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A GRADED MINIMAL FREE RESOLUTION OF
THE m-TH ORDER SYMBOLIC POWER OF
A STAR CONFIGURATION IN P™

JUNG PIL PARK AND YONG-SU SHIN'

ABSTRACT. In [30] the author finds a graded minimal free resolution of
the 2-nd order symbolic power of a star configuration in P" of any codi-
mension r. In this paper, we find that of any m-th order symbolic power
of a star configuration in P" of codimension 2, which generalizes the
result of Galetto, Geramita, Shin, and Van Tuyl in [15, Theorem 5.3].
Furthermore, we extend it to the m-th order symbolic power of a star
configuration in P” of any codimension r for m = 3,4, which also gener-
alizes the result of Biermann et al. in [1, Corollaries 4.6 and 5.7]. We also
suggest how to find a graded minimal free resolution of the m-th order
symbolic power of a star configuration in P™ of any codimension r for
m > 5.

1. Introduction

Let R = k[xo,21,...,%,] be an (n + 1)-variable polynomial ring over an
infinite field k of any characteristic and let I be a homogeneous ideal of R (or
the ideal Ix of a subscheme X in P™). Note that R/I has a graded minimal free
resolution F, as an R-module, of the form:

F: 05F,— - —F 2F_;— - —-F—R—>R/I-0,

where the F; are free graded R-modules and the image of each homomorphism
; of free modules in the resolution lies in (xq,z1,...,z,)F;—1. In fact,

F, := @R(_(i +1+ t))ﬁi,i+1+t.
t=0

The numbers {f; ;} (resp. {i + j}) for 0 < i < m are called the i*" graded
Betti numbers (resp. shifts) of the ideal I.
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For positive integers r and s with 1 < r < min{n, s}, suppose Fi,..., Fy
are general forms in R of degrees dy,...,ds, respectively. We call the variety
X defined by the ideal

N (Fu.....F)

1<i1 << <s

a star configuration in P™ of type (r, s) (or simply codimension 7). In particular,
if Fy,...,Fs are general linear forms in R, then we call the variety X a linear
star configuration in P of type (r,s).

Configurations of this type have been a very interesting family of points,
curves, hypersurfaces, and so on. For example, their defining ideals are easy
to describe algebraically ([27]). In addition, Bocci and Harbourne [3] have
shown that these sets of points exhibit some nice extremal properties (see also
[19]), and Catalisano, Geramita, Gimigliano, and Shin [8] have studied star-
configurations in P? to calculate the dimensions of the secant varieties to the
varieties of reducible curves (see also [7,28]). There have been many other
papers which have further explored the properties of star-configurations in P™
(see [3,5,6,8,10,17,28,29)]).

In recent years, motivated by works of Ein-Lazarsfeld-Smith [13] and Hoch-
ster-Huneke [24], comparisons between the symbolic and the regular powers of
I have attracted attention among the researchers in Commutative Algebra and
Algebraic Geometry (see [14,20,21,26]). For example, there is a question called
the ideal containment problem on finding all the pairs (m,r) of integers such
that 1™ C I, where 1™ = Neeass(yI™ Ry N R) and I" are the symbolic
and the regular powers of I, respectively. In particular, if I is a radical ideal,
then Zariski-Nagata theorem shows that the symbolic power (™) defines a
homogeneous scheme Z of fat points Iz = I, or M- NIZ, or equivalently it
consists of polynomials vanishing to order m along the projective variety defined
by I. There is also a series of results on the ideal containment problem, the
resurgence, and the Waldschmidt constant ([2,4,11,12,15,16, 18,25,26]). In
particular, if X is a star configuration in P™ of type (r,s) defined by general

forms Fi, ..., Fs, then the m-th order symbolic power of the ideal of a star
configuration X (the m-th order symbolic power of X for short) is
I}({m) == m (Fila"-yFiT.)mv

1<i1 < <ip<s

because each ideal (Fj,,..., F;.) is a minimal prime of Ix and it is generated
by a regular sequence ([31, Appendix 6, Lemma 5]). The m-th order sym-
bolic power Is(gm) has been studied from the point of view of algebra, algebraic
geometry, and combinatorics (]9, 15-18,30]).

In [18], the authors find a graded minimal free resolution of the 2-nd order
symbolic power of a linear star configuration X in P" of any codimension 7,
and in [30], the author extends that of a star configuration X in P™ of any
codimension r. In [1], the authors find a graded minimal free resolution of
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the m-th order symbolic power of a linear star configuration in P™ of any
codimension r ([1, Corollary 5.6]), though the formula is not simple.

In this paper, we find a graded minimal free resolution of any m-th order
symbolic power of a star configuration X in P" of codimension 2 (see Theo-
rems 3.1 and 3.3), which generalizes the result in [15, Theorem 5.3]. Moreover,
we also find a graded minimal free resolution of the m-th order symbolic power
of a star configuration in P™ of any codimension r for m = 3,4 with r > m (see
Theorems 4.5 and 5.6), which generalizes the result in [1, Corollaries 4.6 and
Corollary 5.7].

Acknowledgement. The authors are grateful to the reviewer for their meticu-
lous comments and suggestions on this paper, which are helpful to substantially
improve the original paper.

2. Preliminaries

We recall basic concepts for simplicial complexes. Define [s] = {1,2,...,s}.
A matroid A on a vertax set [s] is a nonempty collection of subsets of [s] that is
closed under inclusion and satisfies the following property. If A, B are in A and
|A| > |B|, then there is some ¢ € A such that B U {i} € A. We will consider
A as a simplicial complex. Let T' = k[yi,...,ys]. For a subset A C [s], we
write y4 for the square free monomial [],. , ¥;. The Stanley-Reisner ideal of
AisIn ={(ya | AC[s],A ¢ A) and the corresponding Stanley-Reisner ring is
k[A] =T/Ia.

Theorem 2.1 ([18, Theorem 3.3]). Assume Fy,...,Fs € R =Kk[xg,z1,...,Zy]
are homogeneous polynomials such that any subset of at most v + 1 of them
forms an R-regular sequence. Let A be a matroid on [s] of dimension s —r —1
with 2 < r < min{s,n}. Consider the ring homomorphism

o:T=k[y1,...,ys] = R, yi— F;.

Let I be an ideal of T. We write p.(I) to denote the ideal in R generated
by p(I). If Fya) s a graded minimal free resolution of k[A] over T, then
Fya) @1 R is a graded minimal free resolution of R/p.(Ia) over R.

