is dominated by the so-called maximal resolution of X,
where a Q-Gorenstein smoothing may be regarded as an analogue of the ra-
tional blow-down surgery. Putting it all together in the language of topology,
PPSU [14, Theorem 11.3] show that every minimal symplectic filling of a quo-
tient surface singularity is obtained from its maximal resolution by a sequence
of rational blow-downs. But maximal resolutions are not equal to minimal res-
olutions in general. They are obtained from minimal resolutions by ordinary
blow-ups; cf. KSB [8, Lemma 3.13].

In this paper we produce an explicit algorithm for constructing Milnor fibers
(that is, Q-Gorenstein smoothings of P -resolutions) symplectically from the
minimal resolutions (not from maximal resolutions), where the algorithm is
inspired by the minimal model program of 3-dimensional complex varieties. As
a result, we show that:

Theorem 1.1. For each minimal symplectic filling W of a quotient surface
singularity X, there is a sequence of rational blow-downs and symplectic an-

tiflips that transforms the minimal resolution of X̃ to a 4-manifold that is
diffeomorphic to the symplectic filling W .

Here a symplectic antiflip is a converse operation to the so-called symplectic
flip which is a way to convert a rationally blown-down regular neighborhood
into a simpler one; See Section 3.

The difference with Bhupal-Ozbagci [4] or Choi-Park [5] is that it is un-
avoidable to use symplectic antiflips in our theorem in most cases. Indeed
symplectic antiflips tell us clearly where to rationally blow down to get the
given symplectic fillings. But the authors believe that a similar operation to
symplectic antiflip would be implemented in their results too. We discuss this
in Section 4.1 with some examples.

Notations and notions

In the dual graph of a bunch of CP1’s, we decorate by rectangles � those
curves that are contracted to a singular point. For example, the dual graph

(1.1)

−2 −4 −3 −3 −2

C

implies that we contract the linear chain of CP1’s whose dual graph is

−2 −4 −3 −3

so that we obtain a singular surface consisting of the −2-curve C with a cyclic
quotient surface singularity 1

50 (1, 29) on C.
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We denote for simplicity by

a1 − a2 − · · · − an
a linear chain of CP1’s (or 2-spheres) whose dual graph is given as

−a1 −a2 −an

with ai > 0. We then enclose the contracted curves by the brackets [ ] instead
of rectangles �. For example, [2, 4, 3, 3] − 2 is equal to the dual graph in
Equation (1.1). Sometimes [a1, . . . , an] denote the singularity itself that is
obtained by contracting the linear chain a1 − · · · − an.

We also regard dual graphs of symplectic 2-spheres as regular neighborhoods
of the spheres given by plumbing construction. In this case, 2-spheres deco-
rated by � or enclosed by brackets [ ] are those 2-spheres that are rationally

blown down. So the above example
−2 −4 −3 −3 −2

or [2, 4, 3, 3]− 2 denote a

regular neighborhood of
−2 −4 −3 −3 −2

that is rationally blown down along
−2 −4 −3 −3

.
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2. Symplectic fillings and P -resolutions

We recall basics on the correspondence between minimal symplectic fillings
and P -resolutions of quotient surface singularities.

2.1. Singularities of class T

We first introduce cyclic quotient surface singularities that admit smoothings
whose Milnor fibers are rational homology disk. For details, refer KSB [8, §3]
for example.

Let (X, 0) be a normal surface singularity. A smoothing π : X → D over a
small disk 0 ∈ D(⊂ C) is a surjective flat morphism such that π−1(0) ∼= X
and a general fiber Xt := π−1(t) (t 6= 0) is smooth. All general fibers are
diffeomorphic to each other. So we call a general fiber of a smoothing π : (X ⊂
X )→ (0 ∈ D) of X the Milnor fiber of the smoothing π. A smoothing X → ∆
of X is Q-Gorenstein if KX is Q-Cartier.
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Definition 2.1. A normal surface singularity is of class T if it is a quotient
surface singularity, and it admits a Q-Gorenstein one-parameter smoothing.

Proposition 2.2 (KSB [8, Proposition 3.10]). A singularity of class T is a
rational double point or a cyclic quotient surface singularity of type 1

dn2 (1, dna−
1) with d ≥ 1, n ≥ 2, 1 ≤ a < n, and (n, a) = 1.

A singularity of class T0 is defined by a cyclic quotient surface singularity of
type 1

n2 (1, na − 1) with n > a ≥ 1 and (n, a) = 1. Any singularity of class T0

admits a smoothing whose Milnor fiber M is a rational homology disk, that is,
Hi(M ;Q) = 0 for i ≥ 1. Furthermore, according to Wahl [19, Example 5.9.1]
and Looijenga–Wahl [10, Remark 5.10], singularities of class T0 are the only
cyclic quotient singularities having a rational homology disk smoothing.

