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EXAMPLES OF SIMPLY REDUCIBLE GROUPS

Yongzhi Luan

Abstract. Simply reducible groups are important in physics and che-

mistry, which contain some of the important groups in condensed matter

physics and crystal symmetry. By studying the group structures and ir-
reducible representations, we find some new examples of simply reducible

groups, namely, dihedral groups, some point groups, some dicyclic grou-
ps, generalized quaternion groups, Heisenberg groups over prime field of

characteristic 2, some Clifford groups, and some Coxeter groups. We give

the precise decompositions of product of irreducible characters of dihedral
groups, Heisenberg groups, and some Coxeter groups, giving the Clebsch-

Gordan coefficients for these groups. To verify some of our results, we

use the computer algebra systems GAP and SAGE to construct and get
the character tables of some examples.

1. Introduction

Wigner introduced the concept of ‘simply reducible group’ in his study of
group representations and quantum mechanics [79]. This concept is quite useful
because many of the symmetry groups (in particular, the point groups) we
have in atomic and molecular systems are simply reducible, ‘and algebraic
manipulations of tensor operators become much easier for those groups’ [71,
page 146]. The following paragraph is excerpted from [15, page 45].

Wigner wrote: “The groups of most eigenvalue problems o-
ccurring in quantum theory are S.R.”(where “S.R.” stands for
“simply reducible”) having in mind the study of “small per-
turbations” of the “united system” of two eigenvalue problems
invariant under some group G of symmetries. Then simple
reducibility guarantees that the characteristic functions of the
eigenvalues into which the united system splits can be determi-
ned in “first approximation” by the invariance of the eigenvalue
problem under G. This is the case, for instance, for the angu-
lar momentum in quantum mechanics. We mention that the
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multiplicity-freeness of the representations in the definition of
simply reducible groups is the condition for the validity of the
well-known Eckart-Wigner theorem in quantum mechanics.

Now we give the definition of simply reducible group.

Definition 1.1 ([47, Definition 1], [79, page 57]). A group G is called a simply
reducible group if

• ambivalence: every element of G is conjugate to its inverse,
• multiplicity-free: tensor product of any two irreducible representa-

tions of G decomposes into a direct sum of irreducible representations
of G with multiplicities 0 or 1.

Remark 1.2 ([36, page 152], [78, page 529]).

(1) Here the representation vector space is over C.
(2) Condition (i) means that all classes of G are ambivalent, that all cha-

racters’ values are real numbers, that all irreducible representations of
G are integral (i.e., real) or half-integral (i.e., quaternionic).

(3) Condition (ii) is important for physical applications. It implies that
the ‘correct linear combinations’ of products of basis functions are de-
termined to within a phase factor, and that the solution of the physical
problem is uniquely determined from symmetry arguments.

(4) If one drops the property of ambivalence no essential new difficulties
arise in the definition and in the symmetry relations of Wigner coeffi-
cients. However, if the multiplicity free condition is dropped a multi-
plicity index enters the Wigner coefficients.

Lemma 1.3 ([9, Page 426, Exercise 1.8]). Given two finite simply reducible
groups G and H, then the direct product group G×H is also a simply reducible
group.

If we drop the ‘ambivalence’ requirement in Definition 1.1, the group we
get is called an ASR-group. Here ‘ASR’ is the abbreviation for ‘almost simply
reducible’.

Definition 1.4 ([47, Definition 2]). A group G is called an ASR-group if the
tensor product of any two irreducible representations of G is multiplicity-free.

Remark 1.5 ([48, page 931]). Any simply reducible group is an ASR-group.
The converse, generally speaking, is false. For example, every finite abelian
group is an ASR-group (because all the irreducible representations of abelian
groups are one-dimensional and tensor product of two one-dimensional repre-
sentations is still one-dimensional) whereas the abelian simply reducible groups
are elementary abelian 2-groups.

There are some famous examples of simply reducible groups in chemistry,
mathematics and physics papers.
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Example 1.6 ([79], [15, pages 45, 46], [71, Appendix 3A]). Symmetric groups
S3, S4, quaternion group H, and the rotation groups O(3), SO(3), or SU(2).

Furthermore, most of the molecular symmetry groups such as (using
Schöenflies notation) D∞h, C∞v, C2v, C3v, C2h, D3h, D6h, Td and Oh are si-
mply reducible. These groups are also called point groups (cf. Definition 2.47,
[16, Section 8.2]). Character tables of these point groups can also be found in
[28, 29, 32], Chapter 4 and Appendix 4 of [75]. Molecular examples for these
point groups are (cf. [32] and [81]):

Point group D∞h C∞v C2v C3v C2h D3h D6h Td Oh
Molecule H2 HCN H2O NH3 C16H10 C3H6 C6H6 CH4 SF6

The molecular symbols in the above table are hydrogen, hydrogen cyanide,
water, ammonia, dibenzopentalene, cyclopropane, benzene, methane, sulfur he-
xafluoride, respectively.

There is an open problem for simply reducible groups: give the classification
of all simply reducible groups. This question is interesting to physicists. It is
Problem 11.94 in Unsolved Problems in Group Theory The Kourovka Notebook
(cf. [49, Problem 11.94]). To classify the simply reducible groups, we need to
find as many groups as possible that meet the requirement. That’s why we find
some new examples of simply reducible groups.

Our new examples are as followings.

Group Result
Dihedral group Dn Theorem 2.42

Some crystallographic point groups Theorem 2.52
Dicyclic group Γ(2, 2, n) with n even Theorem 2.54

Generalized quaternionic group Γ(2, 2, 2k−1) Corollary 2.56
Heisenberg group Hn(F2) Theorem 2.69

Clifford group Γ(n) with n 6≡ 1 mod 4 Theorem 2.81
Coxeter groups W (A1),W (A2),W (A3),W (B2),
W (B3),W (G2),W (I2(n)) with n = 5 or n ≥ 7

Theorem 3.32

To verify some of the finite groups in the above table, we use the computer
algebra systems GAP (cf. [26]) and SAGE (cf. [69]) to get the character tables
and some other groups’ information.

The following theorem is a helpful tool for classification, which helps us to
exclude some impossible groups.

Theorem 1.7 (Kazarin-Chankov, [47, page 656]).

(1) Let G be a finite ASR-group. Then G is solvable.
(2) Let G be a finite simply reducible group. Then G is solvable.

All the nonabelian groups in the classification of finite simple groups [5,
Theorem 0.1.1] are not solvable, so by the Kazarin-Chankov Theorem 1.7, we
get:
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Corollary 1.8. All the nonabelian groups in the classification of finite simple
groups are not ASR-groups or simply reducible groups.

By the Feit-Thompson odd order theorem (i.e., every finite group of odd
order is solvable, cf. [67, page 107, Exercise 5.23]), we know all the nonabelian
groups in the classification of finite simple groups are of even order. In fact, if
the order of a finite group is an odd number, then the group identity element
is the only element that is conjugate to its inverse (cf. [20, Corollary 23.4
(Burnside)]); this is the ‘most’ non-ambivalent group. Therefore, we have the
following result.

Theorem 1.9.

(1) The orders of all the nontrivial finite simply reducible groups are even.
(2) Given any even number, we can always find a simply reducible group of

the given order. For example, the dihedral group (cf. Theorem 2.42).

2. Finite groups

2.1. Review of representation theory

We follow [14] to review some basic facts of representation theory of finite
groups.

For any set X, we use ]X to denote the number of elements in X. Let
G be a finite group and V be a finite dimensional vector space over C. We
denote by GL(V ) the linear group of V consisting of all invertible linear maps
A : V → V .

Definition 2.1 ([14, Definition 3.2.1]). A representation of G on V is a group
homomorphism

ρ : G −→ GL(V ) .

We denote this representation by the pair (ρ, V ).

Assume the dimension of V is equal to n, then GL(V ) is isomorphic to the
general linear group GL(n,C). We may regard a representation of G as a group
homomorphism

ρ : G −→ GL(n,C) .

We call this n the dimension or degree of ρ.

Definition 2.2 ([14, page 83]). A representation (ρ, V ) of a group G is irre-
ducible if the only G-invariant subspaces are {0} and V .

Definition 2.3 ([14, page 83]). Let (ρ, V ) and (σ,W ) be two representations
of the group G. If there exists a linear isomorphism of vector spaces

A : V −→W

such that, for all g ∈ G, σ(g)A = Aρ(g), then we say the two representations
are equivalent (or isomorphic).
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Suppose the vector space V is endowed with an inner product 〈·, ·〉. Then
we can define the notion of a unitary representation.

