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WEAK CONVERGENCE FOR STATIONARY BOOTSTRAP

EMPIRICAL PROCESSES OF ASSOCIATED SEQUENCES

Eunju Hwang

Abstract. In this work the stationary bootstrap of Politis and Romano

[27] is applied to the empirical distribution function of stationary and as-
sociated random variables. A weak convergence theorem for the station-

ary bootstrap empirical processes of associated sequences is established
with its limiting to a Gaussian process almost surely, conditionally on

the stationary observations. The weak convergence result is proved by

means of a random central limit theorem on geometrically distributed
random block size of the stationary bootstrap procedure. As its statisti-

cal applications, stationary bootstrap quantiles and stationary bootstrap

mean residual life process are discussed. Our results extend the existing
ones of Peligrad [25] who dealt with the weak convergence of non-random

blockwise empirical processes of associated sequences as well as of Shao

and Yu [35] who obtained the weak convergence of the mean residual life
process in reliability theory as an application of the association.

1. Introduction, notations and assumptions

Let {Xi, i ∈ Z} be a stationary sequence of random variables on a probability
space (Ω,F ,P). Let F be the common distribution function of {Xi, i ∈ Z}. The
empirical distribution function Fn of X1, . . . , Xn is defined by

Fn(t) ≡ Fn(t, ω) :=
1

n

n∑
i=1

I(Xi(ω) ≤ t), t ∈ R, ω ∈ Ω,

where I(·) is the indicator function. The empirical process Gn based on the
observations X1, . . . , Xn is defined by

Gn(t) ≡ Gn(t, ω) :=
√
n[Fn(t)− F (t)], t ∈ R.
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Let D[−∞,+∞] be the space of cadlag functions on [−∞,+∞] having fi-
nite limits at ±∞. Suppose that D[−∞,+∞] is equipped with the Skoro-
hod topology. It is known that under some conditions the empirical process
{Gn(t), t ∈ R} converges in distribution, as a random element of D[−∞,+∞],
to a Gaussian process G with mean zero and covariance

(1) Cov(G(t), G(s)) =
∑
i∈Z

Cov(I(X0(ω) ≤ t), I(Xi(ω) ≤ s)), t, s ∈ R.

Many researchers discussed weak convergence of the empirical processes of sta-
tionary sequences with dependence such as mixing, associated or more general
weak dependence. Among them, [21, 35] and [37], in particular, investigated
the weak convergence of the empirical processes of associated sequences.

Moreover, several authors dealt with the weak convergence of bootstrapped
empirical processes of stationary sequences: for example, those in [3, 4, 22, 25,
30,31,34] and [36] developed the consistency of blockwise bootstrap of Künsch
[19] for the empirical processes of strong mixing and associated sequences, while
Politis and Romano [28] established the weak convergence of the stationary
bootstrap empirical processes of strong mixing sequences. [10] studied the
validity of the moving-block bootstrap for the empirical distribution of a short
memory causal linear process based on [9], and [11] discussed the blockwise
bootstrapping empirical distribution of a stationary process with change-point.
As an adopted version of the dependent wild bootstrap of [33], [7] proposed
a model-free bootstrap method for empirical processes and investigated some
applications.

In this paper, we establish weak convergence for a bootstrap version of the
empirical processes of associated random variables, by adopting the stationary
bootstrap of Politis and Romano [27]. {Xi, i ∈ Z} is said to be a sequence of
associated random variables if for every finite subcollection Xi1 , . . . , Xin and
every pair of coordinatewise nondecreasing functions ϕ1, ϕ2 : Rn → R

Cov (ϕ1(Xi1 , . . . , Xin), ϕ2(Xi1 , . . . , Xin)) ≥ 0,

whenever the covariance is defined. The notion of the associated random
variables implies P (S1 ≤ s1, . . . , Sk ≤ sk) ≥

∏k
i=1 P (Si ≤ si) and P (S1 >

s1, . . . , Sk > sk) ≥
∏k
i=1 P (Si > si), where Si = ϕi(Xi1 , . . . , Xin), with nonde-

creasing ϕi, i = 1, . . . , k, for all s1, . . . , sk ∈ R. Interesting applications may be
partial sum, order statistics and multivariate exponential distribution. Time
series models with natural conditions, such as AR models, LARCH(∞) mod-
els with nonnegative coefficients, integer-valued AR models, and more general
integer bilinear models, belong to a class of associated processes. Besides, as-
sociated sequences are widely found in applications of reliability theory and
mathematical physics. In particular, in survival or reliability theory, depen-
dence structure is often represented by the associativity because of strong rel-
evance of positive correlated survival data. We refer to [6] for examples of
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time series models and [5] for introduction to the vast areas of progresses and
systems related to association.

As for the empirical processes of the stationary and associated sequences,
[37] first proved an empirical central limit theorem under condition

Cov(F (X1), F (Xn)) = O(n−b) for some b > 15/2

and next [35] weakened the above condition to b > (3+
√

33)/2. [21] established
a weak convergence theorem for the empirical processes by taking b > 4. In a
meanwhile, blockwise bootstrap version of the empirical processes of the asso-
ciated sequences has been discussed by [25], who adopted a weaker condition of

the summability
∑∞
i=n Cov1/3(X0, Xi) = O(n−γ) for some γ > 0 and applied

the moving-block bootstrap of Künsch [19]. This paper extends the work of [25]
to the stationary bootstrap version of the empirical processes of the associated
sequences, but the proof is not quite straightforward.

For the case of mixing, a weak convergence theorem on the stationary boot-
strap empirical processes of strong mixing observations has been established
by [28]. However, as noted by [21], mixing sequences do not contain associ-
ated ones, and the weak convergence for the stationary bootstrap empirical
processes of the associated sequences has not yet been proved so far to the
best of my knowledge. This paper proves this problem by applying a ran-
dom central limit theorem with random sample size, which is the length of
the blocks in the stationary bootstrap procedure. In the stationary bootstrap,
the weak convergence has been proved only for the strong mixing case by [28],
whereas in the moving-block bootstrap it has been done by many authors in
[3,4,22,25,30,31,34,36], dealing with various weakly dependent stationary ob-
servations under various conditions including mixing and association, as men-
tioned above. Therefore, our work is a new and novel result as well as yields a
significant contribution in the areas of both the stationary bootstrap and the
empirical process.

The stationary bootstrap empirical process of the associated sequences is
defined as

(2) G∗n(t) :=
√
n(F ∗n(t)− Fn(t)), t ∈ R,

where F ∗n(t) := 1
n

∑n
i=1 I(X∗i ≤ t) is the empirical distribution function of the

stationary bootstrap sample {X∗i , i = 1, . . . , n}. The stationary bootstrap of
Politis and Romano [27] is a powerful block-resampling technique with random
block length following a geometric distribution with parameter p, which tends
to zero as sample size goes to infinity. The main goal of this paper is to
establish the weak convergence of G∗n(t) in (2) of the associated sequence to
the Gaussian process G(t) in (1) almost surely, conditionally on the stationary
observations. In this paper, to show the validity of the stationary bootstrap, a
random central limit theorem is established and applied with random sample
size following the geometric distribution. A different condition on the rate of
parameter p of the geometric distribution from that in [28] is required. For
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recent references of the stationary bootstrap, see [14] for strong consistency of
the stationary bootstrap mean under the ψ-weak dependence of [8], and see
[13,16–18] for statistical applications on time series.

The stationary bootstrap sample {X∗i , i = 1, . . . , n} is generated as fol-
lows. Let {X1, . . . , Xn} be observed with sample size n. So as to construct
blocks with random length, which follows the geometric distribution in the
stationary bootstrap procedure, a periodic expansion {Xni : i ≥ 1} is first
made by setting Xni := Xj where 1 ≤ j ≤ n is such that i = qn + j for
some integer q. Consider a block B(i, `) = {Xni, . . . , Xn(i+`−1)}, consisting
of ` consecutive observations starting from Xni for i, ` ∈ {1, 2, . . . }. Boot-
strap observations by means of the stationary bootstrap are obtained by se-
lecting random blocks {B(Ik, Lk), k = 1, 2, . . . } where I1, I2, . . . , are i.i.d.
discrete uniform random variables on {1, . . . , n} with P ∗(I1 = i) = 1/n,
i = 1, . . . , n, and L1, L2, . . . are i.i.d. geometric random variables with pa-
rameter p ∈ (0, 1), P ∗(L1 = `) = p(1 − p)`−1, ` = 1, 2, . . . . The collections
{I1, I2, . . . } and {L1, L2, . . . } are independent of {X1, . . . , Xn} and as well as
of each other. Arranging elements in blocks B(I1, L1), . . . , B(Iκ, Lκ) in a series
where κ := inf{ k ≥ 1 : L1+· · ·+Lk ≥ n}, and deleting the last L1+· · ·+Lκ−n
elements, the stationary bootstrap sample {X∗1 , . . . , X∗n} is chosen. Note that
{X∗1 , . . . , X∗n} is stationary, conditionally on {X1, . . . , Xn}. Also note that the
expected block length EL1 is 1/p and L1 + · · · + Lκ−1 < n ≤ L1 + · · · + Lκ,

and thus κ/(np)
p−→ 1, more specifically κ = np + Op(np). We assume that

p = pn goes to 0 as n → ∞. For notational simplicity, we suppress depen-
dence of the variables {I1, I2, . . . }, {L1, L2, . . . } and of the parameter p on n.
Here and in the following, P ∗, E∗ and V ar∗ denote the conditional probability,
the conditional expectation and the conditional variance, respectively, given
X1, . . . , Xn.