The ideal . (Ia) is said to be obtained by specialization from the matroid
ideal Ian. The subscheme of P™ defined by . (Ia) is called a matroid configu-
ration [18].

Note that if we look at a graded minimal free T-resolution of T/Ia, then
the entries in all the maps are monomials in the y;. Moreover, replacing each
y; by F; and each T by R gives a graded minimal free resolution of R/, (Ia).
So the formula F ®7 R implies the following two meanings.

(a) The variable y; in T = K[yi,...,ys] moves to a form F; in R =
k[zo, x1,...,zn], and

(b) A T free module F; changes to an R free module E; := F; @1 R for
{>1.
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Since a linear star configuration in P™ is one of the matroid configurations,
we shall use [18, Theorem 3.3] for the proof of this theorem.

A monomial ideal I C S is said to have linear quotients if there is an order
Ui, ..., us of monomials in G(I) (see Definition 2.4 for this notation) such that
the colon ideal

(uh"'auk—l) P UE

is generated by variables for all k¥ = 2,3,...,s. In [1], the authors proved
that the m-th order symbolic power of a linear star configuration I ((le)) is a
symmetric strongly shifted ideal (see [1, Theorem 4.3]), and so it has linear
quotients (see [1, Theorem 3.2]). A structure of the minimal free resolution of

an ideal having linear quotients is well known [23, Theorem 1.12]. This implies
that I =1 ((;ns)) is a componentwise linear ideal, and the ideal (I;) generated by

all homogeneous polynomials of degree j belonging to I has a linear resolution
([22]). Based on theses facts, the authors in [1, Theorem 3.2] showed that
Betti numbers ;45 (I ((:ns))) are determined by the set C(u) (with notations in

Notation 4.1) where

C(u) = {y0(1)7 s 7ya(p)} U {yo(k) p+1< E<n-— T, O'(k‘) < max(u)}.

In this paper, we often use this formula in the proof of our main results since it
is easier to calculate the Betti numbers and the shifts in the free modules than
to use either linear quotients or the differential maps between free modules.

We are now ready to find the Betti numbers and the shifts of a graded
minimal free resolution of the m-th order symbolic power of a star configuration
in P" of codimension 2.

Remark 2.2. (1) Let X be a linear star configuration in P™ of type (r,s). By
Theorem 2.1, the study of a graded minimal free resolution of Ix can be reduced
to the monomial case. Let I, ,) be the monomial ideal of S = Ky, ..., us)
defined by

Isy == ﬂ (Yirs - Yir)-

1<iy <--<ip<s

By Theorem 2.1, a graded minimal free resolution of Is(gm) is completely deter-
mined by I ((Z"'S)). Moreover, the ideal
I(m) _ m ( ) ) )m
(r,8) Yivy - Yir

1<iy <--<ip<s

is G,-fixed, where &4 is a symmetric group on s letters.

(2) Note that every symbolic power of a linear star configuration is aCM (see
[17, Theorem 3.1]), and so any symbolic power of a star configuration (matroid
configuration) in P is also aCM (see [18, Theorem 3.3]).
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Theorem 2.3 ([27, Theorem 2.3]). Let F,...,Fs be general forms in R =
k[zo, x1,...,2n] with s> 2 andn > 2. Then

H2:1 Ly
AR o (1

1<j1<<jr<s IShssinoass T
for 1 <r < min{n, s}.

Definition 2.4. A sequence A\ = (A1,...,As) of non-negative integers is a
partition of d of length s if Ay <--- < Agand |A| =X +---+ s =d. Let

PSZ{(A1,7A3)|O§)\1§§)\S}

be the set of partitions of length s. For a monomial u = yfl -y of degree d
and A = (A1,...,\s), we denote by u = y*. For a monomial ideal I, the set

P(I)={\e P, |y* eI}

We write G(I) for the unique set of minimal monomial generators of I. When
I is &,-fixed, we define

AI)={ e P(I)|y* € G(])}.
Proposition 2.5 ([1, Proposition 4.1]). For every integer m > 1, the ideal
I((:'ALS)) is &s-fized, and
PUIM) = (A€ Py | Pey| > md,

r,8)
A(Igm) )= e P [[Ag[=mVi>rAi = A,

(r,s)
where | A<p| = A1+ -+ A for A= (A1,..., ) withr < s.

Corollary 2.6 ([1, Corollary 4.4]). (1) The Castelnuovo-Mumford regularity
of I((:ns)) is m(s —r+1). Moreover, if m > 2, then the bottom row in the Betti

table of I((:;)) s given by the following formula.
s r—1 .
5i,z‘+m(s—r+1)(f((:l))) = <r - 1> < ; ) for all i>0.
(2) If m < r, then
N (m)y _ s s—r+m-+i—1 .
ﬂz,z+m+(3_r)(1(r7s)) = <r o z> < ; forall i>0.

Corollary 2.7 ([1, Corollary 4.6]). If r > 3, then

( s ><5—r+i+2> )
] ) , j=s—r+3,
r—i—3 7

Biiri(ID) = (T;) {(7’;2)4-(8—7"—1—1)(7“;1)}7 j=2s—r+1)+1,

(Ti1>(7:1)’ j=3(s—r+1).
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Example 2.8. (1) Let X be a linear star configuration in P" of type (2, s)
and let m = 4. By Proposition 2.5, there are one generator of degree 2s, and
s-minimal generators of degrees 3s — 2 and 4s — 4. By Hilbert-Burch theorem,

a graded minimal free resolution of R/ Ig) is

R(-2s)
R3(—(35— 1)) @
0— o — R*(—(3s—2)) » R — R/I{Y 0.
R*(—(4s — 3)) o
R%(—(4s — 4))

(2) Let X be a linear star configuration in P" of type (2,s) and let m = 5.
By Proposition 2.5, there are s-minimal generators of degrees 3s — 1, 4s — 3,
and bs — 5. By Hilbert-Burch theorem, a graded minimal free resolution of
R/Ig’) is

Rs=1(=3s) R*(—(3s—1))
e o
0 — R*(—(4s —2)) — R*(—(4s — 3)) = R — R/I{) 0.

S D
R*(—(5s—4)) R°(—(5s—5))

The following two propositions are motivated by Example 2.8.