Definition 2.4 ([14, page 84]). A representation (ρ, V ) is unitary if it preserves
the inner product, i.e.,

〈ρ(g)u, ρ(g)v〉 = 〈u, v〉
for all g ∈ G and u, v ∈ V .

Given an arbitrary representation (ρ, V ) of G, it is always possible to endow
V with an inner product: for any chosen basis {v1, v2, . . . , vn} of V , for any
x =

∑n
j=1 ξjvj and y =

∑n
j=1 ηjvj in V , define

(2.5) 〈x, y〉 :=

n∑
j=1

ξjηj .

Then 〈·, ·〉 defined in the equation (2.5) is an inner product of V .
Given an arbitrary inner product 〈·, ·〉 for V , define

(2.6) (v, w) =
∑
g∈G
〈ρ(g)v, ρ(g)w〉

for all v and w in V (cf. [14, page 84]).

Proposition 2.7 ([14, Proposition 3.3.1]). The representation (ρ, V(·,·)) is u-
nitary and equivalent to (ρ, V〈·,·〉). In particular, every representation of G is
equivalent to a unitary representation.

Definition 2.8 ([14, page 84]). Let V and W be two vector spaces endowed
with scalar products 〈·, ·〉V and 〈·, ·〉W , respectively.

(1) A linear operator

U : V −→W

is unitary if

〈U(v), U(v′)〉W = 〈v, v′〉V
for every v, v′ ∈ V .

(2) Two representations (ρ, V〈·,·〉V ) and (σ,W〈·,·〉W ) are unitarily equivalent
if there exists a unitary linear operator U : V →W such that σ(g)U =
Uρ(g) for all g ∈ G.

Proposition 2.9 ([14, Lemma 3.3.2, Lemma 3.3.3]).

(1) Suppose that (ρ, V ) and (σ,W ) are unitary representations of a finite
group G. If they are equivalent, then they are also unitarily equivalent.

(2) Every representation of G is the direct sum of a finite number of irre-
ducible representations.

Definition 2.10 ([14, Definition 3.3.4]). Let G be a finite group. We denote

by Ĝ, the dual of G, a complete set of all irreducible pairwise nonequivalent

(unitary) representations of G (in other words, Ĝ contains exactly one element
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belonging to each equivalence class of irreducible representations). Sometimes,
we call the equivalence class as the isomorphism class.

Theorem 2.11 ([4, Theorem 10.4.6(b)]). Let G be a finite group. There are
finitely many isomorphism classes of irreducible representations of G, the same
number as the number of conjugacy classes in the group G.

Definition 2.12 ([4, pages 298–299]). Let G be a finite group and (ρ, V ) be
a representation of G. The character of the representation ρ is the complex-
valued function whose domain is the group G, defined by

χρ(g) = trace(ρ(g)) .

For simplicity, we sometimes use χ(g) for the character.

Proposition 2.13 ([4, Proposition 10.4.2(f)]). Isomorphic representations
have the same character.

Definition 2.14 ([14, page 271]). Given two representations (ρ, V ) and (σ,W )
of G, we define the tensor product of ρ and σ by

ρ⊗ σ : G −→ GL(V ⊗W ) ,

the action is
(ρ⊗ σ) (g)(v ⊗ w) = (ρ(g)v)⊗ (σ(g)w)

for any g ∈ G and v ⊗ w ∈ V ⊗W .

By Proposition 2.9(2), we know the tensor product representation can be
decomposed into direct sum of irreducible representations of G. By the fo-
llowing theorem, we see the decomposition of representation is precisely the
decomposition of its corresponding character.

Theorem 2.15 ([4, Corollary 10.4.8]). Let ρ1, . . . , ρr represent the isomorphi-
sm classes of all irreducible representations of a finite group G, and let ρ be any
representation of G. Let χj and χ be the characters of ρj and ρ, respectively,
and let

nj = 〈χ, χj〉

=
1

]G

∑
g∈G

χ(g)χj(g) .

Then

(1) χ = n1χ1 + n2χ2 + · · ·+ nrχr, with each nj ∈ Z≥0,
(2) ρ is isomorphic to n1ρ1 ⊕ n2ρ2 ⊕ · · · ⊕ nrρr.
(3) Two representations ρ and σ of a finite group G are isomorphic if and

only if their characters are equal.

Therefore, to study the decomposition of representations of a finite group
G, we can study the decomposition of their corresponding characters. We use
Theorem 2.15 to calculate the multiplicities of irreducible representations for
the decomposition of tensor product.
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Definition 2.16 ([60, page 3264]). For a finite group G and its dual Ĝ. The

Kronecker multiplicity g(ρ, φ, ψ), where ρ, φ, ψ ∈ Ĝ, is defined by the equation

(2.17) χφ · χψ =
∑
ρ∈Ĝ

g(ρ, φ, ψ)χρ ,

here χφ · χψ is the usual (Kronecker) product of characters:

(χφ · χψ)(x) = χφ(x) · χψ(x) .

Remark 2.18 ([43, Proposition 19.6], [30, Abstract]).

(1) χρ⊗σ = χρ ·χσ. Therefore, to study the decomposition of tensor produ-
ct of irreducible representations, we just need to study the Kronecker
multiplicity of the product of characters.

(2) The Kronecker multiplicity is also called the Clebsch-Gordan coefficient
in physics.

Let (ρ, V ) be a representation of G and V ? = Hom(V,C) be the dual vector
space with the natural pairing 〈·, ·〉dual. We define the conjugate representation
(or the contragredient representation) (ρ?, V ?) by

〈ρ?(g)v?, v〉dual := 〈v?, ρ(g−1)v〉dual .

Definition 2.19 ([14, Definition 9.5.1]). The representation ρ is selfconjugate
(or selfadjoint) if ρ and ρ? are equivalent.

Note 2.20 ([14, page 294]).

(1) The representation ρ? is irreducible if and only if ρ is irreducible.
(2) For an irreducible representation (ρ, V ) of G, ρ is selfconjugate if and

only if χρ(g) ∈ R for any g ∈ G.

Lemma 2.21 ([38, Page 10, Proposition]). Let χρ be the character of a repre-
sentation (ρ, V ) of a finite group G. Then

χρ?(g) = χρ(g
−1) = χρ(g)

for all g ∈ G.

Definition 2.22 ([14, Definition 9.7.1, Definition 9.7.2]). Let (ρ, V〈·,·〉) be an
irreducible representation of a finite group G.

(1) The representation ρ is complex when it is not selfconjugate. Equiva-
lently, ρ is complex if and only if ρ and its conjugate representation ρ?

are not unitarily equivalent, i.e., χρ 6= χρ? .
(2) If ρ is selfconjugate and suppose that there exists an orthonormal basis
{v1, v2, . . . , vn} in V such that the corresponding matrix coefficients

us,t : G −→ C
g 7−→ 〈ρ(g)vt, vs〉

are real valued for any g ∈ G and s, t = 1, 2, . . . , n. Then we say that
ρ is real. Otherwise, we say that ρ is quaternionic.
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For any ρ ∈ Ĝ, define (cf. [14, equation (9.34)]):

(2.23) c(ρ) =

1 if ρ is real,
0 if ρ is complex,
−1 if ρ is quaternionic.

The following theorem is a helpful tool to know whether a representation is
real, complex or quternionic, by working on the corresponding character.

Theorem 2.24 (Frobenius-Schur Indicator, [14, Theorem 9.7.7]). Let χ be the
character of an irreducible representation (ρ, V ) of G. Then

(2.25)
1

]G

∑
g∈G

χ(g2) = c(ρ) .

For any h ∈ G, Wigner defined a function on G as following

(2.26) ξ(h) := ]{g ∈ G : g2 = h} .

Corollary 2.27 ([14, Corollary 9.7.8]).

ξ(h) =
∑
ρ∈Ĝ

c(ρ)χρ(h) .

In particular,

ξ(1G) =
∑
ρ ∈ Ĝ
ρ real

dρ −
∑

ρ ∈ Ĝ
ρ quaternionic

dρ ,

here dρ means the dimension of representation ρ.

Theorem 2.28 (Wigner, [14, Theorem 9.7.10]). Let ψ be the number of se-
lfconjugate representations of G. Then

(1) ψ = 1
]G

∑
g∈G ξ(g)2;

(2) ψ is equal to the number of ambivalent classes of G.

For g ∈ G, denote by ν(g) = ]{h ∈ G : hg = gh} for the cardinality of
centralizer. Wigner gave a criterion for simply reducibility as the following
theorem.