So the one-parameter Q-Gorenstein smoothing of a singularity of class T0

may be interpreted topologically as a rational blow-down surgery along its
minimal resolution defined in Fintushel–Stern [6] and J. Park [13], which is
called as the rational blow-down along a singularity of class T0. Notice that
a rational blow-down surgery along a singularity of class T0 is a symplectic
surgery by Symington [16], [17]. See also Park-Stipsicz [15].

Any singularities of class T0 can be obtained by the following iterations
(KSB [8, Proposition 3.11]): At first, [4] is a singularity of class T0. If the
singularity [b1, . . . , br] is of class T0, then so are [2, b1, . . . , br−1, br + 1] and
[b1 + 1, b2, . . . , br, 2]. Then every singularity of class T0 can be obtained by
starting with [4] and iterating the above steps.

Definition 2.3. Let [e1, . . . , en] be a singularity of class T0 and let ei be the
image of [4] under the above procedure. The corresponding exceptional curve
Ei is called the initial curve of the singularity.

For example, in [6, 2, 2], E1 is the initial curve. On the other hand, in [2, 5, 3],
E2 is the initial one.

2.2. P -resolutions and M-resolutions

Let (X, 0) be a quotient surface singularity. There are one-to-one correspon-
dence between Milnor fibers and certain partial resolutions of X.

Definition 2.4 (KSB [8, Definition 3.8]). A partial resolution f : Y → X is
called a P -resolution of X if Y has only singularities of class T , and KY is
ample relative to f .

Remark 2.5. Every P -resolution of X is dominated by the so-called maximal
resolution of X, which can be obtained by blowing up the minimal resolution
of X; KSB [8, Lemma 3.14].

According to KSB [8, Theorem 3.9], each smoothing π : X → D of X is
induced by a Q-Gorenstein smoothing φ : Y → D of a P -resolution Y of X.
That is, there is a birational morphism Y → X over D such that the Milnor
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fiber of the smoothing π of X is isomorphic to a general fiber Yt = φ−1(t)
(t 6= 0) of the smoothing φ of Y .

Furthermore one may restrict the types of singularities on P -resolutions.

Definition 2.6 (Behnke–Christophersen [1, p. 882]). An M -resolution of a
quotient surface singularity (X, 0) is a partial resolution f : Z → X such that
Z has only singularities of class T0 as its singularities and KZ is nef relative to
f , i.e., KZ · E ≥ 0 for all f -exceptional curves E.

Remark 2.7. There is an easy way to convert a given P -resolution of a quotient
surface singularity X to the corresponding M -resolution by blowing up the
minimal resolution of the P -resolution and contracting certain parts of it; cf.
PPSU [14, §6]. Hence the minimal resolution of a M -resolution can be obtained
by blowing up the minimal resolution of X. For example, for the P -resolution
[2, 4, 3, 3]−2, its corresponding M -resolution is given by [2, 5, 3]−1−[2, 5, 3]−2.

Behnke–Christophersen [1, 3.1.4, 3.3.2, 3.4] also prove a similar result to
the above KSB [8, Theorem 3.9]: Every Milnor fiber of a smoothing of a quo-
tient surface singularity X is isomorphic to a general fiber of the Q-Gorenstein
smoothing of the corresponding M -resolution of X.

Since the Milnor fiber of a rational double point is symplectomorphic to its
minimal resolution, the above result of Behnke–Christophersen [1] implies that:

Proposition 2.8. Every Milnor fiber of a quotient surface singularity X is
symplectomorphic to the symplectic 4-manifold that is obtained by rationally
blowing down along singularities of class T0 on the corresponding M -resolution
of X.

We will end this subsection by discussing some simple necessary conditions
for being M -resolutions. At first, every (−1)-curve on Z (if any) should pass
through at least two singularities of class T0 on Z because KZ is nef relative
to f .

Proposition 2.9. If [a1+1, a2, . . . , ar, 2]−1−[b1, . . . , bt, 2] is an M -resolution,
then so is [a1, . . . , ar]− 1− [b1, . . . , bt].

Proof. See the proof of Lemma 9.2 in PPSU [14]. �

Lemma 2.10. Suppose that [a1, . . . , ar] − 1 − [b1, . . . , bs] is a part of an M -
resolution Z of a quotient surface singularity X. Then b1 ≥ a1.

