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MONOTONICITY CRITERION AND FUNCTIONAL
INEQUALITIES FOR SOME ¢-SPECIAL FUNCTIONS

KHALED MEHREZ

ABSTRACT. Our aim in this paper is to derive several new monotonicity
properties and functional inequalities of some functions involving the g-
gamma, g-digamma and g-polygamma functions. More precisely, some
classes of functions involving the g-gamma function are proved to be log-
arithmically completely monotonic and a class of functions involving the
g-digamma function is showed to be completely monotonic. As applica-
tions of these, we offer upper and lower bounds for this special functions
and new sharp upper and lower bounds for the g-analogue harmonic num-
ber harmonic are derived. Moreover, a number of two-sided exponential
bounding inequalities are given for the ¢g-digamma function and two-sided
exponential bounding inequalities are then obtained for the g-tetragamma
function.

1. Introduction

The Euler’s gamma function is defined for positive real numbers x by

I‘(x)z/ t* e tdt,
0

and its g-analogue, I';(z), introduced by Jackson. The ¢-gamma function is
defined for x > 0 by

o0

1 —gitt

(1) @)= (- [[ {5 0<a <1,
=0
and
g @e=D e ]__q_(j"l‘l)
(2) L@)=a-0"" 7 [ ;= 5o 0> L
§=0

The g-gamma function I';(z) has the following basic property:
(3) ry(2) = q T2 (2).
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134 K. MEHREZ

The close connection between gamma and ¢-gamma functions is given by the
limit relations

(4) lim Ty(z) = lim T'y(z) =T(z).

The most important function related to the gamma function is the digamma (or
psi) function which is defined as the logarithmic derivative of gamma function,

namely, ¥(z) = I;((f)). The derivatives 1™ n =1,2,3,... are known to be the
polygamma functions in the literature. Particularly, ¢/’ and " are called the
trigamma and tetragamma functions, respectively. The ¢-digamma function
14, the g-analogue of the psi or digamma function 1 is defined for 0 < ¢ < 1

by

0 k+x
q
bolw) = —log(1 = q) +loga Y 1~
(5) -

kx

o0
= —log(1 —gq) +1ong I
k=1

For ¢ > 1 and x > 0, the ¢g-digamma function 1), is defined by

g~ (ko)
ul) = —loglg — 1) +loga |2 — 5 - Zf;ﬁﬁj
(6)
— loglg— 1) +loga [o— 1~ >
= —log(q 8¢ |T— 5 2T |

From the previous definitions, for a positive z and ¢ > 1, we get

7) (o) = 2 los(g) + v (2.

Similarly, the derivative 1y, 1y, . .. are called the g-polygamma functions. In
particular the functions +; and vy are called g-trigamma and g-tetragamma
functions, respectively. For some basic properties for the g-gamma, g-digamma
and g-polygamma functions, we refer [1-5,8,12,13,15] and references therein.
The dilogarithm function Lis(z) defined for complex argument z by

“log(l —t
(8) Liy(2) = —/ %dt, 2 ¢ (0,00).
0
Simple computation shows that

( Lis(1 — qx))' _ 2" log(q)
log(q) L—gq* =

(9)
Moreover, we have [8]

. Lig(1—¢")
1 lim —— 7/ — _
(10) ql—% log(q)
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Each of the following definitions will be used in the remainder of our investi-
gation.

Definition. A real valued function f, defined on an interval I, is called com-
pletely monotonic, if f has derivatives of all orders and satisfies

where N the set of all positive integers and Ny = NU {0} .

The celebrated Bernstein Characterization Theorem gives a necessary and
sufficient condition that the function f should be completely monotonic for
0 < x < oo is that

(12) fa) = / e,

where p(t) is non-decreasing and the integral converges for 0 < x < co.

Definition. A non-negative function f : (0,00) — [0,00) is a Bernstein func-
tion, if it is infinitely differentiable and satisfies

(~1)" L™ (z) >0, n € N,z > 0.

Definition. A positive function f is said to be logarithmically completely
monotonic on an interval I if its logarithm log f satisfies

(=" (logf(x))(n) >0, zel,neN.

In [6, Theorem 4], it was found and verified once again that a logarithmi-
cally completely monotonic function must be completely monotonic, but not
conversely.