Theorem 2.29 ([79, Theorem 2]). For a finite group G, the equality

(2.30)
∑
g∈G

ξ(g)3 =
∑
g∈G

ν(g)2

holds if and only if G is simply reducible.
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2.2. Symmetric groups

Symmetric group S3 and S4 are simply reducible groups. These two exa-
mples are listed in [79]. In fact, we can settle down all the symmetric groups.
Symmetric groups S1 and S2 are cyclic groups of order 1 and 2, respectively.
Character tables for S1 and S2 are

order of the class 1
representative element 1

χ1 1

and
order of the class 1 1

representative element 1 (1 2)
χ1 1 1
χ2 1 −1

respectively. We can see from the above two character tables that S1 and S2

are simply reducible groups.
Since symmetric group Sn is not solvable for n ≥ 5, by Theorem 1.7, we

know Sn is not an ASR-group or a simply reducible group for n ≥ 5.
Therefore, we have the following result:

Theorem 2.31.

(1) Symmetric group Sn is a simply reducible group for n ∈ {1, 2, 3, 4}.
(2) Symmetric group Sn is not a simply reducible group or an ASR-group

for n ≥ 5.

2.3. Boolean group

By Remark 1.5, we know that abelian simply reducible groups are elementary
abelian 2-groups. In this subsection, we make a review of basic facts about the
elementary abelian groups, then we can find some simply reducible subgroups
in the ambivalent group.

Definition 2.32 ([66, page 88], [31, page 6]). An abelian group all of whose
non-identity elements have order p, for some fixed prime number p, is called an
elementary abelian group (or sometimes an elementary abelian p-group).

When p = 2, the elementary abelian 2-group is sometimes called a Boolean
group.

Proposition 2.33 ([66, pages 27, 88, 161]).

(1) Every elementary abelian p-group is a vector space over the prime field
Fp with p many elements; and conversely every such vector space is an
elementary abelian group.

(2) Every finite elementary abelian group is isomorphic to (Z/pZ)n with n ∈
Z≥0.

(3) Every elementary abelian group has a fairly simple finite presentation:

(Z/pZ)n ' 〈e1, . . . , en : epj = 1, ejek = ekej〉 .
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We denote the Boolean group (Z/2Z)n by Bln(n), its presentation is

(2.34) (Z/2Z)n ' 〈e1, . . . , en : e2
j = 1, ejek = ekej〉 .

By the relations in the equation (2.34), we know Bln(n) is ambivalent; since
Bln(n) is abelian, we know that all the irreducible representations of Bln(n)
are 1-dimensional. Since tensor product of any two 1-dimensional representa-
tions is still 1-dimensional, this tensor product must be one of the irreducible
representations. Therefore, we know the tensor product is multiplicity-free.

Theorem 2.35. Boolean group Bln(n) is a simply reducible group for n ∈ Z≥0.

Remark 2.36 ([31, page 22]). Boolean group Bln(2) is the Klein four-group.

For a finite ambivalent group, some of its subgroups are elementary abelian
2-groups.

Proposition 2.37 ([3, Propositions 2 and 3]). Let G be a finite ambivalent
group, Z(G) be the center of G, and G′ be the derived subgroup. Then:

(1) Z(G) and G/G′ are elementary abelian 2-groups.
(2) If G is abelian, then it is an elementary abelian 2-group.

By Proposition 2.37, we get the following result.

Corollary 2.38. Let G be a finite ambivalent group. Then both the center and
abelianization of G are simply reducible groups. Furthermore, if G is abelian,
then G is a simply reducible group.

2.4. Dihedral group

Leonardo da Vinci proved that a finite group of planar isometries (i.e., planar
symmetries) is either a cyclic group Cn or a dihedral group Dn (cf. [54, Theo-
rem 8.8], [17, Page 142]). These groups are also called the rosette groups. By
the Remark 1.5, we know that each cyclic group Cn is an ASR-group. For
a cyclic group Cn, an element x ∈ Cn is conjugate to its inverse only when
x2 = 1, therefore, only C1 and C2 are simply reducible groups. As for the
dihedral group Dn, we discuss the simply reducibility in this subsection.

Let Dn be the dihedral group of order 2n, generated by two elements x and
y such that

xn = 1, y2 = 1, and yx = x−1y .

The presentation of Dn is

(2.39) 〈x, y : xn = y2 = 1, yx = x−1y〉
for positive integer n. For n = 1, we have

D1 = S2 ,

hence it is a simply reducible group. For n ≥ 2, we can write down the
conjugacy classes and irreducible representations of Dn precisely. We use the
conjugacy classes and character tables listed in [43] in the following discussions.
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We give the conjugacy classes, character tables and decompositions of tensor
product representations of Dn with respect to the parity of n.

The dimensions of all the irreducible representations of Dn are equal to

one or two (cf. [43, Section 18.3]). Write ε = e
2πi
n . To make the notations

concise, we make the following adjustments for the two dimensional irreducible
character ψj , with 1 ≤ j ≤ n−1

2 . The character ψj is given in the following
character tables.

• For n+1
2 ≤ j ≤ n− 1, we have 1 ≤ n− j ≤ n−1

2 and

εjr + ε−jr = ε(n−j)r + ε−(n−j)r ,

thus we know ψj = ψn−j and ψj for j > n−1
2 is still making sense.

• For ψ−j with 1 ≤ j ≤ n−1
2 , we have

ε(−j)r + ε−(−j)r = εjr + ε−jr ,

hence we have ψ−j = ψj .

Case 1: n is an odd number
There are precisely 1

2 (n + 3) conjugacy classes (cf. [43, page 108, equation
(12.11)]) of Dn:

{1}, {x, x−1}, . . . , {x
n−1
2 , x−

n−1
2 }, {y, xy, . . . , xn−1y} .

And the character table (cf. [43, page 182]) is

order of the class 1 2 n
representative element 1 xr (1 ≤ r ≤ n−1

2 ) y
χ1 1 1 1
χ2 1 1 −1

ψj (1 ≤ j ≤ n−1
2 ) 2 εjr + ε−jr 0

The decompositions of product of irreducible characters are

χu · χu = χ1 u ∈ {1, 2},
χ1 · χ2 = χ2,

χu · ψj = ψj u ∈ {1, 2} and 1 ≤ j ≤ n−1
2 ,

ψj · ψj = ψ2j + χ1 + χ2 1 ≤ j ≤ n−1
2 ,

ψj · ψk = ψj+k + ψj−k j 6= k and 1 ≤ j, k ≤ n−1
2 .

(2.40)

Case 2: n is an even number
Write n = 2m. There are precisely m+ 3 conjugacy classes (cf. [43, page 108,
equation (12.12)]) of Dn:

{1}, {xm}, {x, x−1}, . . . , {xm−1, x−(m−1)},
{x2jy : 0 ≤ j ≤ m− 1}, {x2j+1y : 0 ≤ j ≤ m− 1} .

And the character table (cf. [43, page 183]) is
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order of the class 1 1 2 m m
representative element 1 xm xr (1 ≤ r ≤ m− 1) y xy

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 (−1)m (−1)r 1 −1
χ4 1 (−1)m (−1)r −1 1

ψj (1 ≤ j ≤ m− 1) 2 2(−1)j εjr + ε−jr 0 0

The decompositions of product of irreducible characters are

χu · χu = χ1 u ∈ {1, 2, 3, 4},
χ1 · χu = χu u ∈ {1, 2, 3, 4},
χ2 · χ3 = χ4,

χ2 · χ4 = χ3,

χ3 · χ4 = χ2,

χu · ψj =

{
ψj u ∈ {1, 2} and 1 ≤ j ≤ m− 1,

ψm−j u ∈ {3, 4} and 1 ≤ j ≤ m− 1,

ψj · ψj =

{
ψ2j + χ1 + χ2 1 ≤ j ≤ m− 1 and m is odd,

χ1 + χ2 + χ3 + χ4 1 ≤ j ≤ m− 1 and m is even,

ψj · ψk =

{
ψj−k + χ3 + χ4 j 6= k, j + k = m and 1 ≤ j, k ≤ m− 1,
ψj+k + ψj−k j 6= k, j + k 6= m and 1 ≤ j, k ≤ m− 1.

(2.41)

Now we have the following result about dihedral groups.

Theorem 2.42. Dihedral group Dn is a simply reducible group for all positive
integers n.

The following result offers us one method to verify the multiplicity-free con-
dition.

Theorem 2.43 (Mackey, [53, Theorem 7]). For a finite group G, if G has a
commutative normal subgroup N such that G/N is of order 2, then the tensor
product of any two irreducible representations of G is multiplicity-free.

Now we come to the proof of Theorem 2.42.