Proof. If a1 = 2, then the assertion is obvious. Assume that a1 ≥ 3.
If [a1, . . . , ar] 6= [a1, 2, . . . , 2], then for i = r − a1 + 2, ai ≥ 3 and ai+1 =

· · · = ar = 2. Contracting (−1)-curves successively on the minimal resolution

Z̃ of Z, we get a linear chain

a1 − a2 − · · · − (ai − 1)− (b1 − a1 + 1)− b2 − · · · − br.
The above linear chain can be obtained by blowing up the minimal resolution

X̃ of X. So (b1 − a1 + 1) cannot be nonnegative. Therefore b1 ≥ a1.
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If [a1, . . . , ar] = [a1, 2, . . . , 2], then a1 ≥ 4, r = a1−3, and a2 = · · · = ar = 2.
We then get a linear chain

(a1 − 1)− (b1 − a1 + 3)− b2 − · · · − br
after contracting (−1)-curves on Z̃. Then b1−a1+3 ≥ 1. Therefore there are at
least (a1−4) 2’s in the end of the sequence b1, . . . , bt; that is, bj+1 = · · · = bt = 2
for j = t− a1 + 4.

Applying Proposition 2.9 repeatedly to [a1, 2, . . . , 2]−1−[b1, . . . , bs], we then
have an M -resolution containing

[4]− 1− [b1 − c1 + 3, d2, . . . , dj ].

Then b1 − c1 + 3 ≥ 3 because KZ is nef. For this, see the last paragraph at
p. 1211 in the proof of Lemma 9.3 in PPSU [14]. �

Proposition 2.11 (PPSU [14, Lemma 9.3]). Let Z=[a1, . . . , ar]−1−[b1, . . . , bs]

be an M -resolution of a cyclic quotient surface singularity X. Let Z̃ → Z be

the minimal resolution of the singularities of class T0 and let X̃ → X be the

minimal resolution of X. Finally, let f : Z̃ → X̃ be the corresponding induced
map. Then f does not contract the initial curves of the singularities.

2.3. Symplectic fillings as Milnor fibers

Any minimal symplectic filling of a quotient surface singularity (X, 0) can
be realized as the Milnor fiber of a smoothing π : (X ⊂ X )→ (0 ∈ D) of X.

According to Ohta-Ono [12], NPP [11], PPSU [14], for any minimal sym-
plectic filling W of (X, 0), there is a smoothing X → ∆ of (X, 0) such that W
is diffeomorphic to the Milnor fiber of the smoothing. As mentioned in the In-
troduction, each symplectic filling is given by complement of the compactifying
divisor of the singularity in the rational symplectic 4-manifold V and the sym-
plectic deformation type of the filling is actually determined by homology data
of the compactifying divisor in V ; cf. Bhupal-Ono [2] and Lisca [9]. One may
check that the two homology data for a symplectic filling and its corresponding
Milnor fiber coincide; cf. PPSU [14] for example. Hence:

Proposition 2.12. Let (X, 0) be a quotient surface singularity. For any min-
imal symplectic filling W of (X, 0), there is a smoothing X → ∆ of (X, 0)
such that W is symplectic deformation equivalent to the Milnor fiber of the
smoothing.

Combined with Proposition 2.8:

Proposition 2.13. Each minimal symplectic filling of a quotient surface sin-
gularity is symplectic deformation equivalent to the 4-manifold that is obtained
by rationally blowing down the corresponding M -resolution along the singular-
ities of class T0.

For any cyclic quotient surface singularity X, PPSU [14, §10.1] provide an
explicit algorithm for constructing the M -resolution of X corresponding to a
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given minimal symplectic filling W of X. Indeed minimal symplectic fillings of
X can be parametrized by certain sequences k = (k1, . . . , ke) representing zero
Hirzebruch-Jung continued fraction. In PPSU [14, §10.1], they find a way to
construct a M -resolution of X corresponding to a given sequence k. On the
other hand, HJS [7] make up the list of all P -resolutions of non-cyclic quotient
surface singularities. So one may deal with M -resolutions instead of minimal
symplectic fillings.

3. Symplectic flips and antiflips

We introduce a way to change over from a rationally blown-down regular
neighborhood to another simpler one in Definition 3.2, which may be regarded
as a symplectic version of the so-called usual flip in Urzúa [18, Proposition 2.15].

Proposition 3.1. Let Y = [b1, . . . , bt]− 1− c. Suppose that bi ≥ 3 and bj = 2
for all j > i (if any). If i ≥ 2 and c − b1 + 1 ≥ 1, then Y is symplectic
deformation equivalent to Y + = b1 − [b2, . . . , bi−1, bi − 1] − (c − b1 + 1). If
i = 1 and c − b1 + 3 ≥ 1, then Y is symplectic deformation equivalent to
Y + = (b1 − 1)− (c− b1 + 3).