Proposition 2.9. Let X be a linear star configuration in P™ of type (2,s) and
let m be a positive even integer. Then a graded minimal free resolution of

R/I{™ is
0 = @l R(~((s—Dm—0)+(t+1))
= R e @i, B (—((s— 1)(m—0)+0))
— R—R/IJV >0

TABLE 1. the number of minimal generators of each degree

‘ degree ‘ the number of minimal generators ‘
(s=1)-m s
1+ (s—1)(m—-1) s
24 (s—1)(m—2) s
(B —=2)+(s—-1(% +2)
(Z-D+(-0(5+1)
5% 1

Proof. By Proposition 2.5, there are s minimal generators of each degree

(s—=1)m,14+(s=1)(m—=1),24+ (s—1)(m—2),...,
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(%—2)+(s—1)(%+2)7(%—1)+(s—1)(%+1),

and one more minimal generator of degree s - % (see Table 1).
Therefore, by Hilbert-Burch theorem, we obtain a graded minimal free res-
olution of R/Iégm) as above. O

Using the same idea as in the proof of Proposition 2.9, one can easily prove
the following proposition, and so we omit the proof here.

Proposition 2.10. Let X be a linear star configuration in P™ of type (2, s)

and let m be a positive odd integer with m > 3. Then a graded minimal free
. (m)

resolution of R/Iy" is

0 — Rs—l(_s.(m+l)) {@R ((s=1)(m—0) + (€ +1)))

7n1

— @Rs ((s—1)(m—4£)+ 1))
- R%R/I(m)%o

3. A graded minimal free resolution of the m-th order symbolic
power of a star configuration in P™ of codimension 2

In this section, we shall find a graded minimal free resolution of the m-th
order symbolic power of a star configuration in P™ of codimension 2.

Theorem 3.1. Let X be a star configuration in P™ of type (2, s) defined by s
general forms Fy,..., Fs in R of degrees dy,...,ds, respectively, and let m be
a positive even integer. Define d :=dy + --- 4+ ds. Then a graded minimal free
resolution of R/Ig(gm) is

m_q

0 = ¢ [ e, R(—((dh+-~+di5,1>-(m—e>+<z+1>‘di5))}
(=0 “1<ip<-<ig_1<s
= R(— @EB{ P R(((dil+--~+dw>-<mew-dia))}
1<iy1 < <is—1<s

is€{1,2,...,s}—{i1,...is—1}

- R—R/I{™ —o0.

Proof. Let T =K[y1,...,ys| and consider the ideal of T
I(2,s) = m (yi17yi2)7
1<i1<i2<s

generated by all products of s — 1 distinct variables in {yi,...,ys} (see The-
orem 2.3). It is the Stanley-Reisner ideal of a uniform matroid on [s]. Recall
the map

(3.1) p:T— R, y+— F.
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Then
I = 0. (157).
By Theorem 2.1, for ¢ = 1,2, the i-th free module of a graded minimal free
resolution of R/ Is(gm) is
E; :=F; ®r R,

where

Fy = T°(—(s—=1)(m—-£6+(¢+1))), and

m_q

F, = T( - %) ® @ T(~((s — 1)(m — £) + 0)).
=0

As mentioned before, the entries in all the maps in the graded minimal free
resolution of T'/Ia are monomials in the y;, and replacing each y; by F; and
each T by R gives a graded minimal free resolution of R/¢.(Ia). Hence one
can conclude that

(3.2) s%d and 155 d;.

By Proposition 2.5 and equation (3.2), for £ =0,1,..., %, we have

(@i, -, )"l B (B By ) (B
ie.,
i1-st is—1-st ig-th
(m—0-14+---+(m—0)-1)+£-1
v i1-st is—1-st is-th
= (m—=0)diy +- -+ (m—0)-d;,_,)+ L di,,
where 1 < iy < -+- < i3 < sandis € {1,...,8} — {i1,...,45_1}. There-
fore, we obtain a graded minimal free resolution of R/ Iy(gm) from Hilbert-Burch
theorem as above. This completes the proof. Il

The following corollary is immediate from Theorem 3.1.

Corollary 3.2 ([15, Theorem 5.3]). Let X be a star configuration in P™ of type

(2,5) defined by s general forms in R = Kk[xg,x1,...,2,] of degrees dy, ..., ds

with s > 2, and let d =dy + -+ +ds. Then a graded minimal free resolution of

R/Ig) is

0 €D R(-(2d—d;) » R(-d)o| @@ R(-(2(d—d)| = R = B/IP 0.
1<i<s 1<i<s

Using the same idea as in the proof of Theorem 3.1, we can obtain the
following theorem, and so we omit the proof.
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Theorem 3.3. Let X be a star configuration in P™ of type (2, s) and let m be
a positive odd integer with m > 3. Define d := dy + --- + ds. Then a graded
minimal free resolution of R/ Is(gm) s

(- (22)

@
0 - m—3
D% { D R(~((diy + -+ +ds,_,) - (m—0) + (£+1). di_,»»}
1<igp<--<is—1<s
is€{1,2,..,8 —{i1,yis—1}
m—1
2
- { P R(=((diy 4+ +di, ) - (m—0) + £ dis))}

=0 1<iy1<---<is—1<s

is€{1,2,0.0,8}—{i1,eesis—1}

— R—R/I{™ - 0.

4. A graded minimal free resolution of the 3-rd order symbolic
power of a star configuration in P” of codimension r

In this section, we shall find a graded minimal free resolution of the 3-rd order
symbolic power of a star configuration in P" of type (r, s) with min{n,r} < s
and 3 < r. We first introduce some notations in [1].

Notation 4.1 ([1]). Let A = (A1,...,As) with 0 < Ay < --- < A, be a partition
and y* = yi\l ---y2 be a monomial in T' = k[yi,...,ys], and let u = o(y*) for
o€ GB,.

(1) p = () = [{k | A < A — 1},

(2) ¢:=q(\) = [{F [ A = A},

(3) max(u) = max{o(k) | \p, = As}.

(4) Cw) ={Wo1):-- Yo} YWy P+ 1 <k < s—q,0(k) <max(u)}.