Proof. By the above calculations about the conjugacy classes of Dn, we can
see that every element of Dn is conjugate to it inverse. We can also write the
proof via direct calculations: for any xj and yxj ∈ Dn, we have

yxjy−1 = yxx · · · xy−1

= yxy−1yxy−1yxy−1y · · · xy−1yxy−1

= x−1x−1x−1 · · · x−1x−1 = (x−1)j

= x−j ,
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hence we know xj and x−j are conjugate for any j ∈ {0, 1, 2, . . . , n − 1}. We
also have

(yxj)2 = yxjyxj

= yxy−1yx · · · y−1yxy−1xj

= x−1x−1 · · · x−1xj = (x−1)jxj

= 1 ,

thus

(yxj)−1 = yxj ,

we get yxj and (yxj)−1 are conjugate for any j ∈ {0, 1, 2, . . . , n−1}. Therefore,
every element in Dn is conjugate to their inverses.

There are two method to show the ‘multiplicity-free’ requirement.
Method 1. By the decompositions in (2.40) and (2.41), we know the deco-

mpositions are multiplicity-free.
Method 2. The subgroup 〈x〉 generated by x is a commutative normal subg-

roup of Dn with index 2, by Mackey Theorem 2.43, we know the decomposition
is multiplicity-free.

Therefore, we know Dn is a simply reducible group for all the positive integer
n. �

Remark 2.44.

(1) The Klein four group is isomorphic to D2, by Theorem 2.42, we know
Klein four group is also a simply reducible group.

(2) A finite group F is called a Frobenius group if it contains a subgroup
H such that

H ∩ gHg−1 = {1} for every g ∈ F −H .

Dihedral group Dn is a Frobenius group for odd number n ≥ 3, by
taking H = 〈y〉 (cf. [73, page 80]). However, not every Frobenius
group is a simply reducible group. For example, the Frobenius group
F20 of order 20 is given by the following presentation

〈x, y : x5 = y4 = yxy−1x−2 = 1〉 .
We calculate its character table as follows:

order of the class 1 4 5 5 5
representative element 1 x y y2 y3

χ1 1 1 1 1 1
χ2 1 1 −1 1 −1
χ3 1 1 i −1 −i
χ4 1 1 −i −1 i
χ5 4 −1 0 0 0

We see

χ5 · χ5 = 3χ5 + χ1 + χ2 + χ3 + χ4 ,
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hence it is not multiplicity-free. Therefore F20 is not a simply reducible
group.

In solid state physics and molecular symmetry theory, the dihedral group Dn

is a point group. We have proved that Dn is a simply reducible group (Theorem
2.42), we want to know whether there are more simply reducible groups in the
family of point groups. Firstly, we make a review about the point groups (cf.
[16, 40,51,58,70]).

Many microscopic and macroscopic assemblages (or objects, or figures, or
systems, or bodys, etc. in different literatures) exhibit some form of symmetry.
For example, water molecule and snowflake:

Definition 2.45 ([70, page 14], [51, page 64]). An assemblage is said to have
symmetry if some movement (or operation) of the assemblage leaves the asse-
mblage in a situation indistinguishable from its original (or initial) situation. A
symmetry operation on an assemblage is a movement that moves the assemblage
to a situation which is indistinguishable from its initial situation.

Remark 2.46 ([51, page 5, 64]).

(1) Symmetry is a spatial property of an assemblage, by which the parts
of the assemblage can be moved from an initial situation to another
indistinguishable situation by the movement called the symmetry ope-
ration.

(2) The term “assemblage” can be used to describe the distribution of faces
on a crystal, of bonds radiating from a central atom and of diffractions
spectra from crystalline materials. That’s the reason we pick this term
to give Definition 2.45.

(3) The symmetry operation reveals the symmetry property inherent in
the assemblage according to the nature of the operation.

Definition 2.47 ([51, page 65]). A point group is the group of symmetry
operations on an assemblage, all of these operations pass through a single fixed
point.

Example 2.48 ([58, page 63], [81, Table]). The point group for a molecule (or
a finite cluster of atoms or some similar assemblage) is finite if the molecule
consists of a finite number of atoms and is mapped onto itself by a finite number
of isometries. The point group for the triphenylphosphine molecule is the cyclic
group C3. However, the group is infinite for linear molecules like the hydrogen
and the carbon dioxide:
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Because the molecular axis is infinite order, the resulting point groups are
infinite. In fact, they share the same point group D∞h (cf. Example 1.6).

Remark 2.49 ([51, page 65], [58, page 64], [40, page 169]).

(1) The symmetry operations of a point group must leave at least one point
unmoved: in some cases, it is a line or a plane that is unmoved under
the action of the point group. For a finite molecule, all its symmetry
operations leave its center of gravity unchanged.

(2) Point groups describe the microscopic symmetry of molecules and the
macroscopic symmetry of crystals. Therefore, they are frequently used
in studying electronic states and vibrations of molecules as well as the
symmetry of the macroscopic properties of crystals.

Definition 2.50 ([40, pages 169–170], [16, pages 389–393]). We denote the
geometrical symmetry operations by the following symbols:

E: Identity operation.
Cl: Rotation through an angle 2π

l . The rotation axis is called an l-fold
axis. If we need to write down the axis in precise, we use Cn

l to denote
the rotation through angle 2π

l about the axis n, this n is called a
principal axis. One usually chooses the principal axis as the z-axis.

I: Space inversion. It takes r into −r.
σ: Mirror reflection. It carries three kinds of suffixes according to the

property of the mirror plane.
σh: Mirror reflection in the horizontal plane. This σh is equal to ICz

2 ,
where the reflection plane’s normal vector is in the z direction.

σv: Mirror reflection in the vertical plane. This is a reflection across a
plane containing the principal axis.

σd: Mirror reflection in the vertical diagonal plane.
ICl: Rotatory inversion. Rotation through the angle 2π

l followed by
inversion. In general, a rotatory inversion may also be understood as
a rotatory reflection (rotation followed by reflection).

For the rotation Cl, the number l can be any positive integer. However, we
need to consider the translational symmetry when we work on the crystals. To
make the rotational symmetry be compatible with the translational symmetry,
the value l must be 1, 2, 3, 4, and 6. Point groups composed of rotations and
inversion under this restriction are called crystallographic point groups. Using
the Schöenflies symbols, all the 32 crystallographic point groups are listed as
followings (cf. [40, pages 171–172] [4, Theorem 6.12.1]).

Group Cn: This group has only an n-fold rotation axis. It is a cyclic
group of order l consisting of E,Cn,C

2
n, . . . ,C

n−1
n (n = 1, 2, 3, 4, 6).

Group Ci: This group is composed of the space inversion I and the
identity E.

Group Cnv: This group has n vertical mirror planes and an n-fold axis
(n = 2, 3, 4, 6).
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Group Cnh: This group has a horizontal mirror plane and an n-fold axis
(n = 1, 2, 3, 4, 6). It contains the inversion I for n = 2, 4, 6. In some
literatures, C1h is also denoted as Cs.

Group Sn: This group has only an n-fold rotatory reflection axis (n =
4, 6). For n = 2 and 3, other symbols, Ci and C3h, are commonly used
in place of S2 and S3.

Group Dn: This group has n two-fold axes perpendicular to the n-fold
rotation axis (n = 2, 3, 4, 6).

Group Dnd: Addition of n diagonal mirror planes to the group Dn resu-
lts in this group (n = 2, 3). The mirror planes bisect the angles between
the two-fold axes.

Group Dnh: Addition of a horizontal mirror plane to Dn results in this
group (n = 2, 3, 4, 6). Dnh contains the inversion for n = 2, 4, and 6.

Group O: The octahedral group of 24 rotational symmetries of a cube or
an octahedron. It is isomorphic to the symmetric group S4.

Group Oh: This group is the combine of O and the inversion: Oh =
O × Ci.

Group T : The tetrahedral group of 12 rotational symmetries of a tetra-
hedron. It is isomorphic to the alternating group A4.

Group Th: This group is the combine of T and the inversion: Th =
T × Ci.

Group Td: The full symmetry group of a tetrahedron. It is obtained by
adding 6IC4 and 6σd operations to T .

Remark 2.51 ([16, page 399, Ex.8.1], [40, pages 172–173]).

(1) The group Sn is not the symmetric group Sn. In fact, S2m = Cm×Ci
for odd m, and S2m ' C2m for even m.

(2) The point groups O,Oh, T, Th, and Td are called the cubic point groups.
Of these five groups, Oh and Td often appear in physical applications.
They are related by Oh = Td × Ci.

(3) In addition to the above 32 crystallographic point groups, the following
two groups describe the symmetry of linear molecules:

Group C∞v: This group consists of rotations of arbitrary angles
about the molecular axis and vertical mirror reflections.