Proof. First we restrict ourselves to i ≥ 2 and c − b1 + 1 ≥ 2 case. Since
[b1, . . . , bt] is of class T0 and bj = 2 for any j > i, also [b1 − (t− i), b2, . . . , bi] is
of class T0, consequently b1 = (t − i) + 2. On the other hand, by contracting
(−1)-curves successively, we get a linear chain b1−b2−· · ·−(bi−1)−(c−(t−i+1))
from b1 − b2 − · · · − bt − 1− c. Hence both Y and Y + are symplectic fillings of
the same cyclic quotient surface singularity.

Recall that each symplectic filling is given by complement of the com-
pactifying divisor C of the singularity and its symplectic deformation type
is determined by the homology class of C in rational symplectic 4-manifold

Y ∼= CP2]NCP2 which is obtained by gluing the compactifying divisor to the
symplectic filling. For a linear chain b1 − b2 − · · · − br with bi ≥ 2, the com-
pactifying divisor C is also a linear chain of CP1’s whose dual graph is

+1 1− a1 −a2 −ae
· · ·

where (a1, . . . ae) is dual Hirzebruch-Jung continued fraction of (b1, . . . , br)
which means that (b1, . . . , br, 1, ae, . . . , a1) represents zero Hirzebruch-Jung con-
tinued fraction. Furthermore, embedding of C to Y is determined by certain
e-tuples of integers k = (k1, . . . , ke) representing zero Hirzebruch-Jung contin-
ued fraction implying that the following linear chain

+1 1− k1 −k2 −ke
· · · (1 ≤ ki ≤ ai)

is obtained from two distinct lines in CP2 by ordinary blowing ups. Then by
blowing up ai − ki distinct points at each vertex, we have an embedding of K.

Therefore we could get explicit homology data of K in Y ∼= CP2]NCP2 from
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the ways of blowing up to the above chain from two distinct lines in CP2; cf.
Bhupal-Ono [2] and Lisca [9]. Note that for a singularity [b1, . . . , br] of class
T0, an e-tuple (k1, . . . , ke) corresponds to rational homology disk smoothing
is obtained from (2, 1, 2) by blowing ups at only intersection points on (−1)
curves so that there is only one i such that kj = 1 and aj = 2. One can
easily check that ki = ai for i 6= j. In case of (2, 1, 2), explicit homology

data of corresponding linear chain in CP2]2CP2 as follows. (Here l denotes the
homology class of CP1 in CP2 while ei denotes homology class of an exceptional
curve.)

+1 1− 2 −1 −2

l l− e1 − e2 e2 e1 − e2

Hence if (k1, . . . , ke) is an e-tuple for rational homology disk smoothing for a
singularity [b1, . . . , br] of class T0, then homology class of ith vertex in corre-

sponding linear chain in CP2](e − 1)CP2 is of the form ei1 −
∑ki

j=2 eij except

the first and the second one where eij ∈ {e1, . . . , ee−1}. One can observe that
homology class of the second vertex is of the form l − e11 − e12 − · · · − e1k1

and a homology class e11 = ee1 = ei does not appear in vertices other than the
second and the last one.

+1 1− k1 −k2 −ke

l l− e11 − · · · − e1k1
ee1 − · · · − eeke

· · ·

Furthermore, (2, k1, . . . , ke + 1) corresponds to rational homology disk smooth-
ing for [b1 +1, . . . , br, 2] and (k1 +1, . . . , ke, 2) corresponds to rational homology
disk smoothing for [2, b1, . . . , br +1] and homology data of corresponding linear

chain in CP2]eCP2 changes as follows. Here homology class eij ∈ {e1, . . . , ee−1}
comes from homology data of linear chain corresponds to (k1, . . . , ke) in

CP2](e− 1)CP2.

(3.1)

+1 1− 2 −k1 −(ke + 1)

l l− e11 − E E − e12 − · · · − e1k1
ee1 − · · · − eeke − E

· · ·

(3.2)

+1 1− (k1 + 1) −k2 −2

l l− E − e11 − · · · − e1k1
E − ee1

· · ·

Let (a1, . . . , ae) be dual continued fraction of b2 − · · · − bi−1. Then dual
graph of the compactifying divisor C of a cyclic quotient surface singularity X
determined by a linear chain b1−b2−· · ·−(bi−1−1)−(c−b1 +1) and homology
data for the minimal resolution of X in rational symplectic 4-manifold Y ∼=
CP](c+ e+ i−2)CP2 can be given as follows (Here ei and Ej denote homology



SYMPLECTIC FILLINGS AND MINIMAL MODEL PROGRAM 427

class of exceptional spheres.)

1

l

1− 2

l− E1 − E2

−2
· · ·

−2

Eb1−2 − Eb1−1

−a1 − 1 −a2
· · ·

−ae − 1 −2

Eb1
− Eb1+1

· · ·
−2

Ec−2 − Ec−1

b1 − 2 c− b1 − 1

1

l

1− 2 −2
· · ·

−2 −a1 − 1

Eb1−1 − e1 − · · · − ea1

−a2
· · ·

−ae − 1

ee+i−ae − · · · − ee+i−1 − Eb1

−2
· · ·

−2

while embedding of b2 − · · · − (bi − 1) can be given as follows.

