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STATIC AND RELATED CRITICAL SPACES WITH

HARMONIC CURVATURE AND THREE RICCI

EIGENVALUES

Jongsu Kim

Abstract. In this article we make a local classification of n-dimensional
Riemannian manifolds (M, g) with harmonic curvature and less than four

Ricci eigenvalues which admit a smooth non constant solution f to the

following equation

∇df = f(r −
R

n− 1
g) + x · r + y(R)g,(1)

where ∇ is the Levi-Civita connection of g, r is the Ricci tensor of g,

x is a constant and y(R) a function of the scalar curvature R. Indeed,

we showed that, in a neighborhood V of each point in some open dense
subset of M , either (i) or (ii) below holds;

(i) (V, g, f + x) is a static space and isometric to a domain in the Rie-
mannian product of an Einstein manifoldN and a static space (W, gW , f+

x), where gW is a warped product metric of an interval and an Einstein

manifold.
(ii) (V, g) is isometric to a domain in the warped product of an interval

and an Einstein manifold.

For the proof we use eigenvalue analysis based on the Codazzi tensor
properties of the Ricci tensor.

1. Introduction

A number of geometric spaces can be defined as the solutions of tensor field
equations which involve Hessian of a function. Gradient Ricci solitons or static
spaces are examples of such spaces.

Here we are interested in geometric spaces as follows: any Riemannian mani-
fold (M, g) of constant scalar curvature R with a smooth non constant function
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f satisfying the following equation with Hessian

∇df = f(r − R

n− 1
g) + x · r + y(R)g,(2)

where ∇ is the Levi-Civita connection of g, r is the Ricci curvature of g, x
is a constant and y(R) a function of R. As explained in [12], the collection
of solutions to (2) includes static spaces, Miao-Tam critical metrics, V-static
spaces and critical point metrics. There are lots of recent interests and devel-
opments for these spaces from various sources [1, 3–5,7, 8, 14,15, 17, 18], but to
understand them in general is nontrivial.

In this article, we shall confine ourselves to study (2) among Riemannian
manifolds with harmonic curvature. This class of Riemannain manifolds has
already been well studied when the manifolds are compact, for critical point
metrics in [17] and Miao-Tam critical metrics in [2].

Harmonic curvature condition is interesting for its own sake. We recall
that Riemannian manifolds with harmonic curvature are characterized when it
admits at most two Ricci eigenvalues [6, Chap. 16] and [9]. So, we are interested
in the spaces satisfying (2) with harmonic curvature and more than two Ricci
eigenvalues.

Four dimensional spaces satisfying (2) with harmonic curvature have already
been characterized in [12]. The approach therein depends on eigenvalue anal-
ysis based on the so-called Codazzi tensors. Although it was effective enough
to yield explicit local and global description of the spaces, the computation be-
comes harder as the dimension of the manifold increases, leaving an interesting
challenge.

Here we search for what can be done in such approach for higher dimension.
Indeed, we managed to find a complete characterization of spaces with less
than four Ricci eigenvalues;

Theorem 1. Let (Mn, g, f) be a (not necessarily complete) n-dimensional Rie-
mannian manifold satisfying (2) with harmonic curvature and less than four
distinct Ricci eigenvalues at each point. Then for each point in some open
dense subset of M , there exists a neighborhood V such that one of the following
three assertions holds:

(i) there are Einstein manifolds (Nk−1, g̃1) and (Un−k, g̃2) with the Ricci
tensor relation rg̃1 = (k−2)k2g̃1 and rg̃2 = (n−k−1)kng̃2 for constants k2, kn
such that

(V, g) is isometric to a domain in the Riemannian product of (Nk−1, p2g̃1)
for a constant p and a static space (Wn−k+1 := I×Un−k, ds2+h(s)2g̃2, f+x)
which is a warped product over an open interval I; the function h on I satisfies
(30), f + x = c · h′(s) for a constant c, and p satisfies (32). (V, g) has exactly
three distinct Ricci eigenvalues at each point. It holds that x R

n−1 + y = 0 and

(V, g, f + x) is a static space.
(ii) (V, g) is isometric to a domain in the warped product (I ×Nn−1, ds2 +

h(s)2gN ) where gN is an Einstein metric with the Ricci tensor rgN = (n−2)kgN
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for a constant k. The function h satisfies (h′)2 + R
n(n−1)h

2 + 2 a
(n−2)hn−2 = k

for a constant a and h′f ′ − fh′′ = x(h′′ + R
n−1h) + y(R)h. (V, g) has exactly

two distinct Ricci eigenvalues at each point.
(iii) (V, g) is Einstein and a warped product over an interval; g = ds2 +

(f ′(s))2g̃, where s is a function such that ∇s = ∇f
|∇f | and g̃ is Einstein. And f

satisfies f ′′ = − R
n(n−1)f + xRn + y(R).

Conversely, the Riemannian product of an Einstein metric and a warped-
product static space as described in (i) is a static space. Moreover, the warped
product metric and the function f as in (ii) or (iii) satisfy (2). All these have
harmonic curvature with less than four distinct Ricci eigenvalues at each point.