A main advantage of the stationary bootstrap is that the resampled pseudo-
time series is stationary due to geometrically distributed random block size.
This property might be a natural requirement, as pointed out by Politis and
Romano [27], for reconstructing statistics or quantity of interest related to the
original stationary data as well as for applying theories with conditions for
stationary weakly dependent time series. Indeed, Politis and Romano [27] have
proposed this remarkable resampling technique to overcome the lack of the
moving-block bootstrap of Künsch [19] whose resampled pseudo-time series
is not stationary. Hence we employ the stationary bootstrap procedure to
reconstruct a bootstrap version of empirical process and furthermore bootstrap
versions of empirical quantile and mean residual life process as applications. In
particular, in the case of positive correlated data of association, the stationarity
of the resampled data should be ensured to possess the original probabilistic
properties.

We make the following assumptions:
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(A1): {Xi, i ∈ Z} is a stationary and associated sequence of random variables
with continuous bounded density and mean zero, and satisfying

(3)

∞∑
i=n

Cov1/3(X0, Xi) ≤ O(n−γ) for some γ > 0.

(A2): For parameter p of the stationary bootstrap block length, we assume
p = cn−% for % ∈ ( 1

2 , 1) and for some constant c > 0, so that p → 0, np → ∞
and
√
np→ 0 as n→∞. We denote it by p ∼ n−%.

By the condition (3) and by the fact that for two associated random variables
X and Y each having a continuous bounded density, sups,t(P (X ≤ s, Y ≤
t)−P (X ≤ s)P (Y ≤ t)) ≤ C ·Cov1/3(X,Y ) for some generic C ≥ 0, (see [32]),
we have

(4) sup
n>m

∣∣∣∣∣
n∑

i=m

Cov (I(s < X0 ≤ t), I(s < Xi ≤ t))

∣∣∣∣∣ ≤ Cm−γ .
Peligrad [25] proved the validity of the moving-block bootstrap empirical

processes under condition (4) for a stationary sequence and in turn under (3) for
the associated sequence. This work extends the result of [25] to the stationary
bootstrap with random blocks. In the work of [25], instead of (A2), some
appropriate conditions on the fixed length of blocks have been assumed: see
(2.1) and (2.8) of [25].

In proving the weak convergence theorem of the stationary bootstrap empir-
ical processes of associated sequences, a random central limit theorem, which is
a modification of [15], is applied on the random block sample, whose length fol-
lows the geometric distribution. In [28] the weak convergence of the stationary
bootstrap empirical process of the strong mixing sequences was established for
np2 →∞ as n→∞ under some mixing conditions, (see Theorem 3.1 of [28]).
However, a strong mixing case can be verified with condition np2 → 0 in (A2)
by applying the random central limit theorem of [20] in a similar way to that
of the present work. In other words, the validity of the stationary bootstrap
empirical process for the mixing can be shown in a wider range of the geometric
parameter p by means of the technique of this work.

As its statistical applications, stationary bootstrap empirical quantiles and
stationary bootstrap mean residual life processes are constructed and their
asymptotic results are investigated. Quantile estimations play a key role not
only in the financial risk management such as value-at-risk but are also used for
prediction intervals of financial assets. Mean residual life functions and mean
residual life processes are important characteristics in survival or reliability
theory, in whose areas the dependence structure is frequently represented by the
association. Estimates of the mean residual life functions are approached via
empirical distributions and thus are, in this work, furthermore approximated
by the stationary bootstrap empirical processes.
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The remainder of the paper is organized as follows: In Section 2, a main
result and its related lemmas are stated, and in Section 3 applications are
presented. All proofs are carried out in Section 4. Some existing lemmas are
given in Section 5.

2. Main results

The following theorem states the validity of the stationary bootstrap for
empirical processes with stationary associated observations.

Theorem 2.1. Assume that (A1) and (A2) hold. Then as n→∞, we have

G∗n(·) d−→ G(·)

P ∗-almost surely in the Skorohod topology on D[−∞,∞] where G∗n(·) is defined
in (2) and G(·) is the Gaussian process with mean zero and covariance structure
in (1).

As discussed in Shao and Yu [35], who established weak convergence the-
orems for weighted empirical processes of mixings and associated sequences,
the theorem proved for the uniform empirical process denoted by α∗n(t) :=√
n(F ∗n(Q(t)) − t), 0 ≤ t ≤ 1, where Q(t) = F−1(t) = inf{x : F (x) ≥ t}, will

hold automatically for G∗n(·); α∗n(t) =
√
n
[
1
n

∑n
i=1 I(U∗i ≤ t)− t

]
by letting

Ui = F (Xi) and U∗i = F (X∗i ), i = 1, 2, . . . , n. Thus we may assume that the
marginal law is the uniform law over [0, 1], and the proof of Theorem 2.1 will
be given for the uniform distribution.

The result of Theorem 2.1 follows from Lemmas 2.2–2.5 below. Contrary
to the case of non-random block length bootstrapping, our Theorem 2.1 is
involved with a random central limit theorem with geometrically distributed
random size. The random central limit theorem provides a main tool and a
novel contribution in proving the weak convergence in the present work. Lemma
2.2 below presents a random central limit theorem, which is used in proving our
main results. For Lemma 2.2, we need the following discussion for notations.

For a given function h : R → R, let hni and h∗i denote hni := h(Xni) and
h∗i := h(X∗i ) just for simplicity, i = 1, 2, . . . , and let h0 = E[hni] for each
i by the stationarity. For instance, if h(x) = x, the identity function, then
h0 = µ ≡ E[X1]; if h(x) = (x − µ)2, then h0 = V ar(X1); and if h(x) =
I(x ≤ t) for fixed t, then h0 = F (t). Note that h0 is the limit in probability of
1
Lk

∑Ik+Lk−1
i=Ik

hni as n → ∞, (p → 0), for each k = 1, 2, . . . , κ. In the proofs
of results related to Lemma 2.2, the function h is an indicator function; for
example, hni ≡ h(Xni) = I(s < Xni ≤ t)− (t− s) for fixed 0 ≤ s < t ≤ 1. [25]
used the central limit theorem of the sequence {hni} with a fixed bootstrap
block length, instead of the geometrically distributed random length Lk in
Lemma 2.2(b). This is a main difference between the blockwise bootstrap of
[25] and the stationary bootstrap in this work in proving the validity of the
weak convergence. In the followings, I and L are the discrete uniform and
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geometric random variables, that is, they have the same distributions as those
of Ik and Lk, respectively.

Lemma 2.2. Assume that (A1) and (A2) hold. We assume that h is a function
such that a central limit theorem of {hni} holds with a non-random sample size
`, that is,

1√
`

∑̀
i=1

(hni − h0)
d−→ Zh as `→∞,

where Zh is a normal random variable with mean zero and variance σ2
h :=

V ar(hn1). Then
(a) we have

1

L

I+L−1∑
i=I

(hni − h0) =
√
pZh +O(p) almost surely (a.s.)

as n→∞.
(b) Conditionally on X1, . . . , Xn, we have

1

n

n∑
i=1

(h∗i − h̄) =
1

κ

κ∑
k=1

(
1

Lk

Ik+Lk−1∑
i=Ik

(hni − h0)

)
+ o(1/

√
n) a.s.

as n→∞, where h̄ := 1
n

∑n
i=1 hni and κ := inf{ k ≥ 1 : L1 + · · ·+ Lk ≥ n}.

Lemma 2.3. Assume that (A1) and (A2) hold. Let

(5) HI,L ≡ HI,L(s, t) :=

I+L−1∑
j=I

{I(s < Xnj ≤ t)− (F (t)− F (s))} .

(a) We have

(6)
1

L
HI,L =

√
pZH +O(p) a.s.

as n→∞, where ZH is a normal random variable with mean zero and variance

σ2
H(s, t) := lim

n→∞

1

n
V ar

(
n∑
i=1

I(s < Xi ≤ t)

)
.