Lemma 4.2. For 3 < m <r < n, let X be a star configuration in P™ of type
(r,s) defined by forms of degrees dy,...,ds withr < s. Let

05K, —--—E - R—R/I{™ >0

be a graded minimal free resolution of R/I;(gm), where Egy1 := Foy1 @7 R and
Foy1 is the (€+1)-st free module of a graded minimal free resolution of T/I((:?S))
for 0 < ¢ < r —1. Then the free submodule of the (¢ + 1)-st free module
Erir1 = Foy1 @1 R, which is from the minimal generators of degree (s —r +m)

in I ((:ls)), is

Pl a )Y s (r—m) 4 0) r R

_ D RO (—(d = (diy -+ i)

1< < <bp—m—r <58
for0 </l <r—1.
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Proof. Let A= (0,...,0, 1,...,1). For 0 € &, and u = o(y"), we have
—— Y—
(r—m) (s=(r—m))
C(u) = {yor) | 1 <k <7 —m,o(k) <max(u)}.
By the symmetry of scripts 1,2, ..., s, we may assume that max(u) = s and
Cu) ={c(1),...,0(r—=m)} ={1,2,...,7r —m}, and |C(u)]=r—m.

Note that the degree of (square free) minimal generators in this free module
is (s—r+m+¥). This means that the number (s —r+m+/£) is the same as the

number of subscripts of the monomial having degree 1, say r—m—£+1,...,s.
From this step with max(u) = s, one can choose ¢-subscripts among subscripts
r—m—~{+1,...,s except for max(u) = s.

Hence we have the (square free) monomial generator of the form
(4.1) W2 Yr—met) Yrmmmar Yy Y5, Ya)s
where {j1,...,5¢} C[s] — ({1,...,r —=m =L} U {s}).

If we summarize our arguments with the symmetry of subscripts 1,2, ..., s,

we obtain that the number of minimal generators of degree s — (r —m — £) in

this free module is
s B s
s—(r—-m-0) \r—-m-—1t)’

and for each monomial of degree s — (r —m — £), the monomial repeats

(=0

Therefore, the following shift repeats (57T+7Z+£71)-times, ie.,
s—(r—m-—1Y)
(r—m—~£+1)-st Jji-st je-th s-th
:( 1 + .4 11 + .4 81 4.4 1 )’ (s—rJrZLJrZ—l)_times7

where {j1,...,7¢} C[s] — ({1,2,...,7 —m — £} U{s}). This implies
1-st (r—m—4£)-th
s — (fr—m—f) =5 — ( 1 +---+ 1 )’ (sfrJr?Jr@fl)_timeS.
Applying the matroid configuration map ¢, with the symmetry of subscripts
1,2,...,s, we get that

s—(r—m—-05d=(dy +-+ds,_, ), () times,
where 1 <47 < -+ < lp_p_p < S.

Therefore, for such ¢, we have the free submodule as follows

(=(s=(r—=m)+))@rR

® R )

1<iy < <ipom—e<s

sfr+7;+l—1)

T(r—fn—e)(
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as we wished. 0

Lemma 4.3. With notations as in Lemma 4.2, for 3=m <71, and 0 < £ <
r —1, the free submodule of the (¢ + 1)-st free module Byyq, which is from the

minimal generators of degree 2(s — (r — 1)) + 1 in I}(gg), is

7)) DC) () (—(2(s — (r— 1) + 14 0) @7 R
[ @ REQE— (i + o di, ) = dit (dyy o+ dy,))

1<in < <ip_2<s
{J1sede} it in—2}
_ k=max([s]—{%1,..., ir—2})
- D R@d—(diy+ -t di, ) = di o+ (djy + - + )
@, 1Sh<o<ira<s
k<max([s]—{i1,..., ir_2})
k¢ {i1,...,ir—2}
{G1sege Y it nsin_n k) ]

Proof. Let

A=(0,...,0,1, 2,...,2 ).
—— ——

(r—2)-times (s—(r—1))-times
For o € &, and u = o(y"), we have
Clu)={c(),...,0(r—2)}, or {o(1),...,0(r—2),0(r—1)}
By the symmetry of subscripts 1,2, ..., s, we may assume that
oc(l)=1,...,0(r—2)=r—2, and o(r — 1) =k,

where r — 1 < k < s.

(1) Let C(u) = {o(1),0(2),...,0(r—2)} ={1,2,...,r—2}. Theno(r—1) =
k> max{o(r),...,0(s)}, i.e., o(r—1) = k = s (see the proof of Corollary 2.7).
Note that the Betti number for this case is

S r—2
r—2 ¢ )
Hence the minimal generators in this free module are of the form

Y0y8 -y oyl (Y1 ys-1) 2y, s
where {j1,...,5¢} C{1,...,7 — 2}

s-th (r—1)-st (s—1)-st ji-st je-th
L +2( 1 44+ 1 )+(1 +---4 1)
(4.2) (r—1)-st (s—1)-st  s-th  sth  gji-st je-th
2001 4+ 1 4+ 1)=14+(1 +---4 1)

(1-st (r—2)-nd s-th ji-st Je-th
2—(1 4+ 1 )N—=1+(1 +---+ 1)
2(d—(dy +da + - +dr2)) —ds + (dj, + -+ +dj,).

I

Is |
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From this observation, we obtain that
T2 (25— (r=1)) + 1+ 0) @1 R
= D R(=(2(d = (diy + -+ di,_,)) — di + (dj, + -+ dj,)))-
1<iy <+ <ip_2<s

{g1sesde} Clan, e in—2}
k=max([s]—{i1,....ir—2})

(2) Let C(u) ={o(1),0(2),...,0(r— 1)} ={1,2,...,r — 2,k}. Since
o(r —1) =k < max(u) = max{o(r),...,o(s)},

we get r — 1 < k < s —1 (see the proof of Corollary 2.7). Note that the Betti
number for this case is

s r—1
s-e-m(, ) (7,
Forr—1<k<s—1, we have

y(l)«yg . .yg_Q«y’i(yr_l . '@k . .ys)zy}l .. .y]l,z,
where j1,...,750 € {1,... r—2}U{k},

N k-th (r—1)-st k- s-th ji-st Je-th
I +2( 1 + +1+ 4+ 1)+(1 4+---+ 1)
(r—1)-st s-th k-th Ji-st Je-th

oo2(1 LT ) =TT (T 4T

o 1-st (r—2)-nd k-th Ji-st Je-th
2s—(1 +---+ 1 )—1+4+(1 +---+ 1)