To prove this theorem we analyze various cases about Ricci eigenvalues,
based on the framework of [12]. On a space satisfying (2), the gradient ∇f of
the potential function f is known to be an eigenvector for the Ricci tensor. So,
we let E1 = ∇f

|∇f | and form a Ricci-eigen orthonormal frame field Ei, i = 1, . . . , n

with corresponding eigenvalues λi. As λ1 plays a unique role, we divide the
proof into two cases; the first is when the space has λ1 = λi for some i > 1,
and the second is when λ1 6= λi for any i > 1. We note that the argument of
resolving the first case, done in Section 3, may provide a way to analyze the
case of many eigenvalues.

In Section 2, we prepare for the framework of argument. In Section 3, we
prove the case when the space has three eigenvalues with λ1 = λi for some
i > 1. In Section 4, we prove the case of three eigenvalues with λ1 6= λi for any
i > 1. In the last Section 5, we treat the case of one or two eigenvalues and
finish the proof of Theorem 1.

2. Preliminaries

In this section we recall some results from [12] with additional explanation.
A Riemannian metric has harmonic curvature if and only if the Ricci tensor is
a Codazzi tensor, written in local coordinates as ∇krij = ∇irkj , [6, Chap. 16].
A Riemannian manifold with harmonic curvature is real analytic in harmonic
coordinates [10]. Below we shall denote the Ricci tensor as r or R(·, ·).
Lemma 1. For an n-dimensional manifold (Mn, g, f) with harmonic curvature
satisfying (2), it holds that

−R(X,Y, Z,∇f) = −R(X,Z)g(∇f, Y ) +R(Y, Z)g(∇f,X)

− R

n− 1
{g(∇f,X)g(Y,Z)− g(∇f, Y )g(X,Z)}.

Proof. The proof is the same as that of Lemma 2.2 of [12] except the difference
of dimensions. �

Lemma 2 (Lemma 2.3, [12]). Let (Mn, g, f) have harmonic curvature, satis-
fying (2). Let c be a regular value of f and Σc = {x | f(x) = c} be the level
surface of f . Then the following assertions hold:
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(i) Where ∇f 6= 0, E1 := ∇f
|∇f | is an eigenvector field of r.

(ii) |∇f | is constant on a connected component of Σc.

(iii) There is a function s locally defined with s(x) =
∫

df
|df | , so that ds = df

|df |
and E1 = ∇s.

(iv) R(E1, E1) is constant on a connected component of Σc.
(v) Near a point in Σc, the metric g can be written as

g = ds2 +
∑
i,j>1

gij(s, x2, . . . , xn)dxi ⊗ dxj ,

where x2, . . . , xn is a local coordinates system on Σc.
(vi) ∇E1

E1 = 0.

For a point x in M , let Er(x) be the number of distinct eigenvalues of the
Ricci tensor rx, and set Mr = {x ∈M | Er is constant in a neighborhoodof x},
following Derdziński [9], so that Mr is an open dense subset of M . Then we
have:

Lemma 3 (Lemma 2.4, [12]). For a Riemannian metric g of dimension n ≥ 4
with harmonic curvature, consider orthonormal vector fields Ei, i = 1, . . . , n
such that R(Ei, ·) = λig(Ei, ·). Then the followings hold in each connected
component of Mr;

(i) (λj − λk)〈∇Ei
Ej , Ek〉+ Ei{R(Ej , Ek)}

= (λi − λk)〈∇EjEi, Ek〉+ Ej{R(Ek, Ei) for any i, j, k = 1, . . . , n.

(ii) If k 6= i and k 6= j, (λj − λk)〈∇EiEj , Ek〉 = (λi − λk)〈∇EjEi, Ek〉.
(iii) Given distinct eigenfunctions λ and µ of the Ricci tensor r and local

vector fields v and u such that rv = λv, ru = µu with |u| = 1, it holds
v(µ) = (µ− λ)〈∇uu, v〉.

(iv) For each eigenfunction λ of r, the λ-eigenspace distribution is integrable
and its leaves are totally umbilic submanifolds of M .

Lemma 2 implies that for any point p in the open dense subsetMr∩{∇f 6= 0}
of Mn, there is a neighborhood U of p where there exists an orthonormal Ricci-
eigenvector fields Ei, i = 1, . . . , n such that

(i) E1 = ∇f
|∇f | ,

(ii) for i > 1, Ei is tangent to smooth level hypersurfaces of f .
These local orthonormal Ricci-eigenvector fields {Ei} shall be called an

adapted frame field of (M, g, f). We set ζi := −〈∇Ei
Ei, E1〉 = 〈Ei,∇Ei

E1〉 for

i > 1. By (2), ∇Ei
E1 = ∇Ei

( ∇f|∇f | ) =
fR(Ei,·)−f R

n−1 g(Ei,·)+xR(Ei,·)+y(R)g(Ei,·)
|∇f | .

So we may write:

(3) ∇Ei
E1 = ζiEi where ζi =

(f + x)R(Ei, Ei)− R
n−1f + y(R)

|∇f |
.