(b) We have

(7) sup
s,t

1

L

[
H2
I,L(s, t)− EH2

I,L(s, t)
]

= O(n−g) a.s.

for some g > 0, as n→∞.

Lemma 2.4. Assume that (A1) and (A2) hold. Let v2n(s, t) := V ar∗(G∗n(t)−
G∗n(s)). Then we have

(8) v2n(s, t) ≤ K(|t− s|b + n−c)
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for some constants K > 0, 0 < b < 1 and c > 0, and

(9) lim
n→∞

v2n(s, t) exists a.s..

Lemma 2.5. Assume that (A1) and (A2) hold. Then (8) in Lemma 2.4 implies
that G∗n(·) is tight, that is, for every ε > 0 and η > 0 there exist 0 < δ < 1 and
N0 such that for every n ≥ N0

P ∗

(
sup
|t−s|<δ

|G∗n(t)−G∗n(s)| ≥ η

)
≤ ε.

In proving the main result in Theorem 2.1, we need Lemmas above and
so their proofs will be given prior to that of our main theorem. Lemma 5.1
in Section 5 is a modification of [15] as a special case of the geometrically
distributed random sample size. Under assumption (A1) and (A2), Lemma
5.1 implies the result of Lemma 2.2 and in turn of Lemma 2.3(a). Arguments
similar to those of [25], but with the geometric random block length, are used in
proving Lemma 2.3(b). Results in Lemma 2.2(a) and Lemma 2.3 imply Lemma
2.4. (8) in Lemma 2.4 implies the tightness of Lemma 2.5, and finally, (9) in
Lemma 2.4 along with the tightness implies the main result of Theorem 2.1.

Remark 2.6. As for the weak convergence of the stationary bootstrap empiri-
cal process for the strong mixing, [28] discussed the strong mixing case along
with limit theorems of weakly dependent stationary Hilbert space valued ran-
dom variables. In their bootstrap central limit theorem of Theorem 3.2, the
geometric parameter p of the block length was assumed to be np2 → ∞ as
n→∞ under strong mixing condition

∑∞
i=1 αi <∞ where αis are the mixing

coefficients. In this work with condition np2 → 0 in (A2), we can verify the
weak convergence of the stationary bootstrap empirical process for the strong
mixing sequences on condition

∑∞
i=n αi = O(n−γ) for some γ > 0, as given in

[25]. Its proof can be done in the same way by applying the random central
limit theorem of [20] and by following the spirit of Theorem 2.3 of [25].

In next section, applications of the stationary bootstrap empirical processes
are addressed in two aspects: empirical quantiles and mean residual life func-
tions.

3. Applications

Now we give statistical applications of the main result by developing the
stationary bootstrap empirical quantiles and the stationary bootstrap mean
residual life functions.

3.1. Stationary bootstrap empirical quantiles

In this subsection, we discuss consistency and asymptotic normality of the
stationary bootstrap quantiles of the associated random variables {Xi, i ∈ Z}
with distribution F . Let tq be the q-quantile of F for q ∈ (0, 1), i.e., tq :=
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Q(q) = F−1(q) = inf{x : F (x) ≥ q}. Let t̂n,q := F−1n (q) = inf{x : Fn(x) ≥ q}
and t∗n,q := F ∗−1n (q) = inf{x : F ∗n(x) ≥ q}.

First we have the asymptotic normality of empirical quantiles t̂n,q of the
associated sequence under an additional assumption.

(A3): F is continuously differentiable at tq and F ′(tq) > 0.

Lemma 3.1. Assume (A1) and (A3) hold. Then as n→∞ we have

t̂n,q − tq =
q − Fn(tq)

F ′(tq)
+ op(n

−1/2) and
√
n(t̂n,q − tq)

d−→ N(0, σ2
q ),

where σ2
q = V ar(G(tq))/(F

′(tq))
2.

By the weak convergence theorem of the empirical process for the stationary
and associated sequences under (A1), the proof can be given similarly to that of
sample quantiles of weakly dependent sequences. The following theorem states
the validity of the stationary bootstrap quantile estimates.

Theorem 3.2. Assume that (A1)–(A3) hold. Then as n→∞ we have

(a) t∗n,q − t̂n,q =
Fn(tq)−F∗n(tq)

F ′(tq)
+ op(n

−1/2),

(b)
√
n(t∗n,q − t̂n,q)

d∗−→ N(0, σ2
q ).

The quantile estimation plays an important role in financial analysis because
useful measures such as value-at-risk and forecast intervals of financial assets
are estimated via quantile estimates. The dependent wild bootstrap quantiles
(cf. [33]) has been recently developed by [7], who have discussed the validity
of the dependent wild bootstrap for empirical processes and some applications.
Theorem 3.2(a) is proved by applying the main result of Theorem 2.1, and then
Theorem 3.2(b) straightforwardly follows.

3.2. Stationary bootstrap mean residual life processes

Dependence structure in reliability theory is often represented by associated
sequences of random variables. In this subsection the mean residual life func-
tion in reliability is discussed by means of the stationary bootstrap empirical
function. Shao and Yu [35] studied the strong consistency and asymptotic
normality of the mean residual life processes of reliability theory as an applica-
tion of the weighted empirical processes of associated sequences. Under their
assumptions, the stationary bootstrap validity of the weighted empirical pro-
cesses can be obtained in a similar way as above. Indeed, the positive weight
function on (0, 1) that is used in the weighted empirical process of [35] is un-
related with the random sequence. So our main result in Theorem 2.1 holds
for even the weighted empirical processes under appropriate conditions on the
weight function. As pointed out by [35], a direct application of the weighted
empirical process is to develop the weak convergence for the integral function-
als of the empirical process, and in turn to obtain that of the mean residual
life process. According to Theorem 2.1 we may have the consistency of the
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stationary bootstrap weighted empirical processes for the associated sequence
of uniform distributed random variables {Ui, i ∈ Z}.

Let w : (0, 1)→ (0,∞) be a positive weight function with satisfying w(t) ≥
c(t(1−t))ν0 for some c > 0, ν0 > 0, and let αn(t) =

√
n
[
1
n

∑n
i=1 I(Ui ≤ t)− t

]
,

0 ≤ t ≤ 1. And its stationary bootstrap version α∗n(t) is defined in the same
way with {U∗i , i = 1, . . . , n}. By Theorem 2.1, we have

(10) α∗n(·)/w(·) d−→ Gα(·)/w(·),
P ∗-almost surely in the Skorohod topology on D[0, 1] where Gα(·) is the Gauss-
ian process in (1) with Ui in place ofXi. Similarly to Theorem 2.4 and Corollary
2.4 of [35], we can obtain the weak convergence of the integral functionals as
follows: for 0 ≤ t ≤ 1,

(11)

∫ t

0

α∗n(s)dQ(s)
d−→
∫ t

0

Gα(s)dQ(s),

P ∗-almost surely in the Skorohod topology on D[0, 1] where Q(t) = F−1(t) =
inf{x : F (x) > t}. Going one step further, this weak convergence is applied to
the mean residual life function in reliability theory and the Gaussian approxi-
mation of the mean residual life function is proved.

The expected additional lifetime given survival until time x is a function
of x, called the mean residual life. If X is a nonnegative random variable
representing the life of a component having distribution function F , called the
lifetime distribution function, then the mean residual life function at age x ≥ 0
is defined as

MF (x) := E(X − x|X > x) =
1

1− F (x)

∫ ∞
x

(1− F (t)) dt.

It is assumed that F is continuous and EX < ∞. The empirical counterpart
of MF is given by

Mn(x) := MFn(x) =
1

1− Fn(x)

∫ ∞
x

(1− Fn(t)) dt

and its stationary bootstrap version is constructed as

M∗n(x) := MF∗n
(x) =

1

1− F ∗n(x)

∫ ∞
x

(1− F ∗n(t)) dt.

[35] proved the strong consistency and normal approximation for the mean
residual life process Mn −MF as an application of weak convergence for the
weighted empirical process of the associated sequences. Here the stationary
bootstrap version of the mean residual life process is developed under their
conditions.

Additionally we have the following assumption for the stationary associated
sequence of lifetime, {Xi, i ≥ 1}, with the lifetime distribution function as in
[35].

(A4): Cov(F (X1), F (Xn)) = O(n−ν−ε) for some ν > (3+
√

33)/2 and ε > 0.
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Notice that (A4) and other related conditions, for example,
∞∑
n=1

1

n2
Cov(Xn,

n∑
i=1

Xi) <∞,

on the covariance rates in [35, 37], imply (A1). Thus under (A4) our all main
results also hold, and (A4) is needed for their results about the mean residual
life processes.