Py

= 2(d— (4 Fdr2)) —di + (d, + -+ dyy),

where % means that * is omitted. From this observation, we get that

T (- (2(s - (r - 1) + 14+ 0) @1 R
P R (di, + -+ di, ) = di+ (dy + -+ ),

_ 1<i1 < <bp—2<s
k<max([s]—{i1,....ir—2})

kg{i1,....ir—2}
{j1sendey {in, e ir—2,k}

From (1) and (2), we get the free module
7(2) ()= (L) () (—(2(s — (r— 1) + 1+ 0) @1 R
[ B RQU- i+ +di, ) = die+ (djy + -+ dy,)))

1<ii <+ <ip_2<s
{71505 jz}C{il,...,iT_Q}
k=max([s]—{i1,..,ir—2})

P R-@d—(di +-+di, ;) —di+ (dj, + - +d,)))
1<i1 <+ <ip_2<s
k<max([s]—{i1,...,ir—2})
k¢{i1,....ir—2}
{1 der Clin,in—2,k}

as we wished. O
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Lemma 4.4. Let X be as in Lemma 4.2. For 3 <r, 0 < {<r—1, and
3 < m, the free submodule of the (£ + 1)-st free module Eprq1 of a graded
minimal free resolution of R/I;ém), which is from the minimal generators of

degree m(s — (r — 1)) in I(m)), is

(r,s

TG (—(m(s = (r = 1)) +0) @r R
) R(=(m(d = (diy +---+di, ) + (dj, + -+ dj,))).

{1,deyClin,iro1}
Proof. The proof is immediate from Corollary 2.6(1). O
We are now ready to find a graded minimal free resolution of R/ Is(g?)) when

X is a star configuration in P™ for n > 3. Combining Lemmas 4.2, 4.3, and 4.4,
one can obtain the following theorem.

Theorem 4.5. Let X be as in Lemma 4.4. For3 <rand1 <{<r—1,a
graded minimal free resolution of R/ I}({g) 18

0—>]E,«—>~-~—>E1—>R—>R/I§§3)—>0,

where
@ RO i) '
1<iy<+<ip_g_¢<s
@
B R (i +-+di, ) —di+ (dj, +---+dj,)))
1<i1<+<ipr_2<s
{g1sede} ity ir—2}
k=max([s]—{i1,...,ir—2})
E . @
e B R—2d—(dy + - +di,_,)) —di+ (dj, + -+ +dj,)))
1<i1 <+ <ip—2<s
k<max([s.]—{i1‘ ..... ir—2})
k¢{ii,...,ir—2}
[gtyenge it ysin 2k}
©®
P RGBA—(di, ++di, )+ (djy, + - +dj,)))
1<y <-++<ip_1<s
L {G1snrde} Clityemsino1} |

for0<e<r-—1.

Example 4.6. Let X be a star configuration in P™ of type (3,4) defined by
forms of degrees 1,2,3,5 with n > 3 and m = 3. By Theorem 4.5, we have

E = R-d)e @ R-@d-d)-d))e O REGE=(di+d)),

1<i<j<s
1<i#j<s SrSIS
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First let d = dy + dy + d3 + d4 = 11. The following two tables summarize the
shifts in E;.

2d—dy) —dy | 18 [ 2(d—dy) —ds |17 | 2(d—d1) —d4 | 15
2(d—ds) —dy | 17 | 2(d—da) —ds3 | 15 | 2(d—da) —dy | 13
2(d—ds) —dy | 15 | 2(d—ds) —dy | 14 | 2(d — d3) — dy | 11
2(d—ds) —dy | 11 | 2(d—dy) —dy | 10 | 2(d—ds) —d3 | 9

3(d — (dl + dg)) 24 3(d — (dl + dg)) 21 3(d — (dl + d4)) 15
3(d — (dg +ds)) | 18 | 3(d — (d2 + d4)) 12 3(d —(ds+ds)) | 9

Thus we have

E; = R(-9)? @ R(—10) ® R(—11)* @ R(—12) ® R(—13)
© R(—14) ® R(—15)* ® R(—17)? @ R(—18)? @ R(—21) @ R(—24).
Similarly, from Theorem 4.5, one can find the free modules E; and Ejz as

well.
Therefore a graded minimal free resolution of R/ I;(f’) is

0 — R(—17)* @ R(—19)® © R(—20)* @ R(-21)* & R(—23)
® R(—25) @ R(-27)
— R(-12)* @ R(—-14)* ® R(-15)* @ R(—16)° ® R(-17)?
® R(—18)* @ R(—19)*> ® R(—20)* @ R(—21) ® R(—22)
® R(—24) ® R(—25) @ R(—26)
— R(—9)? @ R(—10) ® R(—11)* ® R(—12) ® R(—13)
® R(—14) ® R(-15)* @ R(-17)* @ R(-18)? @ R(—21) ® R(—24)
- R — R/Is(f’) — 0.

5. A graded minimal free resolution of the 4-th order symbolic
power of a star configuration in P” of codimension r

In this section, we shall find a graded minimal free resolution of the 4-
th order symbolic power of a star configuration in P™ of codimension r with
n > r > 4. By analogous ideas as in Section 4, we can find the Betti numbers
and shifts of most cases for m = 4, and so we shall omit proofs in detail for
those cases, except for a few of specific cases. Indeed, we know the graded Betti
numbers and the degrees of the minimal generators in the following proposition
using [1, Corollary 5.7] and Proposition 2.5, respectively. Here we introduce an
outline of the proof.



A GRADED MINIMAL FREE RESOLUTION 297

Proposition 5.1. With notations as above, for s > r > 4,

( Z >(—+3+> j=s—(r—4),
() () (]

) j=2(s—(r—1)+2,
BisitiLrs) = (r s 2) (7‘ - 2) J=2(s—(r—2)),

2

coren( ) () = emen
(1)) j=4(s — (r—1)).