The paper is organized as follows: In Section 2, we prove new monotonicity
properties and functional inequalities of some functions involving the g-gamma
function. In particular, two classes of functions associated the g-gamma func-
tion are proved to be logarithmically completely monotonic and the mono-
tonicity of ratios for a class of functions related to the g-gamma function is
showed. As consequences of them we establish various new sharp upper and
lower bounds for the g-gamma function. In Section 3, new complete mono-
tonicity properties are obtained for a class of function related to the g-digamma
functions. As applications, a functions class of Bernstein and logarithmically
completely monotonic functions related to the g-gamma function are investi-
gated. In addition, sharp bounds for the ¢-digamma and ¢-trigamma functions
are derived. Moreover, new sharp upper and lower bounds for the Harmonic
number and g-analogue of Harmonic number. In Section 4, two sets of two-
sided bounding inequalities are given for the ¢-digamma and g-tetragamma
functions.
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2. Monotonicity properties and functional inequalities for the
g-gamma function

Motivated by the definition of the g-gamma function (1) we have

(1 _ q)27:r O 1— qj+1
1 r = . 1
(3) q(x) l—qx jl;[ll_q]+x70<q< 9

combining with the recurrence formula

_1-¢

(14) Dyl +1) = =

Fq (I)a
we get the following inequality
(15) (1-q)'" <Tylz+1)

for 0 <z <1 and 0 < g < 1. Motivated by the above inequality we determine
the real numbers « and 8 which are independent of x such that we have the
following inequalities

(16) a(l—q)' " <Ty(e+1) <L -q)'7,

holds true for all 0 < x <1 and 0 < ¢ < 1, where a and /3 are the best possible
constants.

Theorem 2.1. Let 0 < g < 1, and 0 < x < 1. Then the inequalities (16) hold

true, with the best possible constants a« =1 and 5 = ﬁ. Furthermore, the left
hand side of inequalities (16) is reversed when x > 1.

Proof. We define the function S,(z) by
Sy(x)=(1—-q)* 'Ty(z+1), 2>0,0<qg< 1.

Differentiating S,(x) gives

Si(@) = (1— )" [T + 1) + log(1 — )Ty (w + 1)]
(17) — (1= @'yl + Dby (e + 1) + log(1 — )

— (1= )" Ty + )W,() (say).
By using the definition of g-digamma function (5), we have
ktz+1

— 4
(18) Wy(z) = log(q) Z 1 — ghratt <0
k=0

for all 0 < ¢ < 1. This implies that the function S,(x) is decreasing on (0, c0)
and consequently the following inequalities
Sq(1) < Sg(x) < 54(0),

holds true for all 0 < z < 1 and 0 < ¢ < 1. So (16) holds true. Moreover, if
x > 1, then S;(z) < S,(1) and consequently the left hand side of inequalities
(16) is reversed when « > 1. The proof of Theorem 2.1 is completes. O
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Moreover, by using the definition of the ¢g-gamma function (2) when ¢ > 1,
we easily get the following inequality

(x—=1)(z+2)

(19) Tolz+1)>(q-1)""¢ = ,¢>1

In addition, the above inequality is reversed when x > 1. The question that
arises: prove the best constants p and v such that the following inequalities

(200 pg-1'""q

are true for all ¢ > 1 and 0 < z < 1. An affirmative answer to this question is
proved in the following Theorem.

(z—1)(z+2) (@—1)(2+2)
2 2

<Ty(z+1) <wv(g— 1)1714 )

Theorem 2.2. Let g > 1. The inequalities (20) hold true for all 0 < z < 1,
with the best possible constants p =1 and v = qﬁ—l. In addition, the left hand
side of inequalities (20) is reversed when x > 1.

Proof. Let ¢ > 1. We consider the function Ty (x) defined by

(A—z)(x+2)
asfqu

Ty(z)=(¢—1) Lz +1),2>0.

Hence

Ty(x) = Ty(x) [1he(x + 1) + log(q — 1) — (z + 1/2) log(q)]

@) — T, ()W (2) (say).

By using the definition (6), we get
0 k(z41)
q
(22) Wj(x) = —log(q) Y ——— >0

— gk
k=0 1 q

for ¢ > 1. This implies that the function T (x) is decreasing on (0, c0). Hence,
T,(1) < Tg(x) < T,(0), and thus the proof of the inequalities (20) is done, such

that the constants y =1 and v = qﬁ—l are the best possible. O

Theorem 2.3. Let 0 < ¢ < 1. Then the function x,(x) defined by
(23) Xq(x) = (1= q)°Ty(x + 1),

logarithmically completely monotonic on (0,00). Furthermore, the following in-
equalities

T (z+1)]77 1

T =y

25 q} <——. 0<y<u,
(25) {Fq(y‘f'l) 1-¢q Y

hold true for all 0 < g < 1. In addition, the inequality (25) is sharp.
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Proof. We set

¢q(x) =log x4(z) = xlog(l — q) +logT'y(x + 1).
Therefore,
dy(x) = Wy(z), and ¢g(z) = ¥y(z +1).