Let TF := inf{t : F (t) = 1} and TFn := inf{t : Fn(t) = 1}. Also, let

Wn(x) :=
√
n(Mn(x)−MF (x)) and W ∗n(x) :=

√
n(M∗n(x)−Mn(x))

for 0 ≤ x < min{TF , TFn}. The normalized mean residual life process is written
as

Wn(x) =

√
n

1− Fn(x)

(
−
∫ ∞
x

(Fn(t)− F (t)) dt+MF (x)(Fn(x)− F (x))

)
=

1

1− Fn(x)

(
−
∫ 1

F (x)

αn(t)dQ(t) +MF (x)αn(F (x))

)
.

Theorem 3.2 of [35] says that if T < TF , then Wn(·) d−→ W (·) in the Skoro-
hod topology on D[0, T ], where

(12) W (x) :=
1

1− F (x)

(
−
∫ 1

F (x)

Gα(t)dQ(t) +MF (x)Gα(F (x))

)
.

Following theorem states the strong consistency and the Gaussian approxi-
mation of the stationary bootstrap mean residual life processes.

Theorem 3.3. Assume that (A2) and (A4) hold. If T < min{TF , TFn}, then as

n→∞ we have (a) sup0≤x≤T |M∗n(x)−Mn(x)| a.s.−→ 0 and (b) W ∗n(·) d−→ W (·),
P ∗-almost surely in the Skorohod topology on D[0, T ].

Remark 3.4. Along with the mean residual lifetime, the mean past lifetime is
also an important measure in reliability and survival analysis. The mean past
lifetime function of X is defined by

KF (x) := E(x−X|X < x) =
1

F (x)

∫ x

0

F (t) dt, 0 < x <∞

and its empirical counterpart is given by

Kn(x) :=

∫ x
0
Fn(t) dt

Fn(x)
I(X1:n ≤ x), 0 < x <∞,

where X1:n denotes the first order statistics among X1, . . . , Xn. Properties and
estimation of the mean past lifetime function have been discussed by [1], while
strong consistency and asymptotic normality of the mean past lifetime process
has been established by [24]. As another statistical application of the stationary
bootstrap empirical processes, we can explore the stationary bootstrap mean
past lifetime process and show its Gaussian approximation.
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Furthermore, one of interesting applications is bivariate or multivariate quan-
tile residual life that [23] recently proposed. As pointed out by [23], the concept
of bivariate quantile residual life for two possibly dependent components may
be useful in aging analysis and classifications, and estimation of this measure is
an open problem. See Section 5 of [23]. It will be also interesting to use the sta-
tionary bootstrap method for the estimation and to compare its performance
with other methods.

4. Proofs

Proof of Lemma 2.2. For (a), we see that by [15] (whose result is rewritten in
Lemma 5.1 of the Appendix), we have for each j = 1, 2, . . . , n,

1√
L

j+L−1∑
i=j

(hni − h0)
d−→ Zh,

where Zh is given in Lemma 2.2 with mean zero and variance V ar(hn1), and
Zh is independent of j, because {hni : i = 1, 2, . . . } is a stationary sequence in
the context of stationary bootstrap with hni = h(Xni). Thus, for x ∈ R,

P

(
1√
L

I+L−1∑
i=I

(hni − h0) ≤ x

)

=

n∑
j=1

P (I = j)P

 1√
L

j+L−1∑
i=j

(hni − h0) ≤ x

∣∣∣∣∣∣ I = j


=

n∑
j=1

1

n
[P (Zh ≤ x) + o(1)] = P (Zh ≤ x) + o(1)→ P (Zh ≤ x) as n→∞.

By Lemma 5.1 we may have P (|
√
pL − 1| ≥ δ∗n) → 0 for any nonincreasing

sequence δ∗n tending to 0. Let Bn = {|
√
pL − 1| < δ∗n}, noting Bn ⊇ Bn+1

and P (Bn) → 1 as n → ∞, and let Am = {|
√
pL − 1| < ε∗m,∀n ≥ m},

where ε∗m = max{δ∗n : n ≥ m}, noting
⋂∞
n=mBn ⊂ Am. Thus we have 1 =

limn→∞ P (Bn) ≤ limm→∞ P (Am), that is, limm→∞ P (Am) = 1. Choose δ∗n =
p1/2+ε for ε > 0, then limm→∞ P (|1 −

√
pL|/√p < pε, ∀n ≥ m) = 1. By

Theorem 7.6 of [26], (1 −
√
pL)/

√
p → 0 a.s., and thus we have 1/

√
L =√

p+O(p) a.s. as n→∞. From this, we now show

(13)
1

L

I+L−1∑
i=I

(hni − h0) =
√
pZh +O(p) a.s..

To do this, letting Zn = 1√
L

∑I+L−1
i=I (hni − h0), and Xn = 1/

√
L, xn =

√
p +

O(p) with Xn − xn → 0 a.s., we verify that |XnZn − xnZh| → 0 a.s.. For any
ε1 > 0, let Cm = {|XnZn − xnZh| < ε1,∀n ≥ m} and Dm = Ccm, complement
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of Cm. By Theorem 7.6 of [26], it suffices to show that limm→∞ P (Dm) = 0.
Consider intervals Im = [−2m, 2m], and choose ε1 = 2mε for ε > 0. We have

P (Dm) ≤ P (|XnZn − xnZn| > ε1/2 for some n ≥ m)

+ P (|xnZn − xnZh| > ε1/2 for some n ≥ m)

=: P (Gm,1) + P (Gm,2).

We observe

P (Gm,1) = P (Gm,1 ∩ {|Zn| ∈ Im}) + P (Gm,1 ∩ {|Zn| ∈ Icm})

≤ P

(
|Zn|
2m
|Xn − xn| > ε/2, |Zn| ∈ Im for some n ≥ m

)
+ P (|Zn| ∈ Icm for some n ≥ m)

≤ P (|Xn − xn| > ε/2, |Zn| ∈ Im for some n ≥ m)

+ P (|Zn| ∈ Icm for some n ≥ m) .

Both probabilities above tend to zero as m→∞. Next, by Chebyshev inequal-
ity,

(Gm,2) = P (|xnZn − xnZh| > 2mε/2 for some n ≥ m)

≤ x2n
4m−1ε2

E
[
|Zn − Zh|2

]
= O(p/4m)

which converges to zero as m→∞. Hence limm→∞ P (Dm) = 0 and the desired
result in (13) is obtained.

For (b), note that by [14], who discussed the strong consistency of the sta-
tionary bootstrap of weak dependent sequences including associated processes,
we have

1√
n

n∑
i=1

(h∗i − h̄)
d−→ Zh, P

∗-almost surely.

It suffices to show that
√
n
[
1
κ

∑κ
k=1 ∆̄k

]
has the same limiting normality, let-

ting ∆k :=
∑Ik+Lk−1
i=Ik

(hni−h0) and ∆̄k := 1
Lk

∆k, which are sum and average,

respectively, of functionals of observations in block B(Ik, Lk) for k = 1, . . . , κ.

By Lemma 2.2(a) we have ∆̄k := 1
Lk

∑Ik+Lk−1
i=Ik

(hni − h0) =
√
pZh,k + O (p)

a.s, where {Zh,k, k = 1, 2, . . . , κ} are normal random variables with mean zero
and variance σ2

h. Note that {Zh,k, k = 1, 2, . . . , κ} are (conditionally) inde-
pendent because {∆̄k : k = 1, 2, . . . , κ} are (conditionally) independent, (given
{X1, . . . , Xn}), by the independence of {(Ik, Lk) : k = 1, 2, . . . }. Thus

√
n

[
1

κ

κ∑
k=1

∆̄k

]
=

√
n

κ

κ∑
k=1

(
√
pZh,k +O (p)) =

1√
κ

κ∑
k=1

Zh,k +O(
√
np), a.s.

since κ = np + O(
√
np). Under condition

√
np → 0 in (A2), the desired

asymptotic normality is obtained. �
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Proof of Lemma 2.3. As mentioned above we assume that X0 has the uniform
distribution on [0, 1] and rewrite

HI,L ≡ HI,L(s, t) =

I+L−1∑
j=I

{I(s < Xnj ≤ t)− (t− s)} .

Asymptotic normality of 1
LHI,L is straightforwardly given by Lemma 2.2(a).

By (1) and by the stationarity,

σ2
H(s, t) =

∞∑
i=−∞

Cov
(
I(s < X0 ≤ t), I(s < X|i| ≤ t)

)
= lim
n→∞

1

n
V ar

(
n∑
i=1

I(s < Xi ≤ t)

)
exists for every s and t, and thus (a) is obtained.