Sketch of Proof. By Proposition 2.5, the degrees of the monomial minimal gen-

erators in [ ((f)s) corresponding to each partition A are summarized in the fol-

lowing table.

degree partition
(1) s—(r—4) A=(0,...,0, 1,...,1)
~—— ——

(r—4)-times(s—(r—4))-times

(2)|2(s=(r=1)+2|A=(0,...,0 ,1,1, 2,...,2)

(r—3)-times (s—(r—1))-times
B 26-0=2) | A=(0,...0, 2,....2)
——— ———

(r—2)-times (s—(r—2))-times

(4)13(s=(r=1)+1| A=(0,...,0,1, 3,...,3)

(r—2)-times  (s—(r—1))-times

G) | 4s—(r—1) A=0(0,...,0, 4....4)

(r—1)-times(s—(r—1))-times

The top and the bottom rows of the Betti table are immediate from Corol-
lary 2.6(1) and (2), respectively. The third and forth rows of the Betti table
are also easy to find. So we shall prove the second row only of the Betti table

for the monomial minimal generators in I ) of degree 2(s — (r —1)) +2. Recall

(r,s
A=(0,...,0 , 1,1, 2,2,...,2 ).
—— —_——
(r—3)-times (s—r+1)-times

For 0 € &,, let u = o(y*). Then |C(u)| =7 — 3,7 — 2, or r — 1. Using the
symmetry of 1,2, ..., s, we assume that o(1) = 1,. (r -3)=r-3.

(1) Let |C(u)| = r—3, i.e., max(u) < o(r—2),0 ( 1). Theno(r—2) =s-1
and o(r — 1) = s. Hence by [1, Corollary 3.4, the Betti number is (,.*,) (";?).

2
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(2) Let |C(u)] = r — 2. Then we have o(r — 2) < max(u) < o(r —1). Le,,
o(r—2)=kand o(r —1) = s, where r — 2 < k < s — 2. So, by [1, Corollary
3.4], the Betti number is (s — 7+ 1)(,*,) (T;Q).

(3) Let |C(u)| = r — 1. Then o(r — 2),0(r — 1) < max(u). Hence r — 2 <
o(r—2) <o(r—1) <s—1. Thus, by [1, Corollary 3.4], the Betti number is
(5 () (5

Therefore, the second row of the Betti table is

By U ) = <rf3) Kr;?)) +(s_r+1)(r;2> N (s—;+2) (1“21)]7

as we wished. O

Example 5.2. Let X be a linear star configuration in P™ of type (4,6) with
n > 4 and m = 4. By Proposition 2.5, a graded minimal free resolution of

R/L{ is
0 — R(—11)* @ R(-13)% @ R(-15)*°
10)141 ® R(_12)180 ® R(_14)60
9)180 ¢ R(—11)18° @ R(—13)%°
6) ® R(—8)" @ R(—10)®° @ R(-12)%°
— R — R/I§§4) — 0.

— R(
— R(
— R(

Now we shall find a graded minimal free resolution of the 4-th order symbolic
power of a star configuration X in P™ of type (r,s) with 4 < r < n. As we
mentioned before, we shall skip the proofs in detail, as it is not hard to prove.

Lemma 5.3. With notations as in Proposition 5.1, the free submodule of the
(£ 4+ 1)-st free module Eyyq, which is from the minimal generators of degree

2s— (r—1))+2in I s

(ris)’
TGO ) (—@2s - (r—1) + 2+ 0) @r R

P RQd—(di, +--+di, ) = (i, +diy) + (dj, + - +dj,)))
1<i1 < <ip_3<s
{g1,0de} Clin,eir—3}
Ky =max([s]—{i1,....ir_3})
ko=max([s]—{i1,....ir—3,k1})

5]
D R~ (diy ++di, ) = iy + diy) + (dgy -+ dj,))

1<iy <+ <ir_3<s

= {1

st di, ) = (diy +diy) + (dg + -+ dyy)))
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Proof. Let
A=(0,...,0 1,1, 2,...,2)
S—— ——
(r—3)-times (s—(r—1))-times
For 0 € &, and u = o(y*), recall that |C(u)] =r — 3,7 — 2, or 7 — 1 (see the
proof of Proposition 5.1), i.e.,
C(u)=4c(1),...,0(r=3)}, {o(1),...,0(r—2)}, or
{o(1),...,0(r—=2),0(r—1)}.
(1) Let C(u) = {o(1),...,0(r —3)}, ie., o(r — 2),0(r — 1) > max(u) (see
the proof of Proposition 5.1). Using the symmetry of subscripts 1,2,...,s, we
assume that

Cu)={c(1)=1,...,0(0r=3)=r—=3}, o(r—-2)=s-1, o(r—1)=s.

Then one of the minimal generators of this case in the free module is of the
following form, and thus we get that

Yiys Uy (Y1 U) (Wi 2 va—2) (Y], - Yj,)s
where j1,...,5. € {1,...,r — 3}

(s—1)-st  s-th (r—2)-nd (s—2)-nd ji-st je-th
= (1 +1)+2( 1 +--4+ 1 )+(1 +---4 1)
(r—2)-nd (s—2)-nd  (s—1)-st  s-th (s—1)-st  s-th

= 201 44 1 + 1 4+1)=(C 1 +1)

J1-st Je-th

+(1 44 1)
1-st (r—3)-rd (s—1)-st  s-th j1-st je-th
2s—(1+--+ 1 )ND—(C 1 +1)+(1 +---+ 1)

I8 i

2(d—(dy +dp 4+ + dp3)) = (ds—1 + ds) + (dj, + -+ djp).
From this information with the symmetry of the subscripts 1,2,...,s, we get
that

7)) (—(2(s — (r = 1)) +2+0) @1 R
P R (di, + - +di, ) = (di, +di,) + (dj, + -+ dj,))).

1<iy<-+<ip_3<s
{g1de} v, ir—s}
ki=max([s]—{%1,..., ir—3})
ko=max([s]—{i1,...,ir—3,k1})

(2) Let |C(u)| = r—2. Then o(r — 2) < max(u) < o(r — 1). Using the same
idea as in (1), assume
Clu)={c(1)=1,02)=2,...,0(r=3)=r—-3,0(r—2)=k}, o(r—1)=s.

Since
ky:=k=o0(r —2) < max(u) = max{o(r),...,0(s)} < o(r—1) = s:= ki,

we have that r — 2 < k < s — 2. Recall that the Betti number for this case is

o))
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For such k, we have
U090 syt (Y2 G Ys18) %), -y,
where j1,...,50€{1,...,r—=3,kfand r —2<k<s—2
kth  s-th (r—2)-nd k'th (s—1)-st  s_th

= (1 +1)+2( 1 44+ 1+---+ 1 +1)
J1-st Je-th
+H1 4+ 1)
(r—2)-nd k-th s-th k-th  s-th Ji-st Je-th
=21 4+ 14+--4+1)=(1 +1)+(1 +---4+ 1)
1-st (r—3)-rd k-th  s-th Je-th

2s— (T4 tt Ly=(T T+ ™
2(d7(d1+~'~+dr_3))*(dk+d5)+(djl+"'+dje).