Due to Lemma 2, in a neighborhood of a point p ∈Mr ∩ {∇f 6= 0}, f may be

considered as functions of the variable s only, and f ′ := df
ds = |∇f |.
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Lemma 4. Let (M, g, f) be an n-dimensional space with harmonic curvature,
satisfying (2). The Ricci eigenfunctions λi associated to an adapted frame field
Ei are constant on a connected component of a regular level hypersurface Σc of
f , and so depend on the local variable s only. Moreover, ζi, i = 2, . . . , n, in (3)
also depend on s only. In particular, we have Ei(λj) = Ei(ζk) = 0 for i, k > 1
and any j.

Proof. Lemma 3.1 of [12] gives the proof in the four dimensional case. Similar
argument can be given in higher dimension. One can refer to Lemma 3 in
[16]. �

3. Three eigenvalues with λ1 = λi for some i > 1

In this section we shall prove that if an n-dimensional space (Mn, g, f) with
harmonic curvature satisfying (2) has exactly three Ricci eigenvalues, then it
is not possible to have λ1 = λi for some i > 1.

Assume that λ1 = λi for some i > 1. We may assume that λ1 = λi for
1 ≤ i ≤ k, λk+1 = · · · = λk+m, λk+m+1 = · · · = λn and λ1, λk+1, λn are
pairwise distinct.

By (3) and Lemma 2, setting p := f + x, we take (Ei, Ei) to (2) and get

R11 =
p′′

p
+

R

n− 1
− z

p
,(4)

Rii = ζi
p′

p
+

R

n− 1
− z

p
for i > 1,(5)

where Rij := R(Ei, Ej) and z := x R
n−1 + y(R).

From the harmonic curvature condition, we have 0 = ∇1Rii − ∇iR1i for
i > 1, which gives

0 = R′ii + ζi(Rii −R11) = (ζi
p′

p
+

R

n− 1
− z

p
)′ + ζi(ζi

p′

p
− p′′

p
)

= ζ ′i
p′

p
+
zp′

p2
+ ζ2i

p′

p
− ζi(

p′

p
)2.

Note that p is not constant. Multiplying the above by p2, we have

(ζi
′p+ z + ζ2i p− ζip′)p′ = 0.(6)

From λ1 = λ2, by (4) and (5), we get ζ2 = p′′

p′ . Put this into (6) and get

p′′′p+ zp′ − p′p′′ = 0.(7)

Integrating, pp′′ − (p′)2 + zp + b1 = 0 for a constant b1. Multiply by 2p−3p′

to get 2p−2p′p′′ − 2p−3(p′)3 + 2zp−2p′ + 2b1p
−3p′ = 0. Integrating, p−2(p′)2 −

2zp−1 − b1p−2 + b2 = 0 for a constant b2. We have

(p′)2 = 2zp+ b1 − b2p2,(8)

p′′ = z − b2p.(9)
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From (4) and (9), Rii = R11 = −b2 + R
n−1 for 2 ≤ i ≤ k.

Now we shall exploit the equation −R1ii1 = Rii − R
n−1 , i ≥ k + 1 from

Lemma 1. From (3) and Lemma 2(vi), we compute R1ii1 = −ζi′ − ζ2i . So, we

get p(ζi
′ + ζ2i )− p′ζi + z = 0 from (5). Set ζi =

u′i
ui

and we obtain

pu′′i − p′u′i + zui = 0.(10)

Notice that (10) is a linear second order differential equation for ui with one
solution being p′; see (7). To find the second solution by reduction of order, we
put ui = p′v into (10) and get a first order linear ODE for v′: pp′v′′ + (2pp′′ −
(p′)2)v′ = 0. With (8) and (9), this gives pp′v′′ = (b2p

2 + b1)v′. Now, we have

v′′

v′
=

(b2p
2 + b1)

pp′
=

(b2p
2 + b1)p′

pp′p′

=
(b2p

2 + b1)

p(2zp+ b1 − b2p2)
p′ = {1

p
+

(2b2p− 2z)

(2zp+ b1 − b2p2)
}p′.

By integration, for some constant C,

v′ =
Cp

2zp+ b1 − b2p2
=

Cp

(p′)2
.(11)

Assume b2 > 0. From (8) and (9) p = c0 sin(
√
b2(s−s0))+ z

b2
for some numbers

c0 6= 0 and s0. By (11) v′ = C
c20b2
·
c0 sin(

√
b2(s−s0))+ z

b2

cos2(
√
b2(s−s0))

. Integrating, for a constant

c̃, we achieve

v =
C

c20b2
{ c0√

b2
sec(

√
b2(s− s0)) +

z

b2

1√
b2

tan(
√
b2(s− s0)) + c̃}.(12)

Any solution ui of (10) can be written as ui = d1p
′ + d2p

′v = p′(d1 + d2v) for

constants d1 and d2. Then ζi =
u′i
ui

= p′′(d1+d2v)+p
′d2v

′

p′(d1+d2v)
= p′′

p′ + d2v
′

d1+d2v
. So we

may write ζi = p′′

p′ + v′

ci+v
for a constant ci, i ≥ k + 1.