Group D∞h: Homonuclear diatomic molecules have this symmetry.
Addition of the horizontal mirror plane to C∞v leads to this group.

According to Example 1.6, we know both C∞v and D∞h are simply
reducible groups.

By the already known facts and Lemma 1.3, we can settle down all the 32
crystallographic point groups in accordance with the simply reducibility.

Theorem 2.52. Point groups C1, C2, Ci, C2v, C3v, C4v, C6v, C1h, C2h, D2,
D3, D4, D6, D2d, D3d, D2h, D3h, D4h, D6h, O, Oh and Td are simply reducible
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groups. The remaining crystallographic point groups, C3, C4, C6, C3h, C4h,
C6h, S4, S6, T and Th are not simply reducible groups.

Proof. By Remark 1.5, we know C1, C2 and Ci are simply reducible groups,
while C3, C4 and C6 are not simply reducible groups.

By Example 1.6, we know C2v and C3v are simply reducible groups. In fact,
Cnv is isomorphic to the dihedral group Dn [16, page 394]. Therefore, we know
C4v and C6v are also simply reducible groups.

For the group Cnh, since C1h is a group of order 2, it is isomorphic to
C2. Hence we know C1h is a simply reducible group. The simply reducibility
for C2h is already known in Example 1.6. In fact, Cnh is isomorphic to C2n

(respectively Cn × Ci) for odd (respectively even) n [16, page 399, Ex. 8.2].
Hence, we have the following isomorphisms:

C3h ' C6,

C4h ' C4 × Ci,
C6h ' C6 × Ci ,

easily we know these three groups are not simply reducible groups.
For the group Sn, we have the following isomorphisms by Remark 2.51(1):

S4 ' C4,

S6 = C3 × Ci .

Hence, we know both of them are not simply reducible groups.
Dihedral group Dn (n = 2, 3, 4, 6) are simply groups, this is proved in Theo-

rem 2.42.
For the group D2d and D3d. By [16, page 399, Ex. 8.4], we know Dnd =

Dn × Ci for odd n and Dnd ' D2n for even n. Hence we know D2d and D3d

are simply reducible groups.
For the group Dnh, because Dnh ' D2n for odd n and Dnh = Dn × Ci for

even n [16, page 399, Ex. 8.5], we know D2h, D3h, D4h and D6h are simply
reducible groups.

For the remaining five cubic point groups, they are easy to settle down by
the already know facts. �

2.5. Dicyclic group

Consider the dicyclic group Γ(2, 2, n) of order 4n (cf. [65, pages 347–348]),
its presentation is

〈x, y : x2n = 1, y2 = xn, y−1xy = x−1〉 .

According to the following Theorem 2.53 and proofs in [65, page 348], we
know the order of x is equal to 2n.

Theorem 2.53 ([65, Theorem 12.29(2)]). The presentation

〈Y : S〉 = 〈x, y : xn = 1, ym = 1, yx = xsy〉
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defines the group

H = {xiyj : 0 ≤ i < n and 0 ≤ j < m},
where order(H) = mn, order(x) = n, order(y) = m and

(xiyk)(xjyl) = xi+js
k

yk+l .

Moreover, any group of order mn that is generated by Y and satisfies the rela-
tions S is defined by 〈Y : S〉.

Now we come to our result about the simply reducibility:

Theorem 2.54. Dicyclic group Γ(2, 2, n) is an ASR-group for n ∈ Z≥1. In
particular, Γ(2, 2, n) is a simply reducible group when n is an even number.

Proof. Consider the subgroup 〈x〉 generated by x, since

]Γ(2, 2, n)

]〈x〉
=

4n

2n
= 2 ,

we know 〈x〉 is a normal subgroup of Γ(2, 2, n). 〈x〉 is also a commutative
group. By Theorem 2.43, we know tensor product of any two irreducible re-
presentations of Γ(2, 2, n) is multiplicity-free. Hence we know Γ(2, 2, n) is an
ASR-group.

When n is an even number, say n = 2r. Then x is conjugate to x−1 is given
by the definition of Γ(2, 2, n), hence we also have xj is conjugate to x−j for any
j ∈ {1, 2, 3, . . . , 2n}. For the generator y, we have

xryx−r = xryx3r

= yx−rx3r (by y−1xy = x−1, i.e., xy = yx−1)

= yx2r = yxn = y3 = y−1 ,

thus we know y is conjugate to y−1. Because y2 = xn, we know the order of y
is equal to 4. Hence we have yk is conjugate to y−k for any k ∈ {1, 2, 3, 4}.

Any element in the dicyclic group Γ(2, 2, n) can be written as xjyk for j ∈
{1, 2, 3, . . . , 2n} and k ∈ {1, 2, 3, 4}. When k = 2 or 4, we have

xjy2 = xjxn = xj+n,

xjy4 = xj · 1 = xj .

Hence we know they are conjugate to their inverses. When k = 3, we have

xjy3 = xj · y2 · y = xj · xn · y = xj+ny ,

hence we only need to prove that xjy is conjugate to its inverse for any j ∈
{1, 2, 3, . . . , 2n}. If j > r, then we have

xj−ry · xjy · (xj−ry)−1 = xj−ry · xjy · y−1xr−j

= xj−ry · xr = yy−1xyy−1xyy−1 · · ·xyy−1xy · xr

= y · (x−1)j−r · xr (because y−1xy = x−1)
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= yx−j+2r = y · x2r · x−j = y · y2 · x−j = y−1 · x−j

= (xjy)−1 ,

thus we know xjy is conjugate to its inverse when j > r. If j = r, then

y · xry · y−1 = yxr ,

since
xry · yxr = xry2xr = xrxnxr = x2n = 1 ,

we know (xry)−1 = yxr and xry is conjugate to its inverse. If j < r, then

xj+3ry · xjy · (xj+3ry)−1 = xj+3ryx−3r = yy−1xyy−1x · · · yy−1xy · x3r

= yx−j−6r = yx−j+2r (because x4r = x2n = 1)

= y · xn · x−j = y3 · x−j = y−1x−j

= (xjy)−1 ,

thus we know xjy is conjugate to its inverse when j < r.
By the above discussion, we know that every element of Γ(2, 2, n) is conjugate

to its inverse, and Γ(2, 2, n) is a simply reducible group when n is an even
number.

When n is an odd number, say n = 2r + 1. For any xbyc ∈ Γ(2, 2, n), since
xbycy(xbyc)−1 = xbyx−b, we only need to consider the existence of xb such that

xbyx−b = y−1 .

By the relation xy = yx−1, we have

xbyx−b = yx−bx−b = yx−2b .

Since y2 = x2r+1 and 2b is an even number, there is no number b such that
x−2b = y2. Thus we know y is not conjugate to y−1, and Γ(2, 2, n) is not a
simply reducible group when n is an odd number. �

As a special example, the generalized quaternion group of order 2k+1 is

(2.55) 〈x, y : x2k = 1, y2 = x2k−1

, yxy−1 = x−1〉 .
Hence we can denote the generalized quaternion group by using symbol of
dicyclic group: Γ(2, 2, 2k−1), here k ∈ Z≥2. Since 2k−1 is an even number, by
Theorem 2.54, we get:

Corollary 2.56. The generalized quaternion group Γ(2, 2, 2k−1) is simply re-
ducible for k ∈ Z≥2.

Remark 2.57 ([18, page 8]). The smallest dicyclic group is Γ(2, 2, 2), it is the
quaternion group

(2.58) H =

±1,±i,±j± k :

i · j = −j · i = k

j · k = −k · j = i

k · i = −i · k = j

i2 = j2 = k2 = −1

 .
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This is the case when k = 2. Therefore H is a simply reducible group.

2.6. Metacyclic group and binary polyhedral group

Definition 2.59 ([44, page 88]). A group G is called metacyclic if it has a
normal subgroup H such that both H and G/H are cyclic.

Remark 2.60. Both dihedral group and dicyclic group are special examples of
finite metacyclic group.

The following theorem gives a description of any finite metacyclic group
in terms of the four parameters m,n, r, s, note that it is not a classification
theorem.

Theorem 2.61 ([44, Proposition 7.1]). Consider the group

(2.62) G = 〈x, y : xm = 1, y−1xy = xr, yn = xs〉,
where m,n, r, s ∈ Z>0, r, s ≤ m, and

rn ≡ 1 mod m, rs ≡ s mod m .

Then H = 〈x〉 is a normal subgroup of G such that

H ' Cm, G/H ' Cn .

Thus, G is a finite metacyclic group, and moreover, every finite metacyclic
group has a presentation of this form.