From this observation with the symmetry of subscripts 1,2, ...,s, we have
TGE) =) (25— (r—1) + 2+ 0) @7 R
@ R(7(2(d - (dll +ot d7r—3)) - (dkl + dkz) + (djl +o dji)))'

1<i1 < <ip—3<s
{d1s-0de b C{in, o in—s,k2}
ki=max([s]—{i1,...,ir
ko <max([s]—{i1,
ko {ir,...,ir—3,ks
kz=max([s]—{i1,....ir—3,k })

I8 I

(3) Let |C(u)| =r — 1. Then o(r —2),0(r — 1) < max(u). Using the same
ideas as above, assume

Clu)={c(1)=1,02)=2,...,0(r—=3)=r—3,0(r—2)=k,o(r—1) =1}.
Since
ki:=k=o0(r—2),ke:=1=0(r—1) <max(u) = max{o(r),...,0(s)} = s,

we get that r — 2 < k,1 < s — 1 (see the proof of Proposition 5.1). Recall that
the Betti number for this case is

s s—(r—=2)\/r—-1
r—3 2 / '
For r —2 < k,l <s—1, we have

W09y syt ez Gk D) ?ud, v,
where j1,...,50 € {1,...,r = 3,k, 1},

k-th  I-th (r—2)-nd k-th I-th s-th
= (1 4+ 1)+2( 1 +o 4+ 1 4+ 4+ 1 44+ 1)
Ji-st Je-th
+(1 +---4+ 1)
(r—2)-nd k-th I-th s-th k-th  I-th
= 20 1 ++1++1++1)=(1+1)
Ji-st Je-th
+(1 44 1)
1-st (r—3)-rd k-th  I-th ji-st je-th

2s—(1 +-+ 1 )—(1+ f)+ I +---+ 1)
—(di+ -+ dp_3)) = (dp + dp) + (dj, + -+ dj,).

s I
[\}
—
ISH
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Hence we obtain

()OI (—@2(s = (r— 1)+ 24+ 0)) @0 R
D R iy + -+ di, o)) = (diy +diy) + (djy + -+ dj,))-

1<i1 < <ip_3<s
{J1sesde3 C{inyeeir—a,k1,ka}
{in K23 C (sl Gt i3, })
kz=max([s]—{i1,...,ir—3})

This completes the proof. (I

The following lemma is also easy to prove, and we omit the proof.

Lemma 5.4. With notations as in Lemma 5.3, the free submodule of the (¢+1)-
st free module Egy 1, which is from the minimal generators of degree 2(s—(r—2))

in I ((:1,)5), 18

s

7)) (—(2(s — (r=2)) + ) @r R

= 4B R(=(2(d = (diy + -+ +di;, ) + (dj, + -+ dj,)))-
1<i1 < <ip_a<s
{1, dey v, ir—2}

Lemma 5.5. With notations as in Lemma 5.3, the free submodule of the (£+1)-
st free module Eyyq1, which is from the minimal generators of degree 3(s — (r —

1) +1in I, is
TG ) (—(3(s — (r—1) + 1+ ) @r R

@ R(_(3(d - (d7«1 +oeet di(,-fz))) —2-dp + (djl +eoot djz)))
1<iy < <ip_p<s

{g1sede} Clin, e in_2,k}
ke{1,2,...,s}—{i1,.rir—2}

Proof. Let A\=(0,...,0 ,1, 3,...,3 ). For 0 € &,, let u = o(y*).
S—— N——

(r—2)-times  (s—(r—1))-times
Then C(u) = {o(1),...,0(r—=1)}, i.e., |C(u)| = r—1. To produce monomial
uwwith |C'(u)| = r—1, we can first choose whose variables have degree 0. Among
the remaining variables (s — r 4+ 2), any single one has degree 1. Using the
symmetry of subscripts 1,2,...,s, we may assume that

0—(1):17"'70—(7‘72):7’72, and U(T*l):k’

where r — 1 < k < s. Recall that the Betti number for this case is

(2o
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Forr—1 <k < s, we have

TR V4 (R Ty /M A AR T
where j1,...,50 € {1,...,r — 2, k}

k-th (r—1)-st k-th s-th Jji-st Je-th
—» 1 +3 1 +--+14+-4+1)+(1 +---4+ 1)
(r—1)-st k-th s-th k-th Ji-st Je-th
= 3 1 4+ 1 ++1)=2-1 +(1 +---+ 1)
1-st (r—2)-nd k-th j1-st je-th
= 3s— (144 1 )N=2-1+(C1 +--+1)
5 3(d—(dy+ -+ dra)) —2-di + (dj, + - +dj,).

Therefore, by the symmetry of subscripts 1,2, ..., s with this argument, we get
that

r—1

TG ) (—(3(s — (r—1) + 1+ 0)) @7 R
@ R(_(?’(d_ (dll +oot di(r72))) —2-dp + (dj1 +et d]e)))

{71, de} Clin,ein—2,k}
RE{1,20 8} —{it,errin 2}

This completes the proof. ([

From Lemmas 4.2, 5.3, 5.4, 5.5, and 4.4, we obtain the following theorem.

Theorem 5.6. With notations as in Lemma 5.5, for 4 <r <n, the (£ +1)-st
free module Egy1 of a graded minimal free resolution of R/I§(§4) 18

Egq1

= @ R(87T;3+l) (_(d - (dzl + -+ di(r-4—£))))

1<i1 < <ip_a_y<s

[ P R—Qd—(di +-+di,_) = (di, +di,) + (dj, +-+-+dj,)))

1<i;<--<ip_3<s
Jir—3}

P RQUE— (i +-+di ) = (dr +diy) + (dg, + -+ dy,)))
1<i1 < <ip_3<s
{j1,--de} i, sir—3,ka}
k1=max([s]—{i1 3
ko<max([s]—{i

ka¢{i1,...

kz=max([s]—{

D

{J1,-dey i
{k1,k2}C([s]—{i1,

ka=max([s]—{i

ot di, ) = (dry +diy) + (dgy + o0+ dyg,)))
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@ R(—(2(d — (d;, +"'+di(7,2>))+(dj + - 4dj,)))
1<iy1 < <ip_2<s
{j1,-sdey C{in,ein_2}

S
@ R(_(S(d - (dll +ot di('r‘—Z))) —2-dp+ (dj1 +oet d_}[)))
1<iy < <ip_2<s
{71, de}C{in,eeyip—2,k}
ke{1,2,...,s}—{i1,...,ir_2}

53]

P R(—(4(d = (diy + -+ di(,_))) + (dj, + -+ +dj,)))
1<i1 < <ip_1<s
{j1,--ge} C{i1,emir_1}

foro<e<r-—1.