−b2 −b3 −bi + 1

e1 − e2 − · · · − eb2 eb2 − · · · − eb2+b3−1 ee+i−bi−3 − · · · − ee+i−1

· · ·

Suppose that e-tuple (k1, · · · , ke) corresponds to rational homology disk
smoothing of a cyclic quotient surface singularity X ′ determined by b2 − · · · −
(bi − 1) and homology data for e-tuple in CP2](e− 1)CP2 is given as follows.

+1 1− k1 −k2 −ke

l l− e11 − · · · − e1k1
ee1 − · · · − eeke

· · ·

Then homology data of the compactifying divisor C ′ corresponds to rational

homology disk smoothing of [b2, . . . , bi−1] in CP2]eCP2 can be given as follows.
(Here ee represents homology class of exceptional curve coming from blow up

from CP2](e− 1)CP2 to CP2]eCP2.)

+1 1− a1 −a2 −aj −ae

l l− e11 − · · · − e1k1
ej1 − ee ee1 − · · · − eeke

· · · · · ·

while homology data of C ′ for the minimal resolution in CP2](e + i − 1)]CP2

can be given as follows.

+1 1− a1 −a2 −ae

l l− e1 − · · · − ea1
ee+i−ae − · · · − ee+i−1

· · ·

Hence if we rationally blow down [b2, . . . , bi − 1] from the linear chain b1 −
· · · − (bi − 1) − (c − b1 + 1) , then we get new rational symplectic 4-manifold

Y ′ ∼= CP2(c+ e− 1)]CP2 and homology data of compactifying divisor C in Y ′

changes as follows.

1

l

1− 2

l− E1 − E2

−2
· · ·

−2

Eb1−2 − Eb1−1

−a1 − 1 −a2
· · ·

−ae − 1 −2

Eb1
− Eb1+1

· · ·
−2

Ec−2 − Ec−1

b1 − 2 c− b1 − 1

1

l

1− 2 −2
· · ·

−2 −a1 − 1

Eb1−1 − e11 − · · · − e1k1

· · ·
−aj

ej1 − ee
· · ·

−ae − 1

ee1 − · · · − eeke−Eb1

−2
· · ·

−2
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Note that the changes only occur at vertices with ei. To get homology data
of C for Y , we start from a linear chain b1−b2−· · ·−(bi−1)−c. As a symplectic
filling of X, homology data of the linear chain itself is same as the minimal
resolution of X but ambient rational symplectic 4-manifold has changed from

Y ∼= CP2](c+ e+ i− 2)CP2 to Y ](t− i+ 1)CP2 ∼= CP2](c+ e+ t− 1)CP2 so
that homology data of embedding of the linear chain can be given as follows.

(Here E′i denote homology class of exceptional spheres from (t − i + 1)CP2 in

Y ](t− i+ 1)CP2.)

−b1

E1 − · · · − Eb1−1 − e1

−b2
e1 − · · · − eb2

−bi

ee+i−bi−3 − · · · − ee+i−1 − E′1

−bi+1 = −2

E′1 − E′2

−bt = −2

E′t−i − E′t−i+1

· · · · · ·

On the other hand, using operations 3.1 and 3.2 in the previous paragraph,
we could get (e + b1 − 1)-tuple (2, . . . , 2, k1 + 1, k2, . . . , ke, b1) corresponds to
rational homology disk smoothing [b1, . . . , bt] keeping track of homology data

in terms of homology data of (k1, . . . , ke) in CP2](e − 1)CP2. Explicitly, we

have embedding of following linear chain to CP2](e−1)CP2](b1−1)CP2 where

Ei comes from (b1 − 1)CP2 and eij comes from (e− 1)CP2 as before.

1

l

1− 2

l− E1 − E2

−2
· · ·

−2

Eb1−2 − Eb1−1

−k1 − 1 −k2
· · ·

−ke −b1

E1 − · · · − Eb1−1 − ee1

b1 − 2

1

l

1− 2 −2
· · ·

−2 −k1 − 1

Eb1−1 − e11 − · · · − e1k1

· · ·
−kj

ej1
· · ·

−ke

ee1 − · · · − eeke

−b1

The above observation implies that if we rationally blow down [b1, . . . , bt]