On the other hand, we have R = R11 +
∑n
i=2Rii = k(−b2 + R

n−1 ) +∑n
i=k+1{ζi

p′

p + R
n−1 −

z
p}. Use (9), (11) and ζi = p′′

p′ + v′

ci+v
, to get

ap′ +m
1

ck+1 + v
+ (n− k −m)

1

cn + v
= 0,(13)

where a := 1
C ( R

n−1 −nb2). Set x := cos(
√
b2(s− s0)) and y := sin(

√
b2(s− s0)).

Now (12) becomes v = C
c20b2
√
b2x
{c0 + z

b2
y +
√
b2c̃x}. We can write ci + v =

C
c20b2
√
b2x
{c0 + z

b2
y + ĉix} for a constant ĉi.

From (13), ac0
√
b2x(ck+1 + v)(cn + v)+m(cn + v)+(n−k−m)(ck+1 + v) =

0, which yields

aC{c0 +
z

b2
y + ˆck+1x}{c0 +

z

b2
y + ĉnx}+mc0b2{c0 +

z

b2
y + ĉnx}

+ (n− k −m)c0b2{c0 +
z

b2
y + ˆck+1x} = 0.
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By expanding, the above equation has the form of

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0,(14)

where

x2 + y2 = 1, a1 = aC ˆck+1ĉn, a2 = aC( ˆck+1 + ĉn)
z

b2
,

a3 = aC
z2

b22
, a4 = aCc0( ˆck+1 + ĉn) +mc0b2ĉn + (n− k −m)c0b2 ˆck+1,

a5 = 2aCc0
z

b2
+ (n− k)c20b2

z

b2
and a6 = aCc20 + (n− k)c20b2.

From (14), (a1− a3)x2 + a3 + a4x+ a6 = −(a2x+ a5)y. By taking squares, we
obtain {(a1−a3)x2+a3+a4x+a6}2 = (a2x+a5)2(1−x2). We can easily see that
a1 = a3, a2 = 0, a4 = a5 = 0 and a1 + a6 = 0. So, a2 = aC( ˆck+1 + ĉn) zb2 = 0.
Note that C 6= 0.

If az 6= 0, then ˆck+1 + ĉn = 0. And a1 = a3 gives 0 ≤ z2

b22
= ˆck+1ĉn ≤ 0.

Then we get ˆck+1 = ĉn = 0. Then ck+1 = cn, so ζk+1 = ζn, a contradiction.
If a = 0, then a6 = (n− k)c0b2 and a1 = 0. As a1 + a6 = 0, we get b2 = 0,

a contradiction to the assumption b2 > 0.
If z = 0 and a 6= 0, then a3 = 0. So, a1 = aC ˆck+1ĉn = 0. We may assume

ˆck+1 = 0. Then a6 = aCc20 + (n − k)c20b2 = 0, so a4 = aCc0ĉn + mc0b2ĉn =
(k − n+m)c0b2ĉn. We get ĉn = 0, a contradiction to ck+1 6= cn.

We have gotten only contradictions, so we cannot have λ1 = λi for some
i > 1.

The other cases of b2 = 0 and b2 < 0 can be proved similarly and we omit
them. We have proved:

Lemma 5. Suppose that an n-dimensional manifold (Mn, g, f) with harmonic
curvature satisfies (2) and has exactly three Ricci-eigenvectors. Then it is not
possible to have λ1 = λi for some i > 1.

We remark that the argument for Lemma 5 may be extended to any number
of eigenvalues.

4. Three eigenvalues with λ1 6= λi for any i > 1

In this section we treat the case (M, g) has exactly three Ricci-eigenvectors
but λ1 6= λi for any i > 1. We may assume that λ2 = · · · = λk 6= λk+1 = · · · =
λn.

Lemma 6. Let (M, g, f) be an n-dimensional Riemannian manifold with har-
monic curvature satisfying (2). Suppose that for an adapted frame fields Ej,
j = 1, . . . , n, in an open subset W of Mr ∩ {∇f 6= 0}, the eigenvalue λ1 is
distinct from any other λi and λ2 = · · · = λk 6= λk+1 = · · · = λn. Then there
exist coordinates (x1 := s, x2, . . . , zn) in a neighborhood of each point in W
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such that ∇s = ∇f
|∇f | and g can be written as

(15) g = ds2 + p(s)2g̃1 + h(s)2g̃2,

where p := p(s) and h := h(s) are smooth functions and g̃i, i = 1, 2, is
a pull-back of an Einstein metric on a (k − 1)-dimensional domain Nk−1

with x2, . . . , xk coordinates, and on an (n− k)-dimensional domain Un−k with
xk+1, . . . , xn, respectively.

We have E1 = ∂
∂s , Ei = 1

pei, i = 2, . . . , k and Ej = 1
pej, j = k + 1, . . . , n

where {ei} and {ej} are orthonormal frame fields on U1 and U2, respectively.