Since the g-trigamma function () is completely monotonic on (0,00) for
0 < g < 1, we deduce that the function qb;’ () is completely monotonic on
(0, 00). In addition, the function ¢} (z) < 0 by (18), and consequently the result
is obvious. Now, we proved the inequality (24). It is clear that the function
Xq(z) maps to (0,00) to (0,1) and it is completely monotonic on (0,00). On
the other hand, according to Kimberling [8], if a function f, defined on (0, c0),
is continuous and completely monotonic and maps (0, o) into (0,1), then log f
is super-additive, that is for all x,y > 0 we have

fl@+y) = f@)fy).

Therefore we conclude the asserted inequality (24). As the function x,(z) is
logarithmically completely monotonic, x4(z) is decreasing on (0, c0), then for
0 <y <xwe get

logly(z +1) —logTy(y + 1) < (x — y)log(1/(1 - q)),

which is equivalent to (25). Now, we define the function

1
Ty(z+1) | =—v .
[ﬁéﬂﬂ if z#y,

exp(y(x +1)) if z=y.

(26) Kq(z,y) =

From (5), we find that

(27) lim ¢4(z) =—log(l—¢q), 0<g<1,
r—r 00
and consequently
. 1
e
This evidently completes the proof of Theorem 2.3. (I

Remark 2.4. Ismail et al. [7, Theorem 2.2] show that the function f(g; ) defined
by

flaz) = (1 —q)"Ty(2),
is completely monotonic on (0,00) for all 0 < ¢ < 1. In our main result in
Theorem 2.3, we obtain that the function

1—-4"
(29) oo (T25) flaio) = o).
is logarithmically completely monotonic on (0, co) for each 0 < ¢ < 1. Moreover,
by Theorem 2.3, we deduce that the function f(g;z) is completely monotonic
on (0,00). Indeed, we see that the function = ﬁ is completely monotonic
on (0,00) for all 0 < g < 1. So, by (28), we deduce that the function f(g;x) is
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completely monotonic for all 0 < g < 1, as product of two completely monotonic
functions.
Theorem 2.5. Let g > 1. Then the function x}(x) defined by

(—2)(z+2)
2

Xo(z) = (¢—1)"q Ty(z+1),

is logarithmically completely monotonic on (0,00). Moreover, the following in-
equalities

(29) ¢ (w4 DTy +1) < Tg(w+y+1),2,y > 0,

1
z—y

1
<— 0<y<uz,

(30) ¢ (a4 1)
<—

(17y)2(y+2) Fq (y + 1)
hold true for all ¢ > 1. The inequality (30) is sharp.

Proof. Upon putting

(1—z)(z+2)

gb;(:c) = log Xé(x) =logTly(z+1)+zlog(qg—1)+ 5

log(q).
Differentiating ¢ (z) yields
[@g ()] = Wy () and [¢5(2)]" = v (x +1) —log(g) = ¢ (z + 1).

Using the fact that the function [¢g(x)]” is completely monotonic and the
function [¢}(z)]’ is negative for all ¢ > 1 we deduce that the function x(z) is
logarithmically completely monotonic on (0, 00). Again, by applying the Kim-
berling results, we deduce that the inequality (29) is valid for all z,y > 0 and
each ¢ > 1. Now let us focus on inequality (30). Since the function x}(z) is
decreasing on (0, 00) for each ¢ > 1, we have

1 Ly(z+1)] (1—2)(z+2)—(1—y)(y+2)
(3D Ty tos {Fq(zﬂrl)] 2(z—y)

and thus the inequality (30) is obvious. We consider the function

log(0) < log( )

(1—2)(z+2) =
2 T+

Cg(z+1) i
(32) K;(x,y) = L(l’y)z(yH)Fq(erl) if x#y,

exp(g(z +1) — (z +1/2)log(q)) if z=y.