By the above theorem, we can easily get the following result.

Corollary 2.63. Finite metacyclic group G is an ASR-group when n = 2.

Proof. When n = 2, then H is a commutative normal subgroup of G and the
order of the quotient group G/H is 2. By the Mackey Theorem 2.43, we know
G is multiplicity-free, and G is an ASR-group. �

More generally, consider the binary polyhedral group (or von Dyck group)
Γ(p, q, n) with parameters (p, q, n) (cf. [19, page 68], [45, page 276])

〈x1, x2, x3 : xp1 = xq2 = xn3 = x1x2x3〉 .
Γ(p, q, n) is finite only when (p, q, n) = (2, 3, 3) or (2, 3, 4) or (2, 3, 5) or (2, 2, n)
(cf. [19, Section 6.4]). In these situations, the group has an order 2 center,
which is generated by x1x2x3. In fact, we have

Γ(2, 3, 3) = tetrahedral group of order 12, i.e., the alternating group A4,

Γ(2, 3, 4) = octahedral group of order 24, i.e., the symmetric group S4,

Γ(2, 3, 5) = icosahedral group of order 60, i.e., the alternating group A5,

Γ(2, 2, n) = dicyclic group.

Only Γ(2, 3, 4) and Γ(2, 2, n) with even number n (cf. Theorem 2.54) are si-
mply reducible. For other values (p, q, n), the center may be infinite. We can
summarize as the following result.
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Theorem 2.64. Finite binary polyhedral group Γ(p, q, n) is simply reducible
when (p, q, r) = (2, 3, 4) or (p, q, r) = (2, 2, n) with n being an even number.

2.7. Heisenberg group

Heisenberg group over the real numbers R is important to quantum mechani-
cs, “the state space of a quantum particle, either free or moving in a potential,
will be a unitary representation of this group, with the group of spatial tran-
slations a subgroup.” (cf. [83]) As for the Heisenberg group over a finite field,
it is useful in time-frequency analysis [63], Gabor analysis [23], phase space
methods in quantum information theory [33, 77], mobile communication and
radar applications [37]. Therefore, we want to know whether the Heisenberg
group is simply reducible.

The Heisenberg group Hn(K) is defined for any commutative ring K with
n ∈ Z≥1. Firstly, we assume K = Z/pZ is a prime field, i.e., p is a prime
number. Then Hn(K) is defined as following:
(2.65)

Hn(K) =


1 a c

0 In b
0 0 1

 ∈ GL(n+ 2,K) :

a is a row vector of length n
b is a column vector of length n
In is the identity matrix of size n
c is a number in K

 .

By direct calculation, we see the order of Hn(K) is p2n+1.
The field K = Z/pZ has the property that there is an embedding ω of K as

an additive group into the circle group S1:

ω : K −→ S1

j 7−→ e
2πi
p j .

Lemma 2.66. Every element of the Heisenberg group Hn(K) is conjugate to
its inverse only when the characteristic of K is equal to 2.

Proof. By the equation (2.65), we know that matrix in Hn(K) is determined
by vectors a, b, and scalar c. Thus we use M(a, b, c) to denote a matrix in
Hn(K).

For any M(a, b, c) ∈Hn(K), its inverse is

M(a, b, c)−1 = M(−a,−b,
n∑
j=1

ajbj − c) .

We want to find some matrix M(x, z, y) ∈Hn(K) such that

M(x, z, y)M(a, b, c)M(x, z, y)−1 = M(a, b, c)−1 .

By direct calculation, we have

M(x, z, y)M(a, b, c)M(x, z, y)−1 = M(a, b, c+

n∑
j=1

xjbj −
n∑
j=1

ajzj) .
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The equality

M(a, b, c+

n∑
j=1

xjbj −
n∑
j=1

ajzj) = M(−a,−b,
n∑
j=1

ajbj − c)

holds if a = −a, b = −b and c+
∑n
j=1 xjbj −

∑n
j=1 ajzj =

∑n
j=1 ajbj − c, the

only possibility is when p = 2. Then let x = a, z = 0 and for any y ∈ K, we
have

M(a, 0, y)M(a, b, c)M(a, 0, y)−1 = M(a, b, c)−1 .

Therefore, we know when p = 2, every element in Hn(K) is conjugate to its
inverse. When the characteristic of K is not equal to 2, not every elements in
Hn(K) are conjugate to their inverses. �

Lemma 2.67. For the Heisenberg group Hn(K), denote its commutator subg-
roup and center by Hn(K)′ and ZHn(K), respectively. Then we have

Hn(K)′ = ZHn(K) ' K .

Proof. For any M(x, z, y), M(a, b, c) ∈ Hn(K), we calculate the elements of
commutator subgroup as followings.

M(x, z, y)M(a, b, c)M(x, z, y)−1M(a, b, c)−1

= M(0, 0,

n∑
j=1

(xjbj − ajzj))

=

1 0
∑n
j=1(xjbj − ajzj)

0 In 0
0 0 1

 ,

here we have
n∑
j=1

(xjbj − ajzj) =

n∑
j=1

det

(
xj aj
zj bj

)
it can take any value of K, thus we get the commutator subgroup

Hn(K)′ = {M(0, 0, c) ∈Hn(K) : ∀c ∈ K} .

The center of Hn(K) can be calculated similarly, it is

ZHn(K) = {M(0, 0, y) ∈ GL(n,K) : y ∈ K} = Hn(K)′ ' K . �

By Lemma 2.67, we know the number of non-equivalent one-dimensional
irreducible representations of Hn(K) is equal to

](Hn(K)/Hn(K)′) = ](Hn(K))/]K = p2n .

Since Hn(K)/ZHn(K) ' K2n is abelian, the irreducible characters with trivial

central character ω are one-dimensional, the p2n characters of the additive
group K2n. All the p2n one-dimensional irreducible characters of Hn(K) are
induced from the p2n one-dimensional irreducible characters of K2n by letting
the trivial action on the center ZHn(K) (cf. [57, page 164, Lemma 5]).
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For any nonzero h in K, define the representation ρh on the finite-dimen-
sional inner product space l2(Kn) by

(ρh(M(a, b, c))f)(x) = ω(b.x+ hc)f(x+ ha)

for any M(a, b, c) ∈ Hn(K) and f ∈ l2(Kn). The corresponding Stone-von
Neumann theorem for Heisenberg group (cf. [59, Chapter 1], [80], [35, Exercises
14.5]):

(i) ρh is an irreducible representation of Hn(K),
(ii) ρh and ρk are pairwise non-equivalent, for all h 6= k,

and all irreducible representations of Hn(K) on which the center acts nontrivia-
lly arise in this way.

We also have

p2n+1 = 12 × p2n + (pn)2 × (p− 1) ,

here p2n+1 = ]Hn(K), p2n is the number of non-equivalent one-dimensional
irreducible representations of Hn(K), p − 1 is the number of non-equivalent
pn-dimensional irreducible representations ρh of Hn(K).

By direct calculation, we see the character χ of ρh is given by (cf. [80]
[35, Exercises 14.5])

(2.68) χ(M(a, b, c)) =

{
pnω(hc) if a = b = 0,

0 otherwise.

Theorem 2.69. Finite Heisenberg group Hn(K) over prime field K = Z/pZ
is a simply reducible group when p = 2; Hn(K) is not a simply reducible group
over prime field K when the prime number p ≥ 3. Meanwhile, Heisenberg group
over a field whose characteristic is not equal to 2 is not simply reducible.

Proof. By Lemma 2.66, we know Hn(K) is ambivalent only if p = 2. For other
field whose characteristic is not equal to 2, we know the Heisenberg group
cannot be ambivalent.

Now we verify the multiplicity-free condition for p = 2. There are 22n

one-dimensional irreducible representations of Hn(Z/2Z), and only one 2n-
dimensional irreducible representation, we denote these representations by η1,
η2, . . . , η22n , π2n . All the ηj ’s are induced from the irreducible characters of
(Z/2Z)2n by letting the trivial action on the center ZHn(Z/2Z). By the equation
(2.68), we know the character of this 2n-dimensional irreducible representation
is

χπ2n
(M(a, b, c)) =

{
2nω(c) if a = b = 0,

0 otherwise.

Tensor product of any two one-dimensional irreducible representations is
still a one-dimensional representation. Tensor product of any one-dimensional
representation with π2n is still π2n , because χπ2n

has nonzero value only if
a = 0 and b = 0, this is just the character values of the center ZHn(Z/2Z), while
the one-dimensional representation’s character values at center ZHn(Z/2Z) are
all equal to 1, hence the tensor product is still π2n .
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Character of tensor product of π2n with itself is

χπ2n⊗π2n
(M(a, b, c)) =

{
22n if a = b = 0,
0 otherwise.