For (b), let m = mn = [p−ε] be the integer part of p−ε for some ε > 1/2.
For fixed s and t, let u and v be two integers such that

u− 1

m
< s ≤ u

m
≤ v − 1

m
< t ≤ v

m
.

Define DI,L ≡ DI,L(s, t) by

DI,L := HI,L −HI,L,m,

where

HI,L,m ≡ HI,L

( u
m
,
v

m

)
:=

I+L−1∑
j=I

{
I
( u
m
< Xnj ≤

v

m

)
− (v − u)

m

}
.

Using inequality 2|xy| ≤ 1
ax

2 + ay2 with 0 < a < 1, we have the following
inequalities a.s.

(14) H2
I,L ≤ D2

I,L +H2
I,L,m + 2|DI,LHI,L,m| ≤ (1 +a)H2

I,L,m +

(
1 +

1

a

)
D2
I,L

and

(15) H2
I,L ≥ D2

I,L+H2
I,L,m−2|DI,LHI,L,m| ≥ (1−a)H2

I,L,m+

(
1− 1

a

)
D2
I,L.

By subtracting the expectation of (15) from (14), then we have

H2
I,L − EH2

I,L

≤ (1 + a)H2
I,L,m +

(
1 +

1

a

)
D2
I,L − (1− a)EH2

I,L,m −
(

1− 1

a

)
ED2

I,L

≤ (1 + a)(H2
I,L,m − EH2

I,L,m) + 2aEH2
I,L,m +

2

a
(D2

I,L + ED2
I,L).

By subtracting the expectation of (14) from (15), then we have

H2
I,L − EH2

I,L
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≥ (1− a)H2
I,L,m +

(
1− 1

a

)
D2
I,L − (1 + a)EH2

I,L,m −
(

1 +
1

a

)
ED2

I,L

≥ (1− a)(H2
I,L,m − EH2

I,L,m)− 2aEH2
I,L,m −

2

a
(D2

I,L + ED2
I,L).

Hence we have, a.s.,

1

L
|H2

I,L − EH2
I,L|

≤ 2

(
1

L
|H2

I,L,m − EH2
I,L,m|+

a

L
EH2

I,L,m +
1

aL
(D2

I,L + ED2
I,L)

)
=: 2(ξ1 + ξ2 + ξ3).

In order to prove (7) of Lemma 2.3(b), we show ξi = O(n−gi) a.s. for some
gi > 0, for each i = 1, 2, 3.

First we observe ξ2 := a
LEH

2
I,L,m = a

LV ar[HI,L,m]. Note that, with q =
1− p,

V ar[HI,L,m] = V ar

I+L−1∑
j=I

{
I
( u
m
< Xnj ≤

v

m

)
− (v − u)

m

}
=

n∑
i=1

∞∑
`=1

pq`−1

n
V ar

i+`−1∑
j=i

{
I
( u
m
< Xnj ≤

v

m

)
− (v − u)

m

} .
By Lemma 5.2, it follows that

V ar

i+`−1∑
j=i

{
I
( u
m
< Xnj ≤

v

m

)
− (v − u)

m

} ≤ K (` ∣∣∣∣v − um

∣∣∣∣b + `1−c

)

for some K > 0, 0 < b < 1 and c > 0. Thus,

V ar[HI,L,m] ≤ K
n∑
i=1

∞∑
`=1

pq`−1

n

(
`

∣∣∣∣v − um

∣∣∣∣b + `1−c

)

= K

∞∑
`=1

pq`−1

(
`

∣∣∣∣v − um

∣∣∣∣b + `1−c

)
(16)

≤ K

(
1

mb

∞∑
`=1

pq`−1`+

∞∑
`=1

pq`−1`1−c

)
= K

(
pbε−1 + pc−1

)
since m = [p−ε] and using

∑∞
`=1 q

`−1`a = O(1/pa+1) for a > 0. Hence, ξ2 =
a
LV ar[HI,L,m] ≤ K(pbε−1 + pc−1)(p + o(p)) = O(pmin(bε,c)) = O(n−g2)

p−→ 0
a.s. for some g2 > 0 with condition of p ∼ n−% in (A2).
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Secondly, we consider ξ1 := 1
L |H

2
I,L,m − EH2

I,L,m|. In order to show ξ1 =

op(n
−g1) for some g1 > 0, we see that by Markov Inequality, for δ1 > 0,

P

(
ng1

L
|H2

I,L,m − EH2
I,L,m| > δ1

)
≤ ng1

δ1
E

[
1

L
|H2

I,L,m − EH2
I,L,m|

]
.

We apply the Taylor expansion of function f(x, y) = y/x to obtain Y/X =
EY/EX−(X−EX)EY/(EX)2+(Y−EY )/EX+Op((X−EX)+(Y−EY ))2 for
two random variables X and Y . Note that higher order terms of Y −EY in the
O-term become zero a.s. since fyy = 0. Taking expectation yields that E[Y/X]
is approximated by EY/EX + O(E([X − EX]2)EY/(EX)3). Set X = L and
Y = |H2

I,L,m − EH2
I,L,m|, the last term is

ng1

δ1

(
1

EL
E
[
|H2

I,L,m−EH2
I,L,m|

]
+O

(
E[L− p−1]2

(EL)3
E
[
|H2

I,L,m−EH2
I,L,m|

]))
and it is equal to O(ng1pV ar[HI,L,m]). By (16), we obtain that

P

(
ng1

L
|H2

I,L,m−EH2
I,L,m|>δ1

)
≤O(ng1p[pbε−1 +pc−1])=O(ng1−bε%+ng1−c%)

for 0 < b < 1 and c > 0, using condition of p ∼ n−%. The last O-term tends to
zero if we choose g1 so that g1 < min{bε%, c%}, for which value of g1, we thus
have ξ1 = o(n−g1) a.s..

Finally, we observe ξ3 := 1
aL (D2

I,L + ED2
I,L). We show that 1

LD
2
I,L =

O(n−g3) a.s. for some g3 > 0. Recall

DI,L = HI,L −HI,L,m

=

I+L−1∑
j=I

{
I(s < Xnj ≤ t)− I

( u
m
< Xnj ≤

v

m

)}
−
(
t− s− v − u

m

)
L.

By the choices of u and v, we have

I
(
u

m
< Xnj ≤

v − 1

m

)
≤ I (s < Xnj ≤ t) ≤ I

(
u− 1

m
< Xnj ≤

v

m

)
and then

−I
(
v − 1

m
< Xnj ≤

v

m

)
≤ I (s < Xnj ≤ t)− I

( u
m
< Xnj ≤

v

m

)
≤ I

(
u− 1

m
< Xnj ≤

u

m

)
.

Hence

I (s < Xnj ≤ t)− I
( u
m
< Xnj ≤

v

m

)
≤ max

u

∣∣∣∣I(u− 1

m
< Xnj ≤

u

m

)∣∣∣∣
and thus

DI,L ≤ max
u

∣∣∣∣∣∣
I+L−1∑
j=I

I
(
u− 1

m
< Xnj ≤

u

m

)∣∣∣∣∣∣+
1

m
L.
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Since

HI,L

(
u− 1

m
,
u

m

)
=

I+L−1∑
j=I

I
(
u− 1

m
< Xnj ≤

u

m

)
− 1

m
L

we have

DI,L ≤ max
u

∣∣∣∣HI,L

(
u− 1

m
,
u

m

)∣∣∣∣+
2

m
L.

Using (a+ b)2 ≤ 2(a2 + b2), it follows that

1

L
D2
I,L ≤

2

L
max
u

H2
I,L

(
u− 1

m
,
u

m

)
+

8

m2
L

which is written as

2

L
max
u

[
H2
I,L

(
u− 1

m
,
u

m

)
− EH2

I,L

(
u− 1

m
,
u

m

)]
+

2

L
max
u

EH2
I,L

(
u− 1

m
,
u

m

)
+

8

m2
L.

Its first and second terms can be shown to be O(n−g3) similarly to the argu-
ments as in ξ1 and ξ2. To see the third term, recalling L = 1/p + o(1/p) a.s.
and m ∼ p−ε for some ε > 1/2 and p ∼ n−%, L/m2 = O(n−%(2ε−1)) → 0 a.s..
Therefore ξ3 = O(n−g3) for some g3 > 0, and we complete the proof of (7)
in the case of the uniform distribution. In the case that X0 has an arbitrary
continuous distribution F (x), the same discussion as in [2], p. 197, [22], p. 993,
[25], pp. 895–896, can be done. �

Proof of Lemma 2.4. For fixed s < t,

v2n(s, t) = V ar∗(G∗n(t)−G∗n(s))

= V ar∗
[√
n(F ∗n(t)− Fn(t))−

√
n(F ∗n(s)− Fn(s))

]
= V ar∗

[
1√
n

n∑
i=1

I(s < X∗i ≤ t)−
1√
n

n∑
i=1

I(s < Xi ≤ t)

]
=: V ar∗[S∗n − Sn],

where

(17) Sn ≡ Sn(s, t) :=
1√
n

n∑
i=1

{I(s < Xi ≤ t)− (t− s)},

(18) S∗n ≡ S∗n(s, t) :=
1√
n

n∑
i=1

{I(s < X∗i ≤ t)− (t− s)}.