By using (6), we get
(33) Jim (¢g (2 +1) = (z + 1/2) log(q)) = —log(g — 1).
Then

1
. 1 _
Zlggqu(x,x) =1

This completes the proof of Theorem 2.5. (|
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Remark 2.6. In [7, Theorem 2.3], the authors was proved that the function
9(q; x) defined by
2
g9(g;x) = )P (g = 1)"Ty (@),
is completely monotonic on (0,00) for all ¢ > 1. We note that in Theorem 2.5,
we obtain that the function

1—x x

¢ "(1—gq

T ( . )) g9(qg; ) == X;(x)
—q

is logarithmically completely monotonic on (0,00) for all ¢ > 1, and conse-

quently is completely monotonic on (0, c0).

Theorem 2.7. Let a,b, A and q be positive real numbers such that 0 < g < 1
and b > a. Then the function G(x) defined by
Ty(Az +a) Ty (Az+A+a)

(34) Glo) = T,(Az +b) T, (Az+ A+b)’

is non-negative and decreasing on (0,00). Moreover, the following inequalities
fold true

IF'y(Az+A+a) T (Ax+a) Ty (Az+A+a)
35 a <4 < g b, A),
B5) P At ATh) S T,(Aztb) S T (At arp @b
where
6(0,, b,A) — F(Z(a) _ Fq(A+a)

Ly(b)  Ty(A+0)°

is the best possible constant.

Proof. Differentiation yields

G'(2) = P Walact A2) — b0+ A2)
(36) '
- jélrl;q(g)ajAAin;) e A A Tl A A

On the other hand, due to log-convexity property of the Gamma function I';(z),

. Ty(z+a)
the ratio x — (i“q(x)

the following inequality

is increasing on (0, 00), when o > 0. This implies that

Ly(z + o) Ly(2)
Pz +a+p8) ~ Ty(z+p)’

hold true for all «, 3,z > 0. Setting x = a+ Az, « = A, and 8 = b—a in (37),
we get

(37)

Fyla+ A+ Az)
F,(b+ A+ Az)

Iy(a+ Az)
b+ Az)

(38) <
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Hence, by using the fact that the ¢-digamma function ,(z) is increasing on
(0,00) and in view of inequalities (36) and (38), we obtain
AT (a+ A+ Az)
1) < q
¢'(2) < T,(b+ A+ Az)
(39) + Pgla+ Az) — 1hg(b+ A2)]
_Tyla+A+4Az) _,
q(b-l-A-l-AZ) ab(q7 ) (Say)'

[wq(b—F A+ Az) —pg(a+ A+ Az)

By using the g-integral representation of ¢-digamma function [14, Formula

(2.4)]

log(q) [*1—t"""
(40) dala) = va(1) ~ 220 [Tt >
we obtain
o) [0 -0
<
I <o
for all z > 0 and b > a > 0. Keeping (39) and (41) in mind we deduce that the
function G(z) is decreasing on (0, co). O

Remark 2.8. We note that Theorem 2.7 is the ¢g-version of Lemma 5 in [11].

3. A class of completely monotonic functions related to the
g-digamma functions and its applications

The first main aim of this section is to investigate the complete monotonicity
property of the function F,(g;z) defined by

" Fulg;z) = (v +a) —log (“q”_>

1—g¢q

1
where ¢,z > 0 and a > 5.

Theorem 3.1. Let g and a be real numbers such that ¢ > 0 and a > Then

the function F,(q;x) is completely monotonic on (0, 00).

1
ox

Proof. Let 0 < ¢ < 1. Differentiating (42) with respect to x, using (5), yields

.~ a_l
g2 log(q)

o Y
Fa(qax) —¢q($+a)+ lqu+a_l
00 00
kqkta) 1og? (g _1
(43) :241_ +1 g qu z+a

™~
Il
-

k=1

g+ f(¢*) log(q)
1—g*

)

o

B
Il
—



142 K. MEHREZ

where

o) = 1—y+/ylog(y)
’ Vi

It is obvious to proved that the function f(y) is non-negative on (0, 1). This

yields that

> _k(z+a) k n
(14) (- F ) = Y LD 5
k=1

,0<y < 1.

forall0 < ¢ < 1 and n € N. This implies that the function F,(g; x) is decreasing
on (0,00), from (27) we find

(45) lim F,(g;2)=0,0<g¢g<1,

Tr—r00

and consequently
(46) Fo(g;x) > lim Fo(g;2) =0, 0 < g < 1.
Tr—r0o0
This implies that the function F,(g;z) is completely monotonic on (0, c0) for
0 < ¢ < 1. Now, assume that ¢ > 1, from (10), we have

_ x+a—%
Fu(1/g:@) = 1 gz + a) — log <1qu> + (a +a — 3/2) log(q)
(47) _ qw—i-a—%

=1,(z + a) — log <11—q> = Fu(q; ).