Proof. For i ∈ {2, . . . , k} and j ∈ {k + 1, . . . , n}, from Lemma 3(ii), we have

(λi − λj)〈∇E1
Ei, Ej〉 = (λ1 − λj)〈∇Ei

E1, Ej〉.

As 〈∇EiE1, Ej〉 = 0 by (3), 〈∇E1Ei, Ej〉 = 0. By Lemma 2(vi) we get,∇E1Ei =∑
l∈{2,...,k},l 6=i Γl1iEl. And [E1, Ei] belongs to the span of E2, . . . , Ek. As the

span of E2, . . . , Ek is integrable by Lemma 3, so the span D1 of E1, E2, . . . , Ek
is integrable. The span D2 of Ek+1, . . . , En is also integrable. By a higher
dimensional version of Lemma 4.2 of [11], there exist local coordinates yi in
which ∂

∂yi
, i = 1, . . . , k, span D1 and ∂

∂yi
, i = k + 1, . . . , n, span D2 and

g =
∑k
i,j=1 g̃ijdyi�dyj+

∑n
i,j=k+1 g̃ijdyi�dyj , where � is the symmetric tensor

product and g̃ij are functions of yi, and
∑k
i=1E

∗
i � E∗i =

∑k
i,j=1 g̃ijdyi � dyj

and
∑n
i=k+1E

∗
i �E∗i =

∑n
i,j=k+1 g̃ijdyi� dyj , where E∗i is the dual of Ei with

respect to g.
By the symmetrical argument to the above, the span D3 of E1, Ek+1, . . . , En

and the span D4 of E2, . . . , Ek is integrable and so there exist local coordinates
zi in which ∂

∂zi
, i = 1 and i = k + 1, . . . , n, span D3, and ∂

∂zi
, i = 2, . . . , k,

span D4 so that g = ĝ11dz
2
1 +

∑n
i=k+1 ĝ1idz1 � dzi +

∑n
i,j=k+1 ĝijdzi � dzj +∑k

i,j=2 ĝijdzi�dzj , where ĝij are functions of zi, where E∗1�E∗1 +
∑n
i=k+1E

∗
i �

E∗i = ĝ11dz
2
1 +

∑n
i=k+1 ĝ1idz1�dzi+

∑n
i,j=k+1 ĝijdzi�dzj and

∑k
i=2E

∗
i �E∗i =∑k

i,j=2 ĝijdzi � dzj .
Now recall the metric expression in Lemma 2(v). The functions s, z2, . . . , zk,

yk+1, . . . , yn form local coordinates near a point and g = ds2+
∑n
i=2E

∗
i �E∗i =

ds2 +
∑k
i,j=2 ĝijdzi � dzj +

∑n
i,j=k+1 g̃ijdyi � dyj .

Denoting by (x1 := s, x2, . . . , xn) the coordinates s, z2, . . . , zk, yk+1, . . . , yn,

the metric g can be written as g = ds2+
∑k
i,j=2 gijdxidxj+

∑n
i,j=k+1 gijdxidxj .

We write ∂1 = ∂
∂s , ∂i = ∂

∂xi
. From Lemma 3(ii), (iii) and Lemma 4, we have

〈∇Ei
Ej , Ea〉 = 0 for i, j ∈ {2, . . . , k} and a = k + 1, . . . , n. So, we should have

〈∇∂i∂j , ∂a〉 = 0. Computing the Christoffel symbol in local coordinates, we get

0 = 〈∇∂i∂j , ∂a〉 = −1

2
∂agij .(16)
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By (3), 〈∇Ei
Ei, E1〉 = −ζ2 for i ∈ {2, . . . , k}. So we get 〈∇∂i∂j , ∂∂s 〉 =

−ζ2gij for i, j ∈ {2, . . . , k}. Computing ∇∂i∂j , we obtain

ζ2gij =
1

2

∂

∂s
gij .(17)

From (16) and (17), for i, j ∈ {2, . . . , k}, we get gij = eCijp(s)2, where the
function p(s) > 0 is independent of i, j and each function Cij depends only on
x2, . . . , xk.

Similarly, we can get gij = eC̃ijh(s)2 for i, j ∈ {k + 1, . . . , n}. So, g can be
written as g = ds2 + p(s)2g̃1 + h(s)2g̃2, where g̃i, i = 1, 2, is a Riemannian
metric on a (k−1)-dimensional domain U1 with x2, . . . , xk coordinates, and on
an (n− k)-dimensional domain U2 with xk+1, . . . , xn, respectively.

In local coordinates (x1 := s, x2, . . . , xn), we shall write some Christofel
symbols Γkij and Ricci curvature of g. In this proof, for any (0, 2)-tensor P ,

P ( ∂
∂xi

, ∂
∂xj

) shall be denoted by Pij . We let ∇̃, Γ̃kij and Rg̃1ij be the Levi-Civita

connection, Christofel symbols and Ricci curvature of g̃1, respectively. For
i, j, l ∈ {2, . . . , k}, we get;

Γlij = Γ̃lij ,(18)

Rij = −g̃1ij{pp′′ + (n− k)
h′

h
pp′ + (k − 2)p′

2}+Rg̃1ij .