from Y ](t− i+ 1)CP2 ∼= CP2](c+ e+ t− 1)CP2, we get a rational symplectic

manifold Y ′′ ∼= CP2](c+e−1)CP2 and homology data of C in Y ′′ can be given
the same as C in Y ′ which means that Y is symplectic deformation equivalent
to Y +. The situation is different for c − b1 + 1 = 1 case, because linear chain
b1 − b2 − · · · − (bi − 1)− (c− b1 + 1) is not minimal. Instead, if we start from
b1−b2−· · ·−(bk−1) which is obtained by contracting (−1) curves successively,
then the similar argument shows that Y and Y + are symplectic deformation
equivalent. In case of i = 1, similar argument as for i ≥ 2 case shows that
b1 = t+ 3 and (b1 − 1)− (c− b1 + 3) is obtained from b1 − · · · − bt − 1− c by
contracting (−1) curves successively so that Y and Y + are symplectic fillings
of the same cyclic quotient surface singularity X. One can easily compute
homology data of C for Y using following homology data for rational homology
disk smoothing of [b1, . . . , bt] = [t + 3, 2, . . . , 2] so that it is same as that of C
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for linear chain (b1 − 1)− (c− b1 + 3) which is equal to Y +.

1

l

1− 2

l− e1 − e2

−2

et − et+1

−t

e1 − · · · − et

t
�

We define the main surgery tool of this paper. Let Z be a symplectic 4-
manifold such that Z = Y ∪ Z0 is decomposed into two parts, where Y is a
tubular neighborhood represented by [b1, . . . , bt]− 1− c and Z0 = Z − Y is the
complement, and they are glued along the same boundary ∂Y = ∂Z0. Let Y +

be the symplectic 4-manifold given in the above Proposition 3.1.

Definition 3.2 (Symplectic flips and antiflips). A symplectic flip is the opera-
tion that transforms Z = Y ∪Z0 to a new symplectic 4-manifold Z+ = Y +∪Z0

where Y + and Z0 are glued along the same boundary. On the other hand, a
symplectic antiflip is the converse operation to a symplectic flip; that is, it
transforms Z+ to Z.

4. Cyclic quotient surface singularities

We prove Theorem 1.1 for cyclic quotient surface singularities; Theorem 4.4.

Let (X, 0) be a cyclic quotient surface singularity and let X̃ → X be its
minimal resolution. Let W be a minimal symplectic filling of X. Let Z → X
be the M -resolution corresponding to W . We denote again by Z a general fiber
of the Q-Gorenstein smoothing of Z if no confusion arises. That is, one can
say that W is symplectic deformation equivalent to Z.

We begin with the simplest case.

Lemma 4.1. If an M -resolution Z of X is of the form [a1, . . . , ar] − 1 −
[b1, . . . , bs], then there is a sequence of rational blow-ups and symplectic flips

that transforms Z into X̃.

Proof. We first rationally blow up Z so that we have

Z ′ := [a1, . . . , ar]− 1− b1 − · · · − bs.

If [a1, . . . , ar] = [a1, 2 . . . , 2], then, by applying a symplectic flip to Z ′, we

get X̃ = (a1 − 1)− (b1 − a1 + 3)− b2 − · · · − bs.
Suppose now that [a1, . . . , ar] 6= [a1, 2, . . . , 2]. After symplectically flipping

Z ′, we have

Z ′+ := a1 − [a2, . . . , ai−1, ai − 1]− (b1 − a1 + 1)− b2 − · · · − bs,

where ai ≥ 3 but ai+1 = · · · = ar = 2.
Note that b1 − a1 + 1 ≥ 1 by Lemma 2.10. If b1 − a1 + 1 6= 1, we rationally

blow up Z ′+ along [a2, . . . , ai−1, ai − 1] so that we get

X̃ = a1 − a2 − · · · − ai−1 − (ai − 1)− (b1 − a1 + 1)− b2 − · · · − bs.
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On the other hand, if b1 − a1 + 1 = 1, then we can repeat symplectic flips
again. This process should stop after finitely many flips because the initial
curve of [b1, . . . , bt] cannot be killed by flips (which are just ordinary blow-
downs in the level of resolutions) by Proposition 2.11. That is, if bj is the
initial curve of [b1, . . . , bt], then its proper transforms after symplectic flips
cannot be a (−1)-curve.

Therefore, after finitely many symplectic flips, we may end up with a con-

figuration Z+ without (−1)-curves. Then we get X̃ by rationally blowing up
Z+ along singularities of class T0 (if any). �

Remark 4.2. Let ai and bj be the initial curves of [a1, . . . , ar] and [b1, . . . , bs],
respectively. The initial curves ai and bj are not killed by symplectic flips

according to Proposition 2.11. So X̃ contains linear chains of the form a1 −
. . .− ai−1 − a′i and b′j − bj+1 − · · · − bs, where a′i and b′j are proper transforms
of ai and bj , respectively. Notice that a′i, b

′
j ≥ 2. In short, any sequence of

symplectic flips that transforms Z to X̃ occurs between ai and bj and do not
alter the other parts.