Therefore, the function F,(g; ) is completely monotonic on (0, c0) for all ¢ > 0
and a > % This completes the proof. O

Remark 3.2. If we let ¢ — 1 in the above Theorem, we deduce that the function
F,(x) defined by

(48) Fo(z) = ¢(2 + a) — log(z +a —1/2),
is completely monotonic on (0, 00) for each a > 3.

Remark 3.3. The above result is shown to be a generalization of result which
were obtained by Batir in [4, Theorem 2.2], that is, the function

1— qx+%
z— Pyl +1)—log| —— |,
l—q
is completely monotonic on (0, c0) for ¢ > 0.
Corollary 3.4. Let ¢ > 0. Then the function H(x;q) defined by

(49)  H(wiq) =logTy(x+1/2) — zlog (11—q; > - LiiE;(Q)qm)

)

is a Bernstein function on (0, 00).
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Proof. Differentiating H(x;q) yields that

H'(z5q) = F12(q; 2).
By using Theorem 3.1, we deduce that the function H’(z;q) is completely
monotonic on (0, 00) and consequently the function H(z;q) is a Bernstein func-
tion on (0, 00). O
Corollary 3.5. Let ¢ > 0. Then the function x m is logarithmically
completely monotonic on (0, 00).

Proof. By means of Corollary3.4, the function H(z;q) is increasing on (0, 00).
Moreover, by using the fact that the g-gamma function is strictly decreasing
on (0,z*) where z* is the abscissa of the minimum of the ¢g-gamma function
I'y(x), such that z* € (1,2), (see [13, Lemma 2.2, p. 1668]) we deduce that
I'y(1/2) > T'y(1) = 1. This implies that the function H(x;q) is positive on
(0,00). Then the hypotheses of Theorem 6 in [10] are fulfilled. O

Remark 3.6. If we set ¢ — 1 in Corollary 3.4 and using (10) we deduce that
the function H(z) defined by

H(z) =logD(z +1/2) — zlog(z) + =, = > 0,

is a Bernstein function. Moreover, by using Corollary 3.5, we obtain that the
function 1/H (x) is logarithmically completely monotonic on (0, 00).

In the next results, we present new upper and lower bounds for the ¢-
digamma and g¢-trigamma functions.

Corollary 3.7. Let q,xz and a be real numbers such that g,x > 0 and a > %
Then the following inequalities hold true:

1— qz+a—% 1— qz+a—%
(50) a+ log B < Py(x + a) <log I + 8,

g" "% log(q)
1 _ qm+a—%

g" "% log(q)
1 _ qm+a— %

)

(51) w— <Yy (r+a)<v-—

z4a—1 a—1
where a = v =0, 8 = 1)4(a) —log (1_q1+q = ) , and p =y (a) + —"5% 108(0) e

1—q¢*" 2
the best possible constants.

Proof. In virtue of Theorem 3.1, the function F,(g;z) is decreasing on (0, c0)
for all ¢ > 0 and a > 1/2 and consequently we have

a=0= lim F,(¢;z) < Fo(g;7) < Fulq;0) = B.
Tr— 00
As the function F,(g;x) is completely monotonic on (0,00), the function
F!(g;x) is increasing on (0, 00), this implies that

p=Fy(q;0) < Fo(g;z) < lim Fo(g;z) =v,
T—r00
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which is equivalent to (51). O

Remark 3.8. Letting ¢ — 1 in Corollary 3.7, we get the following inequalities
(52) log(z+a—1/2) <Yz +a) <log(zx+a—1/2)+(a) —log(a — 1/2),

and
/ - < =
(53) LR vy Sl v S G ) R warey e

hold true for all z > 0 and a > 1/2. Both bounds are sharp.

2 2 2

A g-analogue of Harmonic number defined by [15]

(59 g = 27—

k=1

which can be related to ¢,(n + 1) for a positive integer n by

(55) i+ 1) = 2D g,

where v, = l(ig;(g)dzq(l) is the g-analogue of the Euler-Mascheroni constant [12].

Upon setting = n € N and @ = 1 in the inequalities (50), we obtain the
following new upper and lower bounds for the g-analogue of Harmonic numbers.