By the assumption λ2 = · · · = λk, we have Rij = λ2gij = λ2p
2g̃1ij . So,

Rg̃1ij = λ2p
2g̃1ij + g̃1ij{pp′′ + (n − k)h

′

h pp
′ + (k − 2)p′

2}. So, if k > 3, g̃1 is
Einstein.

Assume k = 3. From (18), for i, j, l ∈ {2, . . . , k}, we have ∇lg̃1ij = ∇̃lg̃1ij =

0 and ∇lRg̃1ij = ∇̃lRg̃1ij so that ∇lRij = ∇̃lRg̃1ij . The harmonic curvature condi-

tion gives ∇lRij = ∇jRil so that ∇̃lRg̃1ij = ∇̃jRg̃1il . By the contracted second
Bianchi identity the 2-dimensional metric g̃1 then has constant curvature.

If k = 2, g̃1 is one-dimensional metric.
We can similarly prove that g̃2 is Einstein and this proves the lemma. �

Lemma 7. For the local metric g = ds2 + p(s)2g̃1 + h(s)2g̃2 of (15) with
the frame Ei, if we write the Ricci tensors of g̃i as Rg̃1 = (k − 2)k2g̃1 and
Rg̃2 = (n − k − 1)kng̃2 for numbers k2 and kn, then the following assertions
hold:

For i ≥ 2, 〈∇Ei
Ei, E1〉 = −ζi with ζ2 = · · · = ζk = p′

p and ζk+1 = · · · =

ζn = h′

h .
For the Ricci tensor components Rij = R(Ei, Ej) of g,

R11 = −(k − 1)(ζ ′2 + ζ22 )− (n− k)(ζ ′n + ζ2n),

Rii = −ζ ′2 − (k − 1)ζ22 − (n− k)ζ2ζn +
(k − 2)

p2
k2 for i ∈ {2, . . . , k},
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Rjj = −ζ ′n − (n− k)ζ2n − (k − 1)ζ2ζn +
(n− k − 1)

h2
kn for j ∈ {k + 1, . . . , n}.

Moreover, R1ii1 := R(E1, Ei, Ei, E1) = −ζ ′i − ζ2i .

Proof. One may verify all the formulas by direct computation or using the
Gauss equation for submanifolds. �

Next, we can prove:

Lemma 8. Under the hypothesis of Lemma 6, it holds that x R
n−1 + y = 0 and

ζ2ζn = 0.

Proof. Recall, for j > 1,

(19) −R1jj1 = Rjj −
R

n− 1
.

We put j = 2 and j = n into (19), and from Lemma 7 get

− 2ζ ′2 − kζ22 − (n− k)ζ2ζn +
(k − 2)

p2
k2 −

R

n− 1
= 0,(20)

− 2ζ ′n − (n− k + 1)ζ2n − (k − 1)ζ2ζn +
(n− k − 1)

h2
kn −

R

n− 1
= 0.(21)

Differentiating (20),

−2ζ ′′2 − 2kζ2ζ
′
2 − (n− k)ζ ′2ζn − (n− k)ζ2ζ

′
n − 2

(k − 2)p′

p3
k2 = 0.(22)

The harmonic curvature condition gives ∇1Rii − ∇iR1i = (Rii)
′ + ζiRii −

ζiR11 = 0. Put i = 2 and get

−ζ ′′2 − kζ2ζ ′2 − (n− k)ζ ′2ζn −
(k − 2)p′

p3
k2 − (n− k)ζ22ζn + (n− k)ζ2ζ

2
n = 0.

Comparing this with (22) gives

ζ ′2ζn − ζ2ζ ′n + 2ζ22ζn − 2ζ2ζ
2
n = 0.(23)

From (5) and (19), ζ ′2 + ζ22 = ζ2
f ′

f+x −
z

f+x and ζ ′n + ζ2n = ζn
f ′

f+x −
z

f+x .

Then,

(ζ ′2 + ζ22 )ζn − (ζ ′n + ζ2n)ζ2 =
z

f + x
(ζ2 − ζn).(24)

The above (23) and (24) yield −ζ22ζn + ζ2ζ
2
n = z

f+x (ζ2 − ζn), so

ζ2ζn = − z

f + x
.(25)

Differentiating (25), and using (25) again,

−(ζ ′2ζn + ζ2ζ
′
n) = − zf ′

(f + x)2
= ζ2f

′ · ζn
f + x

.(26)
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Using (5) and (19), ζ2f
′ = (f+x)(R22− R

n−1 )+z = f(R22− R
n−1 )+x(R22−

R
n−1 )+x R

n−1 +y = f(ζ ′2+ζ22 )+xR22+y. Together with (26), −(ζ ′2ζn+ζ2ζ
′
n)(1+

x
f ) = ζ2f

′ · ζnf = ζn(ζ ′2+ζ22 )+x ζnf {−ζ
′
2−(k−1)ζ22−(n−k)ζ2ζn+ (k−2)

p2 k2}+y ζnf ,

which is rearranged as

x

f
{−ζ2ζ ′n + (k − 1)ζ22ζn + (n− k)ζ2ζ

2
n −

(k − 2)

p2
k2ζn}

= 2ζ ′2ζn + ζ2ζ
′
n + ζ22ζn +

y

f
ζn.(27)