Note that

E∗S∗n =
√
nE∗{I(s < X∗1 ≤ t)− (t− s)}

=
√
n

n∑
i=1

∞∑
`=1

1

n
pq`−1E∗[I(s < X∗1 ≤ t)− (t− s)|L1 = `, I1 = i]
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=
√
n

n∑
i=1

∞∑
`=1

1

n
pq`−1{I(s < Xi ≤ t)− (t− s)} = Sn.

We observe E∗[S∗n − Sn]2. Let

(19) ∆̃k :=
1

Lk
HIk,Lk =

1

Lk

Ik+Lk−1∑
j=Ik

{I(s < Xnj ≤ t)− (t− s)}.

Note that {∆̃k : k = 1, 2, . . . , κ} are independent, conditionally on {X1, . . . ,
Xn}, i.e., under P ∗. By Lemma 2.2(b), conditionally on X1, . . . , Xn, we have

(20) S∗n − Sn =

√
n

κ

κ∑
k=1

∆̃k + o(1) a.s..

Thus, using the (conditional) independence of {∆̃k: k = 1, . . . , κ}, we have

E∗[S∗n − Sn]2 =
n

κ2

κ∑
k=1

E∗∆̃2
k + o(1) =

n

κ
E∗∆̃2

1 + o(1) a.s.,

where we can take (conditional) expectation to squares of both sides in (20) by
the dominated convergence theorem with some dominated function, which is
an integrable square function of the normal random variable by Lemma 2.2(a).
We write

E∗∆̃2
1 = E∗

[
1

L2
H2
I,L

]
= E∗

[
1

L2
(H2

I,L − EH2
I,L)

]
+ E

[
1

L2
EH2

I,L

]
and we will show that

(21)
n

κ

1

L2
[H2

I,L − EH2
I,L]

p−→ 0,

(22) lim
n→∞

n

κ
E

[
1

L2
EH2

I,L

]
exists.

To verify (21), using Lemma 2.3(b), for some g > 0, and using 1/L = p+ o(p)
a.s., we have

n

κ

1

L2
[H2

I,L − EH2
I,L] =

n

κ

1

L
O(n−g) =

n

κ
(p+ o(p))O(n−g) a.s.

which is O(n−g)(1 + o(1))→ 0 a.s. since κ = np+O(
√
np).

To verify (22), we show that

(23)
1

L
H2
I,L −

1

pL2
EH2

I,L = o(1) a.s..

The left-hand side of (23) can be written as, using pL = 1 + o(1) a.s.,

pLH2
I,L − EH2

I,L

pL2
=

(1 + o(1))H2
I,L − EH2

I,L

L(1 + o(1))

=
(H2

I,L − EH2
I,L)

L
+ o(H2

I,L/L) + o(1) a.s.
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which tends to zero by Lemma 2.3(b), and thus (23) is shown.
Note that by Lemma 2.3(a),

σ2
H(s, t) = lim

n→∞
V ar

(
1√
L
HI,L

)
= lim
n→∞

E

(
1

Lk
H2
Ik,Lk

)
.

Therefore, by (23) we have

σ2
H(s, t) = lim

n→∞

1

p
E

[
1

L2
EH2

I,L

]
and in (22),

lim
n→∞

n

κ
E

[
1

L2
EH2

I,L

]
= lim
n→∞

n

κ
p[σ2

H(s, t) + o(1)] = σ2
H(s, t).

Hence (22) holds, and therefore

(24) lim
n→∞

v2n(s, t) = σ2
H(s, t).

Also, by Lemma 5.2, (8) holds. �

Proof of Lemma 2.5. In the proof of Lemma 2.4, (see (6), (19) and (20)), we
note that

G∗n(t)−G∗n(s) =

√
n

κ

κ∑
k=1

∆̃k + o(1) a.s.,

and
√
n
κ ∆̃k = O((np)−1/2) a.s.. Applying Bennett’s inequality (see [29], p. 192),

for every η > 0 we have

P ∗(|G∗n(t)−G∗n(s)| > η) ≤ P ∗
(∣∣∣∣∣
√
n

κ

κ∑
k=1

∆̃k

∣∣∣∣∣ > η

)

≤ 2 exp

{
−1

2

η2

C(|t−s|b+n−c)
Λ

(
η(np)−1/2

C(|t−s|b+n−c)

)}
,

where Λ(·) is a continuous and decreasing function with Λ(0+) = 1 as in
Bennett’s inequality of [29], p. 192, and C is a generic constant. If |t− s| < δ,
then the last expression cannot exceed

2 exp

{
−1

2

η2

C(δb + n−c)
Λ

(
ηn−

1
2 (1−%)

C(δb + n−c)

)}
for p ∼ n−% with 1/2 < % < 1, which in turn is bounded above by

2 exp

{
−1

2

η2

C(δb + n−c)
λ

}
≤ 2 exp

{
−1

4

η2

Cδb
λ

}
if λ ≤ Λ

(
ηn−

1
2
(1−%)

C(δb+n−c)

)
and if δb > n−c. That is, since Λ(·) is continuous and

decreasing,

Λ−1(λ) ≥ ηn−
1
2 (1−%)

C(δb + n−c)
≥ ηn−

1
2 (1−%)

2Cδb
.
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Hence, we choose δ satisfying δb > max{ηn− 1
2 (1−%)/(2CΛ−1(λ)), n−c} so that

P ∗(|G∗n(t)−G∗n(s)| > η) ≤ 2 exp

{
−1

4

η2

Cδb
λ

}
.

This is a similar result to that of Lemma 4.1 of [22], p. 990, and the key step
in applying a restricted chaining argument given in Theorem VII.26 of [29]
applied with the semimetric d0(s, t) = C|t − s|b/2 and the covering number
N(δ, d0, T0) = 1+[(δ/C)−2/b] for 0 < b < 1 and T0 = [0, 1]. Following the same
arguments as in [22], pp. 990–992, and [25], p. 886, (in the proof of Proposition

3.2), it can be shown that lim supn→∞ P ∗
[
supt∈[0,1] |G∗n(t)−G∗n(s)| > η

]
= 0

a.s., which is the same form as in Lemma 4.3 of [22]. The desired result is
given by applying Theorem VII.26 of [29], p. 160. Its detailed proof is omitted
because the discussion follows in the same way. �

Proof of Theorem 2.1. By Lemma 2.5, the tightness holds under the conditions.
The proof is completed by verifying convergence of the finite-dimensional dis-
tributions. Note that

σ2
H(s, t) = lim

n→∞
V ar

(
1√
n

n∑
i=1

I(s < Xi ≤ t)

)
= lim
n→∞

V ar(Gn(t)−Gn(s))

and σ2
H(s, t) = σ2

H(0, t) + σ2
H(s, 0) − 2γ(s, t) where γ(s, t) = Cov(G(s), G(t)).

Also, v2n(s, t)=v2n(0, t)+v2n(s, 0)−2Γn(s, t) where Γn(s, t)=Cov∗(G∗n(t), G∗n(s)).
By (24) in the proof of Lemma 2.4, the limits of v2n(s, t) and the two variance
terms as n → ∞ exist a.s., and thus the limit of the covariance term above
exists a.s. and limn→∞ Γn(s, t) = γ(s, t). For a positive integer J , let 0 ≤ t1 <
t2 < · · · < tJ ≤ 1 and let a1, a2, . . . , aJ be real numbers. It will be shown that
as n→∞,

J∑
j=1

ajG
∗
n(tj)

d−→
J∑
j=1

ajG(tj).