By Theorem 2.15, we can calculate the inner product of χπ2n⊗π2n
with all the

irreducible representations, we get

χπ2n⊗π2n
= χ1 + χ2 + · · ·+ χ22n ,

here χj is the character of the one-dimensional irreducible representation of
Hn(Z/2Z), 1 ≤ j ≤ 22n. Thus we know the tensor product is multiplicity-free,
and Hn(Z/2Z) is a simply reducible group. �

By Theorem 2.69, we know any field (finite or infinite) whose characteristic
is not 2 is not simply reducible. For the finite field F2r of characteristic 2, we
have proved that the Heisenberg group is simply reducible when r = 1. When
r > 1, we have the following result.

Theorem 2.70. Heisenberg group Hn(F2r ) is not simply reducible when r > 1.

Proof. We denote by q = 2r. Let us denote the set of irreducible characters of

F2r by F̂2r , these characters are S1-valued functions on F2r

ω : F2r −→ S1 .

Characters of all irreducible representations of Hn(F2r ) on which the center
acts nontrivially is still given by

χh(M(a, b, c)) =

{
qnω(hc) if a = b = 0,

0 otherwise.

Here h is some (any) nonzero element in F2r . There are nonzero h1 and h2 in
F2r such that h1 + h2 6= 0 because r > 1. In this case, we have

χh1
· χh2

(M(0, 0, c)) = q2nω(h1c)ω(h2c)

= q2nω((h1 + h2)c)

= qnχh1+h2
(M(0, 0, c)) ,

here the last equation is calculated directly by using Theorem 2.15. χh1+h2

is another irreducible character because h1 + h2 6= 0. Thus we know the
decomposition is not multiplicity-free. Therefore, we know Hn(F2r ) is not
simply reducible for r > 1. �

Theorem 2.71. For the Heisenberg group Hn(K) over the prime field K =
Z/pZ.

(1) When p = 2 and n ≥ 1, all the irreducible representations of Hn(Z/2Z)
are real.

(2) When p ≥ 3 and n ≥ 1, the trivial representation is real, all the non-
trivial irreducible representations are complex.
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Proof. (1) When p = 2 and n ≥ 1, all the one-dimensional irreducible repre-
sentations are real because the matrices corresponding to these representations
are 1×1 matrices, and the matrices’ entries are just the character values, which
are ±1.

For the representation π22n , denote G = Hn(Z/2Z), we calculate

1

]G

∑
g∈G

χπ2n
(g2) =

1

]G

∑
g∈G

χπ2n
(M(a, b, c)2)

=
1

]G

∑
g∈G

χπ2n
(M(0, 0,

n∑
j=1

ajbj))

=
1

]G

∑
g∈G

2nω(

n∑
j=1

ajbj) .

Here,
∑n
j=1 ajbj = 0 or 1, we need to settle down how many 0’s and 1’s appear.

Let

αn = ]{(aj , bj) :

n∑
j=1

ajbj = 0},

βn = ]{(aj , bj) :

n∑
j=1

ajbj = 1} .

Then we have
n−1∑
j=1

ajbj = 0 or 1;

n∑
j=1

ajbj = 0 or 1 ,

and
αn = 3αn−1 + βn−1,

βn = αn−1 + 3βn−1 ,
(2.72)

for n ≥ 2, with α1 = 3 and β1 = 1. Write the equations (2.72) inductively, we
get (

αn
βn

)
=

(
3 1
1 3

)n−1(
3
1

)
=

(
1
2 (4n + 2n)
1
2 (4n − 2n)

)
.

Now we can continue our calculation

1

]G

∑
g∈G

χπ2n
(g2) =

1

]G

(
2nω(0)

1

2
(4n + 2n) + 2nω(1)

1

2
(4n − 2n)

)
· 2

=
1

]G

(
2n

1

2
(4n + 2n)− 2n

1

2
(4n − 2n)

)
· 2

=
1

22n+1
22n+1 = 1 ,
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hence by the Frobenius-Schur indicator Theorem 2.24, we know the represen-
tation π2n is real.

Therefore, all the irreducible representations of Hn(Z/2Z) are real when
n ≥ 1.

(2) When p ≥ 3 and n ≥ 1. Since elements in Hn(K) cannot always be
conjugate to their inverses when p ≥ 3, we know all the nontrivial irreducible
representations are not selfconjugate, therefore, all the nontrivial irreducible
representations are complex.

The trivial representation of Hn(K) is real. �

2.8. Clifford group

Definition 2.73 ([55,56]). Miller group on n generators is defined by

Mn := 〈x1, x2, . . . , xn : (xk)mk = 1, x−1
j xkxj = x−1

k 〉 ,

such that n > 1, mk > 2 for 1 ≤ k ≤ n, and for any j 6= k.

Theorem 2.74 ([8, Corollary 2.1]). The Miller group Mn is ambivalent if and
only if n 6≡ 1 mod 4.

Definition 2.75 ([52, pages 36–37]). Clifford group is a finite group generated
by an orthonormal basis e1, e2, . . . , en of Rn. It can be presented by the abstract
elements e1, e2, . . . , en,−1 subject to the relations that −1 is central and that
(−1)2 = 1, e2

j = −1 and ejek = −ekej for all k 6= j.

We denote the Clifford group by Γn, by direct calculation, we see the order
of Γn is 2n+1. By the defining relations for the Clifford group, we know the
Clifford group is a Miller group. We denote its center by Z(Γn) whose elements
are given by the following lemma.

Lemma 2.76 ([74, Proposition IV.3.2.(b)]). For the Clifford group Γn and its
center Z(Γn), we have

(2.77) Z(Γn) =

{
{±1} n is even,

{±1, ±e1e2 · · · en} n is odd.

For the convenience, we give the detailed proof of this lemma by the method
of [74]:

Proof. For any element ±em1
em2
· · · emk ∈ Γn, here

{m1,m2, . . . ,mk} ⊂ {1, 2, . . . , n}

and mj ’s are distinct with each other. If k is even and for any mj ∈ {m1,m2,
. . . ,mk}, we have

(2.78) emj (em1
em2
· · · emk) = −(em1

em2
· · · emk)emj 6= (em1

em2
· · · emk)emj ,

so em1
em2
· · · emk 6∈ Z(Γn). If k is odd and mj 6∈ {m1,m2, . . . ,mk}, then the

equation (2.78) holds, and em1
em2
· · · emk 6∈ Z(Γn) as long as {m1, . . . ,mk} 6=
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{1, . . . , n}. This means the center is not bigger than those in the equation
(2.77).

When n is even, by the equation (2.78) with k = n, we know ±e1 · · · en is
not in the center; hence Z(Γn) = {±1}.

When n is odd, we need to show

(2.79) (em1
em2
· · · emk)(e1e2 · · · en) = (e1e2 · · · en)(em1

em2
· · · emk) .

In fact, we just need to show

emj (e1e2 · · · en) = (e1e2 · · · en)emj ,

because the equation (2.79) can be proved step by step by the above equation.
mj is a number in {1, 2, . . . , n}, to explain the movement clearly, we denote the
emj in e1e2 · · · emj · · · en by ẽmj : e1e2 · · · ẽmj · · · en. We have

emj (e1e2 · · · en) = emje1e2 · · · emj · · · en
= emje1e2 · · · ẽmj · · · en
= e1e2 · · · emj · · · enẽmj(2.80)

= (e1e2 · · · emj · · · en)emj .

The number of elements on the left and right sides of ẽmj share the same parity,
this results in the movement of the equation (2.80). �

By using the Wigner Theorem 2.29, we find the following result.

Theorem 2.81. Clifford group Γn is a simply reducible group when n 6≡ 1
mod 4.

To calculate the formula in the Wigner Theorem 2.29, we need the following
lemmas about binomial coefficients and Orbit-Stabilizer.

Lemma 2.82 ([22, Page 16, Exercise 55]).(
n

0

)
+

(
n

4

)
+

(
n

8

)
+ · · · = 1

2
(2n−1 + 2

n
2 cos

nπ

4
),(

n

1

)
+

(
n

5

)
+

(
n

9

)
+ · · · = 1

2
(2n−1 + 2

n
2 sin

nπ

4
),(

n

2

)
+

(
n

6

)
+

(
n

10

)
+ · · · = 1

2
(2n−1 − 2

n
2 cos

nπ

4
),(

n

3

)
+

(
n

7

)
+

(
n

11

)
+ · · · = 1

2
(2n−1 − 2

n
2 sin

nπ

4
).