We shall remove ζ2
′ and ζn

′ in (27). By (20) and (23) we get

ζ ′2ζn =
1

2
{−kζ22ζn − (n− k)ζ2ζ

2
n + αζn}, where α :=

(k − 2)

p2
k2 −

R

n− 1
,

ζ2ζ
′
n = ζ ′2ζn + 2ζ22ζn − 2ζ2ζ

2
n = (

4− k
2

)ζ22ζn −
(4 + n− k)

2
ζ2ζ

2
n +

1

2
αζn.

With these, and setting β := (k − 2)ζ22 + (n − k + 2)ζ2ζn − (k−2)
p2 k2, the

left hand side (LHS) of (27) equals x
2f {3βζn − 2ζ2ζ

2
n + R

n−1ζn}, while the RHS

equals
1

2
{−3βζn + 2ζ2ζ

2
n − 3

R

n− 1
ζn + 2

y

f
ζn}.

The equality of LHS=RHS gives

3(1 +
x

f
)βζn =

x

f
{2ζ2ζ2n −

R

n− 1
ζn}+ 2ζ2ζ

2
n − 3

R

n− 1
ζn + 2

y

f
ζn.

From (25), we get (1 + x
f )ζ2ζn = −x

R
n−1+y

f . So,

3(1 +
x

f
)βζn = −3(1 +

x

f
)
R

n− 1
ζn + 2

x

f
ζ2ζ

2
n + 2ζ2ζ

2
n + 2

x

f

R

n− 1
ζn + 2

y

f
ζn

= −3(1 +
x

f
)
R

n− 1
ζn.

We have obtained 3(1 + x
f )(β + R

n−1 )ζn = 0.

As f is not constant, we have either ζn = 0 or β + R
n−1 = (k − 2)ζ22 + (n−

k + 2)ζ2ζn − (k−2)
p2 k2 + R

n−1 = 0.

If ζn = 0, then z = 0 from (25). So, Lemma holds.
If ζn 6= 0, i.e., h′ 6= 0, and β + R

n−1 = 0, then (20) gives

−2ζ ′2−kζ22+
(n− k)

(n− k + 2)
{(k−2)ζ22−

(k − 2)

p2
k2+

R

n− 1
}+ (k − 2)

p2
k2−

R

n− 1
= 0,

which reduces to

−(n− k + 2)
p′′

p
− (k − 2)

(p′)2

p2
+

(k − 2)

p2
k2 −

R

n− 1
= 0



1446 J. KIM

as we put ζ2 = p′

p . Comparing with β + R
n−1 = 0, we get p′′

p = ζ2ζn. So,
p′′

p = p′h′

ph .

Assume that p′ 6= 0. Then p′′

p′ = h′

h and integration gives p′ = c1h for a

constant c1 6= 0. While we are assuming h′ 6= 0 and p′ 6= 0, by a symmetrical
argument between p and h we can also get h′ = c2p for constant c2 6= 0. (25)

again gives p′h′

ph = c1c2 = − z
f+x . So, f is a constant, a contradiction. So,

p′h′ = 0, i.e., ζ2ζn = 0. By (25), z = 0. This proves Lemma. �

Now with the above lemma given, we may assume ζ2 = p′

p = 0 and ζn 6= 0.

The other case that ζ2 6= 0 = ζn will be symmetrical. Now p is a constant, and
(21) becomes

−2
h′′

h
− (n− k − 1)(

h′

h
)2 +

(n− k − 1)

h2
kn −

R

n− 1
= 0.(28)

Multiply (28) by h2, differentiate and then multiply by − 1
2h

n−k−1 to get

hn−kh
′′′

+(n−k)hn−k−1h′h′′+ R
n−1h

n−kh′ = {h′′hn−k+ R
(n−1)(n−k+1)h

n−k+1}′
= 0. Integration gives, for a constant c2,

h′′

h
+

R

(n− 1)(n− k + 1)
=

c2
hn−k+1

.(29)

Put (29) into (28) for n− k ≥ 2, or just integrate (28) when n− k = 1 and get

(h′)2 +
Rh2

(n− 1)(n− k + 1)
+

2c2h
−n+k+1

(n− k − 1)
= kn for n− k ≥ 2,(30)

(h′)2 +
R

2(n− 1)
h2 = c3 for a constant c3, for n− k = 1.