We write

J∑
j=1

ajG
∗
n(tj) =

√
n

 1

n

n∑
i=1

J∑
j=1

ajI(X∗i ≤ tj)−
1

n

n∑
i=1

J∑
j=1

ajI(Xi ≤ tj)


=:
√
n[Ȳ ∗n − E∗Y ∗1 ],

letting Y ∗i =
∑J
j=1 ajI(X∗i ≤ tj) and Ȳ ∗n =

∑n
i=1 Y

∗
i /n. By the central limit

theorem of the stationary sequence, the asymptotic normality of
∑J
j=1 ajG

∗
n(tj)

holds with asymptotic variance

σ2
J = lim

n→∞
V ar∗

 J∑
j=1

ajG
∗
n(tj)
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= lim
n→∞

 J∑
j=1

a2jV ar
∗(G∗n(tj)) + 2

J−1∑
j=1

J∑
j′=j+1

Cov∗(G∗n(tj), G
∗
n(tj′))


which is equal to, by the above argument,

J∑
j=1

a2jV ar(G(tj)) + 2

J−1∑
j=1

J∑
j′=j+1

Cov(G(tj), G(tj′)) = V ar

 J∑
j=1

ajG(tj)

 .
Thus the desired convergence of the finite-dimensional distributions is obtained.

�

Proof of Theorem 3.2. To prove Theorem 3.2(a), we first show that

(25) t∗n,q − tq =
q − F ∗n(tq)

F ′(tq)
+ op(n

−1/2).

To show (25), we define ζ∗n =
√
n[t∗n,q − tq], and

η∗n =

√
n

F ′(tq)
[q − F ∗n(tq)] =

√
n

F ′(tq)
[F (tq)− F ∗n(tq)],

ψ∗t,n =

√
n

F ′(tq)
[F (tq + t/

√
n)− F ∗n(tq + t/

√
n)].

By Theorem 2.1,
√
n[Fn(tq) − F ∗n(tq)] converges to a normal limit, and thus

{
√
n[(q−Fn(tq)) + (Fn(tq)−F ∗n(tq))] : n ∈ N} is tight and hence the sequence

{η∗n : n ∈ N} is also tight. We show that

(26) ψ∗t,n − η∗n
p∗−→ 0.

It suffices to show that

E
[
E∗
(√
n[F (tq + t/

√
n)− F ∗n(tq + t/

√
n)− F (tq) + F ∗n(tq)]

)2]→ 0.

Its left-hand side is written as

nE[F (tq + t/
√
n)− Fn(tq + t/

√
n)− F (tq) + Fn(tq)]

2

+ nE
[
E∗
{
Fn(tq + t/

√
n)− F ∗n(tq + t/

√
n)− Fn(tq) + F ∗n(tq)

}2]
=: Π(1)

n + Π(2)
n .

In order to show Π
(2)
n → 0, we observe

Π(2)
n = E

[
E∗
{
S∗n(tq, tq + t/

√
n)− Sn(tq, tq + t/

√
n)
}2]

,

where Sn(·, ·) and S∗n(·, ·) are as in (17) and (18), and by (8)

E∗
{
S∗n(tq, tq + t/

√
n)− Sn(tq, tq + t/

√
n)
}2

= vn(tq, tq + t/
√
n) ≤ K2(|t/

√
n|b + n−c)
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which tends to zero as n → ∞. The convergence of Π
(1)
n to zero can be done

similarly due to the weak convergence of the empirical processes of the associ-
ated sequence. Therefore, the convergence in (26) holds.

It is easily shown that {ζ∗n ≤ t} = {ψ∗t,n ≤ tn} where tn =
√
n

F ′(tq)
[F (tq +

t/
√
n)− q] and that tn → t as n→∞. By these facts and by (26), we have

lim
n→∞

P (ζ∗n ≤ t, η∗n ≥ t+ ε) = lim
n→∞

P (ψ∗t,n ≤ tn, η∗n ≥ t+ ε)

≤ lim
n→∞

P (ψ∗t,n ≤ t+ ε/2, η∗n ≥ t+ ε) = 0.

Thus ζ∗n − η∗n
p∗−→ 0 by Lemma 5.3, and (25) is obtained.

Now we write, by Lemma 3.1 and by (25),

t∗n,q − t̂n,q = (t∗n,q − tq)− (t̂n,q − tq)

=
q − F ∗n(tq)

F ′(tq)
+
q − Fn(tq)

F ′(tq)
+ op(n

−1/2)

=
Fn(tq)− F ∗n(tq)

F ′(tq)
+ op(n

−1/2)

and thus the desired result in (a) is obtained. Theorem 3.2(b) is straightfor-
wardly given by Theorem 2.1 and Theorem 3.2(a). �

Proof of Theorem 3.3. Noticing that

(27)

M∗n(x)−Mn(x)

=
1

1− F ∗n(x)

[
−
∫ ∞
x

(F ∗n(t)− Fn(t))dt+Mn(x)(F ∗n(x)− Fn(x))

]
we first show

(28) sup
0<t<∞

|F ∗n(t)− Fn(t)| a.s.−→ 0

and

(29)

∫ ∞
0

|F ∗n(t)− Fn(t)| dt a.s.−→ 0

in (conditional) probability P ∗.
For (28), we use

|F ∗n(t)− Fn(t)| ≤

∣∣∣∣∣ 1n
n∑
i=1

I(X∗i ≤ t)−
1

n

κ∑
k=1

Ik+Lk−1∑
i=Ik

I(Xni ≤ t)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
κ∑
k=1

Ik+Lk−1∑
i=Ik

{I(Xni ≤ t)− F (t)}

∣∣∣∣∣+
∣∣∣Fn(t)− sκ

n
F (t)

∣∣∣(30)

=: J (1)
n + J (2)

n + J (3)
n ,

where sκ := L1 + · · ·+ Lκ.
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For J
(1)
n , by the same argument of Step 1 in the proof of Theorem 3.2 of

[14], pp. 493–494, we write

J (1)
n =

1

n

[
sκ∑

i=n+1

(I(Xni ≤ t)− Fn(t))

]
+

1

n
(sκ − n)Fn(t)

we may show

1

n

I+R−1∑
j=I

(I(Xni ≤ t)− Fn(t))
a.s.−→ 0 and

1

n
R · Fn(t)

a.s.−→ 0,

where R = Lκ − R1 with R1 = n − sκ−1, noting that R, conditionally on
(R1, sκ−1) has a geometric distribution with mean 1/p by the memoryless prop-
erty. For ε > 0,

P

 1

n

∣∣∣∣∣∣
I+R−1∑
j=I

(I(Xni ≤ t)− Fn(t))

∣∣∣∣∣∣ > ε


=

1

n

n∑
i=1

∞∑
r=1

pqr−1P

 1

n

∣∣∣∣∣∣
i+r−1∑
j=i

(I(Xni ≤ t)− Fn(t))

∣∣∣∣∣∣ > ε


and

P

 1

n

∣∣∣∣∣∣
i+r−1∑
j=i

(I(Xni ≤ t)− Fn(t))

∣∣∣∣∣∣ > ε


≤ 1

ε2n2
E

∣∣∣∣∣∣
i+r−1∑
j=i

I(Xni ≤ t)− rFn(t)

∣∣∣∣∣∣
2

= O(r/n2).

Thus, using
∑∞
r=1 q

r−1ra = O(1/pa+1), a ≥ 1,

P

 1

n

∣∣∣∣∣∣
I+R−1∑
j=I

(I(Xni ≤ t)− F (t))

∣∣∣∣∣∣ > ε

 = O(1/(n2p)) = O(n−2+%)

for 1 < 2− % < 3/2, by (A2): p ∼ n−% for % ∈ ( 1
2 , 1).

Also, similarly we have

P

(
1

n
R · Fn(t) > ε

)
=

∞∑
r=1

pqr−1P

(
1

n
rFn(t) > ε

)

≤
∞∑
r=1

pqr−1
r2

ε2n2
V ar(Fn(t))

= O(1/(n3p2)) = O(n−3+2%), 1 < 3− 2% < 3.
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Therefore, we have
∞∑
n=1

P ∗(J (1)
n > ε) ≤

∞∑
n=1

O(n−2+%) +

∞∑
n=1

O(n−3+2%) <∞.

By Borel-Cantelli Lemma, the desired almost sure convergence of J
(1)
n holds.

For J
(2)
n , we consider a sequence m = mn with m → ∞ and m/(np) → 1

as n → ∞. For k = 1, 2, . . . ,m, let Hk :=
∑Ik+Lk−1
i=Ik

{I(Xni ≤ t) − F (t)}.
Note that {Hk, k = 1, . . . ,m} are independent and Hk = HIk,Lk(−∞, t) where
HIk,Lk(·, ·) is given as in (5). For ε > 0 and δ > 0

P

(∣∣∣∣∣ 1n
m∑
k=1

Ik+Lk−1∑
i=Ik

{I(Xni ≤ t)− F (t)}

∣∣∣∣∣ > ε

)

= P

(∣∣∣∣∣ 1n
m∑
k=1

Hk

∣∣∣∣∣ > ε

)
(31)

≤ 1

ε2+δn2+δ
E

∣∣∣∣∣
m∑
k=1

Hk

∣∣∣∣∣
2+δ

≤ m1+δ/2

ε2+δn2+δ
E |HI,L(−∞, t)|2+δ .