Similarly, we don’t need the whole curves in [b1, . . . , bt] in order to transform

Z to X̃. That is:

Corollary 4.3. let Z := [a1, . . . , ar]− 1− [b1, . . . , bt] be an M -resolution of a
cyclic quotient surface singularity X. Let bj be the initial curve of [b1, . . . , bt].
Set b′j = bj or bj−1. Let X ′′ is a new cyclic quotient surface singularity obtained
by contracting a1 − · · · − ar − 1− b1 − · · · − b′j and let Z ′′ := [a1, . . . , ar]− 1−
b1 − · · · − b′j. Then there is a sequence of symplectic flips that transforms Z ′′

to the minimal resolution of X ′′.

Proof. A sequence of symplectic flips in the above lemma could not kill the
initial curve bj , that is, the proper transform of the initial curve bj cannot be

a (−1)-curve. So a sequence of symplectic flips that transforms Z to X̃ occurs
from b1 (possibly) up to the curve bj−1 right before the initial curve bj . Hence
the assertion follows. �

Theorem 4.4. Let Z be an M -resolution of a cyclic quotient surface singular-
ity X. Then there is a sequence of rational blow-downs and symplectic antiflips

that transforms X̃ to Z.

Proof. We will prove that there is a sequence of rational blow-ups and sym-

plectic flips that transforms Z to X̃.
Suppose that there are isolated singularities of class T0 on Z, that is, the

singularities are not connected by (−1)-curves with another ones. Then we
rationally blow up Z along the isolated singularities. We now assume that
there are non-isolated singularities of class T0 on Z. Suppose that Z contains
a linear chain

[P1]− 1− · · · − 1− [Pn]
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of non-isolated singularities [Pi] of length n ≥ 2.
During the proof below, we will show that any sequence of rational blow ups

and symplectic flips that shall be introduced does not alter the other parts of Z;
cf. Remark 4.2. So we may assume that Z itself is given by [P1]−1−· · ·−1−[Pn]
for simplicity. Then Z is of the form

Z = L− [a1, . . . , ar]− 1− [b1, . . . , bs],

where L is the (possibly empty) leftmost part of Z.
We first rationally blow up Z along [b1, . . . , bs] to get

Z ′ = L− [a1, . . . , ar]− 1− b1 − · · · − bs.

We claim that there is a sequence of symplectic flips that transforms Z ′ to X̃.
We use an induction on the number n− 1 of singularities of class T0 on Z ′.

Let Y = [a1, . . . , ar]− 1− b1 − · · · − bs. By Corollary 4.3 we symplectically

flip Y (repeatedly if necessary) so that we get a minimal resolution Ỹ that is
obtained by contracting (−1)-curves (successively if necessary) from a1− · · · −
ar − 1− b1 − · · · − bs. Then we have

Z ′′ = L− Ỹ .

If L is empty, then we are done. If L is not empty, Z ′+ is of the form

Z ′′ = L′ − [c1, . . . , ct]− 1− Ỹ .

Note that the minimal resolution Ỹ contains the initial curve of [a1, . . . , ar];
Remark 4.2. So we can repeat the above process to Z ′′ again. Then the
assertion follows by induction. �

4.1. Examples

4.1.1. Let X be a cyclic quotient surface singularity of type 1
37 (1, 10), whose

dual graph of the minimal resolution X̃ is given by 4 − 4 − 2 − 2. Let W
be a minimal symplectic filling of X corresponding to the M -resolution Z =
[5, 2]−1−[6, 2, 2]. The sequence of rational blow-downs and symplectic antiflips
are as follows:

0. The minimal resolution X̃: 4− 4− 2− 2.
1. A symplectic antiflip along 4− 4: [5, 2]− 1− 6− 2− 2.
2. A rational blow-down along 6− 2− 2: [5, 2]− 1− [6, 2, 2].

We need a rational blow-down along 6− 2− 2 in the process to get W from

X̃. It is hidden in the configuration 4− 4, whose symplectic sum gives us the
desired (−6)-curve. So the symplectic antiflip along 4−4 shows us clearly that
there is a configuration 6− 2− 2 where we have to rational blow down.
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4.1.2. Let X be a cyclic quotient surface singularity of type 1
81 (1, 47). The

dual graph of the minimal resolution X̃ is given by 2 − 4 − 3 − 3 − 2. Let W
be a symplectic filling of X corresponding to the M -resolution Z = [2, 5, 3] −
1− [2, 5, 3]− 2.

A sequence which transforms X̃ to W is as follows:

0. The minimal resolution X̃: 2− 4− 3− 3− 2.
1. A symplectic antiflip along 4− 3: 2− [5, 2]− 1− 5− 3− 2.
2. A symplectic antiflip along 2− [5, 2]− 1: [2, 5, 3]− 1− 2− 5− 3− 2.
3. A rational blow-down along 2− 5− 3: [2, 5, 3]− 1− [2, 5, 3]− 2.