Example 5.7. Let X be a star configuration in P™ of type (4,5) defined by
forms of degrees 1,1,1,1,5 withn > 4. Let d=d; +---+d5 =9 and let

0—>E4—>IE3—>]E2—>E1—>R—>R/I§(§4)—>O

be a graded minimal free resolution of R/ Is(g4)~ By Theorem 5.6, the first free
module E; is

R(—(2(d — d;) — (dp + dy)))
R(—d)® 1525
k<l {k,0}C{1,2,....,s}—{i}

e | @ R-2d-(d+dy))

1<i<j<s

® P RBd-(d+dy) - 2d)
1<i<j<s
_k€{1’27"')3}_{i7j}

@ D  R(-4(d - (di+d; +di)))

1<i<j<k<s

From the following table on the shifts in E; with dy =dy =d3 =d4 =1,

2(d - dl) — (d2 + dg) 14 2(d — dl) — (d2 + d4) 14 2(d — dl) - (d2 + d5) 10
Q(d—dl) — (d5+d4) 14 2(d—d1) — (d3+d5) 10 Q(d—dl) — (d4+d5) 10

we get the shifts

14%12 10%12,

where *®? means that we have the shift % a-times.
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Since (d — ds) — (d; +d;) = 6 for 4,5 # 5 with ¢ # j, we also have the shift
6%0.
Based on the following table on the shifts in Eq,

2(d—(dy+d2)) | 14 | 2(d — (dy + d3)) | 14
2(d—(dy +da)) | 14 [ 2(d— (i +ds)) | 6

we have the shifts

14®6’ 6®4.

The following two tables shows the shifts in E;.

3(d— (dy + do)) — 2d5 | 19 | 3(d — (dy + da)) — 2dy | 19 | 3(d — (dy + da)) — 2d5 | 11

3(d - (dl + ds)) —2dy | T 3(d - (dl + ds)) —2d3 | 7 3(d — (dl + d{,)) —2dy4 | T

[4(d—(dy +dy+dg)) [24 ] 4(d— (dy +da + d5)) [ 8]
Thus we have the shifts

19912 1196 7@12 0 and  24%4, 896,

So the first free module E; is
E; = R(—6)'° @ R(-7)"? @ R(-8)° @ R(—9) ® R(—-10)"? @ R(—11)°
O R(—14)® @ R(—19)"? @ R(—24)*.

Similarly, by Theorem 5.6, one can find E,, E3, and E4 as well. Therefore, a
graded minimal free resolution of R/ I§(§4)

0— R(-13)*@® R(—-14)"?* @ R(-15)° @ R(—17)"? @ R(-18)°
© R(—22)? @ R(—27)*
— R(-8)>® R(-9)? ® R(—10)° ® R(-12)* @ R(-13)*° @ R(—14)"2
© R(—16)*"2? @ R(—17)'? @ R(—21)3¢ @ R(—26)'?
— R(~=7)? @ R(-8)** @ R(-9)"* @ R(—11)** @ R(-12)*' ® R(-13)"
@ R(—15)* @ R(—16)° & R(—20)*° & R(—25)"?
— R(—6)'"°® R(-7)"* ® R(—8)° ® R(-9) ® R(-10)"* & R(—11)°
© R(—14)"® © R(—-19)? @ R(—24)*
- R — R/Is({l) — 0.

6. Additional comments

In Section 3, we find a graded minimal free resolution for any m-th symbolic
power of a star configuration in P™ of codimension 2. However, that of a star
configuration in P of codimension r > 2 (fixed, i.e., m is possibly > r) is not
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explored, but it is expected to be feasible. For example, if we take r = 3, m = 4,
and s > 3, then we have four different partitions as follows (see Proposition 2.5).

111(2)2]---1]2
0j2(2(2|---12
0(1({3(3]---1]3
0[]0 (4])4]- 4

Using these 4 partitions, we can find a graded minimal free resolution of the
4-th symbolic power of a linear star configuration by [1, Corollary 5.6], and
a star configuration in P” of codimension 3 by Theorem 2.1 using analogous
ideas in Sections 3, 4, and 5. It appears that we can find a closed formula
for a graded minimal free resolution of any m-th symbolic power for a star
configuration in P™ of codimension r > 2, though the formula is not simple. It
may take time, but feasible.

In Sections 4 and 5, we find a graded minimal free resolution in P™ of the
m-~th symbolic power for a star configuration in P™ of any codimension r for
m = 3,4 with r > m. If we consider the case of s > r > 5 and m = 5, then
we obtain the graded Betti numbers and shifts of the 5-th symbolic power for
a linear star configuration in P™ of codimension r, using Proposition 2.5 and
[1, Corollary 4.6] (see also [1, Corollary 5.7]) as follows.

(T_;_g)(s—r+4+ﬁ) ford—s— (r—5),
(oo )C ey
() ()
+(r;3)(21312%“‘”“)(”3)

4

s s—r+az+3\[(s—r+az+2\(r—2-3
/BZ}Hd([((i)S)): +(r—$—3)(8—r+1‘+3 for d (s )(( )
D) COE

(-
( ;1><7~,1><T21) for d=3(s— (r—1)) +2,
( Il)(r_l)(;l) ford=4(s — (r — 1)) + 1,

(r—l)(Tf) for d = 5(s — (r — 1)).

We then use the same ideas in Sections 4 and 5 to find a graded minimal
free resolution of the 5-th symbolic power for a star configuration in P™ of
codimension r with s > r > 5. With this approach, we can continue to find
that of a star configuration in P™ of codimension r > m > 5. As seen before, it
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seems that no recursive formula is available for a graded minimal free resolution
of the m-th symbolic power for a linear or star configuration in P". However,
we have introduced some ideas on how to find that of any m-th symbolic power

for

a star configuration in P™ of any codimension r in Sections 3, 4, and 5,

hoping the ideas are useful to further extensions.
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