Using 1 = 1/(pL) + o(1) a.s. and H̃ := HI,L(−∞, t) = O(1/
√
p) a.s.,

H̃ =
1

pL
H̃ + o(H̃) =

1

pL
H̃ + o(1/

√
p) =

1

p

[
1

L
H̃ + o(

√
p)

]
a.s.,

E|H̃|2+δ =
1

p2+δ
E

∣∣∣∣ 1LH̃ + o(
√
p)

∣∣∣∣2+δ =
1

p1+δ/2
E |Z0 +O(

√
p) + o(1)|2+δ

by Lemma 2.3(a), where Z0 is a normal random variable with mean zero
and variance σ2

0(t) = limn→∞
1
nV ar (

∑n
i=1 I(Xi ≤ t)). Thus the right-hand

side of (31) is O((m/n2p)1+δ/2) = O(n−1−δ/2). Hence
∑∞
n=1 P (J

(2)
n > ε) =∑∞

n=1O(n−1−δ/2) < ∞. By Borel-Cantelli Lemma, the desired almost sure

convergence of J
(2)
n holds.

For J
(3)
n =

∣∣Fn(t)− sκ
n F (t)

∣∣ which is less than or equal to |Fn(t)− F (t)| +∣∣F (t)− sκ
n F (t)

∣∣. By Theorem 2.1 of [37], we have supx |Fn(t)− F (t)| a.s.−→ 0 as

n → ∞ under condition (A4). Also, we may write
∣∣F (t)− sκ

n F (t)
∣∣ = (sκ −

n)/nF (t) = (R/n)F (t) which converges to zero a.s.. We complete the proof of
(28).

For (29), let I∗n :=
∫∞
0
|F ∗n(t) − Fn(t)| dt. Since X∗i is nonnegative and

E∗X∗1 = 1
n

∑n
i=1Xi

a.s.−→ EX < ∞ by the SLLN, and noting that P ∗(X∗1 >

t) = E[E∗(I(X∗1 > t)|I] = 1
n

∑n
i=1 I(Xi > t) = 1−Fn(t), we may have E∗X∗1 =∫∞

0
P ∗(X∗1 > t)dt =

∫∞
0

(1 − Fn(t)) dt < ∞. Hence, for arbitrary small ε > 0

we can choose βn > 0, which is depending on Fn(·), so large that
∫∞
βn

(1 −
Fn(t)) dt < ε/2. Let β = lim supn→∞ βn. then we have

∫∞
β

(1− Fn(t)) dt < ε/2

for sufficiently large n.
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Let A
(1)
n :=

∫ β
0
|F ∗n(t) − Fn(t)| dt, A(2)

n :=
∫∞
β
|1 − F ∗n(t)| dt and A

(3)
n :=∫∞

β
|1 − Fn(t)| dt. Then we have I∗n ≤ A

(1)
n + A

(2)
n + A

(3)
n and A

(3)
n < ε/2.

Observe that, by (28)

A(1)
n =

∫ β

0

|F ∗n(t)− Fn(t)| dt ≤ β sup
0<t<∞

|F ∗n(t)− Fn(t)| a.s.−→ 0.

For A
(2)
n =

∫∞
β

(1−F ∗n(t)) dt = 1
n

∑n
i=1

∫∞
β

I(X∗i > t) dt, let h∗i (β) =
∫∞
β

I(X∗i >
t) dt, hni(β) =

∫∞
β

I(Xni > t) dt and h̄(β) = 1
n

∑n
i=1 hni(β). We have

A(2)
n =

1

n

n∑
i=1

h∗i (β) =
1

n

n∑
i=1

[h∗i (β)− h̄(β)] + h̄(β).

Note that h̄(β) = 1
n

∑n
i=1 hni(β) = 1

n

∑n
i=1

∫∞
β

I(Xni > t) dt = A
(3)
n , and thus

h̄(β) < ε/2. Thus, finally it suffices to show that 1
n

∑n
i=1[h∗i (β)− h̄(β)]

a.s.−→ 0.
Its proof follows the same arguments as that of (28). In the proof of (28)

with J
(1)
n , J

(2)
n and J

(3)
n above in (30), I(X∗i ≤ t) and I(Xni ≤ t) are replaced

by h∗i (β) and hni(β), respectively. In other words, 1
n

∑n
i=1[h∗i (β) − h̄(β)] is

decomposed by three terms as follows and it is bounded above by∣∣∣∣∣ 1n
n∑
i=1

h∗i (β)− 1

n

κ∑
k=1

Ik+Lk−1∑
i=Ik

hni(β)

∣∣∣∣∣+

∣∣∣∣∣ 1n
κ∑
k=1

Ik+Lk−1∑
i=Ik

{hni(β)− E[hn1(β)]}

∣∣∣∣∣
+
∣∣∣h̄(β)− sκ

n
E[hn1(β)]

∣∣∣ =: J
(1)
h,n + J

(2)
h,n + J

(3)
h,n

and thus in the same way as above, the almost sure convergences of J
(1)
h,n, J

(2)
h,n

and J
(3)
h,n can be obtained. Therefore, lim supn→∞ I∗n < ε a.s. for all small ε > 0

and we complete the proof of (29).
If x < T = min{TF , TFn}, then Fn(x) 6= 1, Fn(x) < 1, that is, for some

i0 ∈ {1, 2, . . . , n}, I(Xi0 ≤ x) = 0, Xi0 > x. Also, P ∗(X∗1 = Xi0) = 1
n and

thus F ∗n(x) = 1
n

∑n
i=1 I(X∗i ≤ x) 6= 1 a.s. since I(X∗i ≤ x) =

∑n
j=1 I(X∗i =

Xj)I(Xj ≤ x), which is zero with probability 1
n . By (28) and (29) along with

1− F ∗n(x) for x < T , the result of (a) holds.
For (b), first note that α∗n(F (t)) =

√
n
[
1
n

∑n
i=1 I(U∗i ≤ F (t))− F (t)

]
=

G∗n(t) and we write, from (27) and by change of variables,

W ∗n(x) =
1

1− F ∗n(x)

[
−
∫ ∞
x

G∗n(t)dt+Mn(x)G∗n(x)

]
=

1

1− F ∗n(x)

[
−
∫ ∞
x

α∗n(F (t))dt+Mn(x)α∗n(F (x))

]
=

1

1− F ∗n(x)

[
−
∫ 1

F (x)

α∗n(s)dQ(s) +Mn(x)α∗n(F (x))

]
.



262 E. HWANG

By the result in (a), by Theorem 3.1 of [35], by Theorem 2.1 of [37], and by
(10) and (11), the last expression converges to W (x) in (12) in distribution,
and the proof of (b) is completed. �

5. Appendix

This appendix presents some existing lemmas required in proving our results.

Lemma 5.1 ([15]). Let {L = L(n) : n = 1, 2, . . . } be a sequence of geometri-
cally distributed random variables with parameter p = pn, satisfying condition
(A2) on the rate of p, and let {εt : t = 1, 2, . . . } be a strictly stationary and
associated sequence of random variables satisfying condition (A1). Then, as
n→∞, we have

P (|pnL(n)− 1| > δn)→ 0

for any nonincreasing sequence δn of positive numbers tending to 0, and

1√
L(n)

L(n)∑
t=1

εt
d−→ N(0, σ2

ε),

where σ2
ε = limn→∞ V ar(

∑n
t=1 εt)/n <∞.

As mentioned above, Lemma 5.1 is a modification of the random central
limit theorem of [15] as a special case with a geometrically distributed random
sample size. Its proof can be given straightforwardly from Assumption 2(b)
and Theorem 3.1 of [15].

Lemma 5.2 ([25]). Assume that {Xi} is a stationary sequence of random
variables uniformly distributed on [0, 1], with the condition (4). Then for every
0 ≤ s < t ≤ 1 and every n ≥ 1, there exist a positive constant K > 0, 0 < b < 1
and c > 0 such that

1

n
V ar

(
n∑
i=1

I(s < Xi ≤ t)

)
≤ K(|t− s|b + n−c).

See Eq. (4.15) in Lemma 4.3 and its proof of [25], p. 893.

Lemma 5.3 ([12]). Let {ζn, n ∈ N} and {ηn, n ∈ N} be two sequences of
random variables such that (i) the sequence {ηn, n ∈ N} is tight, and (ii) for a
real number t, and ε > 0

lim
n→∞

P (ζn ≤ t, ηn ≥ t+ ε) = 0 and lim
n→∞

P (ζn ≥ t+ ε, ηn ≤ t) = 0.

Then we have ζn − ηn
p−→ 0 as n→∞.
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