We apply only one rational blow-down along 2− 5− 3. Here the (−5)-curve
is given as a symplectic sum of 2 − 4 − 3 as before. But it is not easy to pull

out the (−2)-curve from X̃. Once again, symplectic antiflips put the desired
curve on our hands.

It would be an intriguing problem to compare the above algorithm with that
given in Bhupal-Ozbagci [4, §4.1] where the symplectic filling W is denoted by
W(81,47)((3, 2, 1, 3, 2)).

4.1.3. Let X be a cyclic quotient surface singularity of type 1
45 (1, 26), whose

dual graph of the minimal resolution X̃ is given by 2 − 4 − 4 − 2. Let W
be a minimal symplectic filling of X corresponding to the M -resolution Z =

[2, 5]− 1− [5, 2]. A sequence from X̃ to W is as follows:

0. The minimal resolution X̃: 2− 4− 4− 2.
1. A rational blow-down along 4: 2− [4]− 4− 2.
2. A symplectic antiflip along 2− [4]− 4: [2, 5]− 1− 5− 2.
3. A rational blow-down along 5− 2: [2, 5]− 1− [5, 2].

In this example we need two rational blow-downs: One along 4 and the
other along 5− 2. The first rational blow-down can be easily recognized in the

minimal resolution X̃. But the (−5)-curve for the second one is not found at a
glance from the rationally blown-down 2− [4]− 4− 2. So a symplectic antiflip
again provides us the desired negative curves.

5. Non-cyclic quotient surface singularities

There are four classes of non-cyclic quotient surface singularities: Dihedral
singularities, tetrahedral singularities, octahedral singularities, icosahedral sin-
gularities. Symplectic fillings of dihedral singularities are essentially determined
by that of cyclic quotient surface singularities; cf. Bhupal-Ono [2]. So one may
apply the same algorithm described in the previous section for dihedral singu-
larities. Hence we deal only tetrahedral, octahedral, icosahedral singularities
(denoted by TOI-singularities for short) in this section.

Let Y be a TOI-singularity and let Ỹ be its minimal resolution. For an M -
resolution Z of Y , let Γ be a maximal connected subgraph of the dual graph
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of its minimal resolution Z̃ that contains all the dual graphs of singularities of
class T0 of Z.

Case 1. Γ is linear.
One may apply the same procedure for cyclic quotient surface singularities

described in the previous section.

Γ1 −4

−1

−2 −5 −3

Γ2

−5

−2

−1

−2 −5 −3

Γ3

−4

−1

−4

−1

−2 −5 −3

Γ4 −4

−1

−2 −5 −1 −4

Γ5 −4

−1

−2 −5 −1 −4 −1 −4

Γ6 −4

−1

−2 −5 −3 −1 −4

Γ7

−2

−4 −1 −6 −2 −3

Γ8 −2

−3 −5 −1 −2 −2 −6

Γ9 −2

−5 −2 −1 −5 −1 −4

Figure 1. Non-linear maximal subgraph Γ

−3

−2 −4 −3

antiflip
−4

−1

−2 −5 −3

Q-BLDN
−4

−1

−2 −5 −3

Figure 2. A sequence of rational blow-downs for Γ1

Case 2. Γ is non-linear.
According to the list of P -resolutions of TOI-singularities in HJS-[7], there

are only 9 types of Γ described in Figure 1. Then we provide the desired se-
quence of rational blow-downs case by case in Figure 2–Figure 10. For example,

in case of Γ1, the dual graph of the minimal resolution Ỹ should contain the
subgraph

−3E1

−2 −4

E2

−3
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We first symplectically antiflip E1 and E2. Then we have

−4

−1

−2 −5 −3

We next rationally blow-down 2 − 5 − 3 in the above configuration. Then we
obtain the symplectic filling described by the graph Γ. We summarize this
procedure in Figure 2.

In the following Figures 3–10 we describe the desired sequence of rationally
blow-downs together with symplectic antiflips for each Γi’s.
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antiflip

−5

−2
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−2 −5 −3

Q-BLDN
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−1
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Figure 3. A sequence of rational blow-downs for Γ2
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Figure 4. A sequence of rational blow-downs for Γ3
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Figure 5. A sequence of rational blow-downs for Γ4
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Figure 6. A sequence of rational blow-downs for Γ5
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Figure 7. A sequence of rational blow-downs for Γ6
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Figure 8. A sequence of rational blow-downs for Γ7
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Figure 9. A sequence of rational blow-downs for Γ8
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Figure 10. A sequence of rational blow-downs for Γ9
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