Corollary 3.9. Let n be a positive integer and 0 < ¢ < 1. Then, the following
inequalities hold true:

q—l l_qn+1/2 q—l 1_qn+1/2
56 —1 | <(1-¢9)H,, < 1 .
(56) 71" log(q) Og( 1—q S log(q) °\ 1—¢'/2
Both bounds are sharp.

Remark 3.10. Letting x = n € N and a = 1 in (52), we find the new sharp
upper and lower bound for the harmonic number

(57) v +log(n +1/2) < H, <log(2) +log(n +1/2).

4. Some two-sided bounding inequalities for the g-digamma and
g-tetragamma functions

In this section, we present two sets of two-sided bounding inequalities for
the ¢g-digamma and g¢-tetragamma functions in terms of the g-gamma function.
Theorem 4.1. Let 0 < g < 1. Then the following inequalities

(¢ —q@)Tq(x) (g—g")Tq(x)
4" log(q) 1—exp(q 1‘17q x) exp(q ql,q gl")—1

1—¢* Lo(z+1) Lg(z)
hold true for all x > 0.

(58)

< thg(x) <
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Proof. Letting z > 0 and 0 < ¢ < 1. Applying the mean value Theorem to the
function e’ on the interval [z, + 1], we find that
(59) elaeth) — el =T (g + €)et "+ 0 < e < 1.
We consider the following auxiliary function
Ulz) =T (z+ €)ela@+) 250, 0<eq<1.
Hence
U'(x) = [T @+ ©) + (U)o + €))2eFat+).

By using the integral representation of the g-gamma function [9]

(60) T,(z) = /0 B (g — D)0)dyt, @ >0,

where E,(t) is the g-exponential function defined by

0o k(k=1) p

E,(t) :Z%, teC.

k=0
This implies that the function I'y(x) is non-negative, and consequently the
function U(z) is increasing on (0, 00). This yields that
(61) F;(x)eF‘I(I) < elal@+l) _ elal@) < I (x+ Dela@D 2 >0,

Combining the left hand side of the above inequalities with the recurrence
formula (14), we get

(62) Iy (z) < exp (HM> -1,

l—q
which is equivalent to the right hand side of inequalities (58). Now, focus on
the left hand side of inequalities (58). By (14), we find

1—g¢" q" log(q)
Keeping in mind the above formula with the right hand side of inequalities
(61), we arrive at

(63) 11_—qq£ (1 exp <(ql’ 191)1;1(1)) N q””llo_géQ) rq(l,)> < TV (2)

which proves to the left hand side of inequalities (58). The proof is now com-
pleted. O

Letting ¢ tends to 1 in the inequalities (58), we obtain the new two-sided
bounding inequalities for the digamma function ¢ (z).

Corollary 4.2. For every x > 0, it holds

| —l-or@ | (@—DI(@) _ |
64 e < P ——
(64) T G — P
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In the next theorem, we present two-sided bounding inequalities of the g¢-
tetragamma function 1 (z).

Theorem 4.3. Let g,z > 0. The following two-sided bounding inequalities hold
true:
(65)

¢"-log’(q)\ ¢*(¢" +1)log’(q) _ q" log’(q)\
1o (T2 ) -2 L < i <o (T2 )1

Proof. Let 0 < ¢ < 1. By again the mean value theorem applying to the
function e¥s(*) in the interval [,z + 1], therefore we have

(66) eValetl) _ o¥a(®) — Yy (x + e)e?a™te) 0 < ey < 1.
We set

Us(x) = " (z)e¥a(®),

q
Differentiation gives

Us(z) = (03 () + [ (2)]2)es@).

Since wég)(x) +] ((12) (z)]? > 0, we deduce that the function Us(z) is increasing
n (0, 00), which readily implies that the following inequalities hold true:

(67) wq( ) P () < ew (z+1) _ % () < 'Q[JH( )ew;(m-i-l).
We take logarithm of both sides of (14) and then differentiate, we find

(68) gl 1) —igle) = 1By 1y - ¢;<w>=—q%fl()qz)

q (¢
(69) w//( + 1) . w//( ) - ‘13HE IOgg(Q)
g\t g \¥) = (¢" — 13"
By applying the above equations with (67) we easily get the two—sided inequal-
ities (65) asserted by Theorem 4.3. O

Letting ¢ — 1 in Theorem 4.3 leads to the new two—sided inequalities for
the trigamma function.

Corollary 4.4. Let x > 0. It holds

H\»—A

(70) 1—61—*<¢”( ) <
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