Recall ζ ′n + ζ2n = ζn
f ′

f+x −
z

f+x from (5) and (19). As z = 0, we then have
h′′

h′ = f ′

f+x . Integration gives, for a constant c1 6= 0,

f + x = c1h
′.(31)

And ζ2 = 0 in (20) gives

(k − 2)

p2
k2 =

R

n− 1
.(32)

One can check that the metric g with the above p, h and f in (30)∼(32)
satisfy the equation (2) and the harmonic curvature condition. As p is constant,
g = ds2 + p(s)2g̃1 + h(s)2g̃2 is the Riemannian product of an Einstein metric
(Nk−1, p2g̃1) and (Wn−k+1, ds2 + h(s)2g̃2). Summarizing all the discussion in
this section, we state:

Proposition 1. Let (M, g, f) be an n-dimensional Riemannian manifold with
harmonic curvature satisfying (2). Suppose that for an adapted frame fields
Ej, j = 1, . . . , n, in an open subset W of Mr ∩ {∇f 6= 0}, the eigenvalue λ1
is distinct from any other λi and λ2 = · · · = λk 6= λk+1 = · · · = λn. Then
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there exist coordinates (x1 := s, x2, . . . , zn) in a neighborhood of each point in

W such that ∇s = ∇f
|∇f | and g can be written as

(33) g = ds2 + p2g̃1 + h(s)2g̃2,

where p is a constant and h := h(s) a smooth function satisfying (30) and (32)
and g̃i, i = 1, 2, is an Einstein metric with Ricci tensor Rg̃1 = (k− 2)k2g̃1 and
Rg̃2 = (n − k − 1)kng̃2 for numbers k2 and kn. We also get f + x = c1h

′ and
z := x R

n−1 + y = 0.

Conversely, any Riemannian metric as in (33) satisfying (30) and (32) is a
solution of (2) with f = c1h

′ − x.

5. The proof of Theorem 1

Now we are ready to prove the main theorem.

Proof of Theorem 1. Lemma 5 and Proposition 1 resolve the case of exactly
three Ricci eigenvalues. When λ1 = λi for some i > 1, Lemma 5 shows no
existence of any space (M, g, f). When λ1 6= λi for any i > 1, we have x R

n−1 +

y = 0 by Proposition 1. Then (2) becomes ∇df = (f + x)(Rc − R
n−1g), which

means (M, g, f+x) is a static space. One can see that the (n−k+1)-dimensional
space (Wn−k+1 := I × Un−k, ds2 + h(s)2g̃2, f + x) is also a static space where
the equation (30) corresponds to (2.2) in [13]. It is easy to see that the metric
ds2 + h(s)2g̃2 itself has harmonic curvature.

If there are exactly two distinct Ricci eigenvalues in an open subset of Mr ∩
{∇f 6= 0}, setting µi to be the dimension of λi-eigenspace, the multiplicity
(µa, µb) of Ricci eigenvalues can be either (1, n− 1) or (p, n− p) with 1 < p <
n− 1.

In the (p, n − p) case, we observe that the proof of Lemma 5 contains the
proof for our case. Indeed, as λ1 = λi for some i > 1, following through the
proof of Lemma 5, we see that as there are only two eigenvalues, we still have
ci + v = C

c20b2
√
b2x
{c0 + z

b2
y + ĉix} for a constant ĉi, but the equation (13) has

only two terms, not three. So, the argument can be done more simply to show
no existence.

In the (1, n− 1) case and if λ1 = λi for some i > 1, then this does not occur
by the above paragraph.

In the (1, n − 1) case and if λ1 6= λi for any i > 1, locally the metric g is
known to be a warped product metric of an interval with an Einstein metric;
see the proof of 16.38 Theorem in [6]. To see precise description, we refer to
Proposition 7.1 of [12], where it is analyzed in dimension four, but the argument
still works in higher dimension, yielding (ii).

If there is exactly one Ricci eigenvalue in an open subset of Mr ∩{∇f 6= 0},
i.e., when g is Einstein, this case is discussed as Example 1 of [12]. Though
it is written for four dimension, the argument works for higher dimension.
According to that Example 1, in some neighborhood of a point we can write



1448 J. KIM

g = ds2 + (f ′(s))2g̃, where s is a function such that ∇s = ∇f
|∇f | and g̃ is

considered as a Riemannian metric on a level surface of f . The metric g̃ is
Einstein and f satisfies f ′′ = − R

n(n−1)f + xRn + y(R). �

Theorem 1 indicates that there may be fewer solutions of other geometric
equations such as Miao-Tam metrics or critical point metrics than static spaces.

The converse part of Theorem 1 provides all the examples of Riemann-
ian manifolds with harmonic curvature and less than four Ricci eigenvalues,
satisfying (2). In particular we can get a compact static space (Nk−1, g̃1) ×
S1 ×h (Yn−k, g̃2), where g̃1 and g̃2 are some positive Einstein metrics and
S1 ×h (Yn−k, g̃2) means a warped product metric with warping function h.

We avoid making the long list of all the examples, but refer to the list of
four dimensional spaces in [12].

Remark 1. In this work we have studied static and related spaces with less
than four Ricci eigenvalues. It would be interesting to study four eigenvalues.

It is also interesting to understand in our terms other geometric equations,
such as gradient Ricci solitons or warped product Einstein metrics. In these
mentioned cases the scalar curvature is not constant, which makes the problem
somewhat more difficult.
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