(2.83)

Lemma 2.84 (Orbit-Stabilizer, [41, Corollary 4.11]). Let G be a finite group.
For any g ∈ G, denote by C(g) for the conjugacy class containing g. Then

](C(g)) = [G : ZG(g)] ,

where [G : ZG(g)] is the index in G of ZG(g).

Now we can proof Theorem 2.81.
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Proof. By Theorem 2.74, we know Γn is ambivalent if and only if n 6≡ 1 mod 4.
Firstly we calculate the left side of the equation in the Wigner Theorem 2.29:∑

g∈Γn

ξ(g)3

= ξ(1)3 + ξ(−1)3(2.85)

=

(
2 ·
((

n

0

)
+

(
n

3

)
+

(
n

4

)
+

(
n

7

)
+

(
n

8

)
+ · · ·

))3

(2.86)

+

(
2 ·
((

n

1

)
+

(
n

2

)
+

(
n

5

)
+

(
n

6

)
+

(
n

9

)
+

(
n

10

)
+ · · ·

))3

=
(

2n + 2
n
2 (cos

nπ

4
− sin

nπ

4
)
)3

+
(

2n − 2
n
2 (cos

nπ

4
− sin

nπ

4
)
)3

(by Lemma 2.82)

= 23n+1 + 3 · 22n+1(1− sin
nπ

2
)

=

23n+1 + 3 · 22n+1 n ≡ 0 or 2 mod 4,
23n+1 + 3 · 22n+2 n ≡ 3 mod 4,
23n+1 n ≡ 1 mod 4.

(2.87)

Now we explain the reasons of the above equations. For any element ±em1
em2

· · · emk ∈ Γn, here
{m1,m2, . . . ,mk} ⊂ {1, 2, . . . , n}

and mj ’s are distinct with each other, we have

(±em1
em2
· · · emk)2 = (em1

em2
· · · emk)2

= ±em1
em1

em2
em2
· · · emkemk

= ±(−1) · (−1) · · · · · (−1) = ±(−1)k

= ±1 ,(2.88)

thus we know only ±1 in Γn can have “square root” in the sense of the equation
(2.26), hence we have the equation (2.85). In fact, we can settle down precisely
the value in the equation (2.88):

(em1em2 · · · emk)2

= em1(−1)k−1em1em2em3 · · · emkem2em3 · · · emk
= (em1

(−1)k−1em1
)(em2

(−1)k−2em2
)(em3

(−1)k−3em3
) · · ·

(emk−1
(−1)k−(k−1)emk−1

)(emk(−1)k−kemk)

= (−1)(k−1)+(k−2)+(k−3)+...+(k−(k−1))+(k−k) em1
em1

em2
em2
· · · emkemk

= (−1)
k(k−1)

2 (−1)k

= (−1)
k(k+1)

2 ,
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hence we get

(em1em2 · · · emk)2 =

{
1 k ≡ 0, 3 mod 4,
−1 k ≡ 1, 2 mod 4.

Both em1
em2
· · · emk and −em1

em2
· · · emk have the same square result, there-

fore, we have the equation (2.86).
Secondly we calculate the right side of the equation in the Wigner Theorem

2.29. By Lemma 2.84, we know

ν(g) = ]ZG(g) =
]G

]C(g)
,

here C(g) is the conjugacy class of g.
For any em1

em2
· · · emk and ep1ep2 · · · epj ∈ Γn, we have

(ep1ep2 · · · epj )(em1
em2
· · · emk)(ep1ep2 · · · epj )−1

= (±em1
em2
· · · emk)(ep1ep2 · · · epj )(ep1ep2 · · · epj )−1

= ±em1
em2
· · · emk ,

so each conjugacy class is either {em1
em2
· · · emk} or {±em1

em2
· · · emk}. For

any element g in the center Z(Γn) of Γn, its conjugacy class C(g) contains only
one element, namely itself. For any element g ∈ Γn − Z(Γn), its conjugacy
class C(g) contains two elements, namely g and g−1. Thus we have

ν(g) =

{
2n+1 g ∈ Z(Γn),
2n g ∈ Γn − Z(Γn).

When n is even, its center is (cf. Lemma 2.76)

Z(Γn) = {±1} ,

and we have ](Γn − Z(Γn)) = 2 · (2n − 1). Then we have∑
g∈Γn

ν(g)2 = ν(1)2 + ν(−1)2 +
∑

g∈Γn−Z(Γn)

ν(g)2

= 2 · ((2n+1)2 + (2n)2 · (2n − 1))

= 23n+1 + 3 · 22n+1 .(2.89)

When n is odd, its center is (cf. Lemma 2.76)

Z(Γn) = {±1,±e1e2 · · · ek} ,

and we have ](Γn − Z(Γn)) = 2 · (2n − 2). Then we have∑
g∈Γn

ν(g)2 = ν(1)2 + ν(−1)2 + ν(

n∏
k=1

ek)2 + ν(−
n∏
k=1

ek)2 +
∑

g∈Γn−Z(Γn)

ν(g)2

= 2 · ((2n+1)2 · 2 + (2n)2 · (2n − 2))

= 23n+1 + 3 · 22n+2 .(2.90)
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Therefore, when n 6≡ 1 mod 4, the equation (2.87) is consistent with equa-
tions (2.89) and (2.90). By the Wigner Theorem 2.29, we know Γn is simply
reducible when n 6≡ 1 mod 4. �

Remark 2.91. Thanks to Professor Alexander Hulpke answering my question
in Mathematics Stack Exchange (cf. [1]), I know how to use the computer
algebra system GAP to construct a Clifford group and get its character table.
For example, we can construct the Clifford group Γ3 by the following codes in
GAP:

gap> f:=FreeGroup("e1","e2","e3","m");

<free group on the generators [ e1, e2, e3, m ]>

gap> AssignGeneratorVariables(f);

#I Assigned the global variables [ e1, e2, e3, m ]

gap> rels:=[Comm(e1,m),Comm(e2,m),Comm(e3,m),e1^2/m,e2^2/m,

e3^2/m, e1*e2/(m*e2*e1),e1*e3/(m*e3*e1),e2*e3/(m*e3*e2)];;

gap> g:=f/rels;

<fp group on the generators [ e1, e2, e3, m ]>

Then we can get the conjugacy classes and irreducible character tables of Γ3

by the following codes:

gap> ConjugacyClasses(g);

gap> Irr(CharacterTable(g));

We can construct and get the character table of other Clifford group Γn in
GAP, just by adding more generators and modifying the relations. We can get
all the irreducible characters of Clifford group via GAP for 1 ≤ n ≤ 12. For
n ≥ 13, the GAP can not return the needed character tables because of the
pre-set memory limit.

3. Coxeter groups

Since dihedral groups are Coxeter groups, and some Coxeter groups are
related to the quasicrystallographic structures in condensed matter physics (cf.
[50] and [61]), we want to find out whether the other finite Coxeter groups are
simply reducible.

3.1. Definition and properties

Firstly we make a brief review about Coxeter groups. The notations and
results are taken from [11] and [39].

Definition 3.1 ([39, page 3]). Let V be a real Euclidean space endowed with a
positive definite symmetric bilinear form (λ, µ). A reflection is a linear operator
s on V which sends some nonzero vector α to its negative while fixing pointwise
the hyperplane Hα orthogonal to α.
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We may write s = sα and we have a formula

sα(λ) = λ− 2(λ, α)

(α, α)
α .

A finite group generated by reflections is called a finite reflection group. It is a
finite subgroup of the orthogonal group O(V ).

Definition 3.2 ([39, pages 6,8]). Consider a finite reflection group W which
is generated by all reflections sα, α ∈ Φ. Call Φ a root system with associated
reflection group W . The elements of Φ are called roots. Call a subset ∆ of Φ
a simple system (and call its elements simple roots) if ∆ is a vector space basis
for the R-span of Φ in V and if moreover each α ∈ Φ is a linear combination
of ∆ with coefficients all of the same sign (all nonnegative or all nonpositive).

Definition 3.3 ([39, page 105], [46, page 66]).

(1) A Coxeter system is a pair (W,S) consisting of a group W and a set of
generators S ⊂W , subject only to relations of the form

(ss′)m(s,s′) = 1 ,

where m(s, s) = 1, m(s, s′) = m(s′, s) ≥ 2 for s 6= s′ in S. In case no
relation occurs for a pair s, s′, we make the convention that m(s, s′) =
∞. We shall be interested in finite Coxeter systems, namely those for
which W is finite.

(2) Formally, W is the quotient F/N , where F is a free group on the set
S and N is the normal subgroup generated by all elements

(ss′)m(s,s′) .

Call ]S the rank of (W,S), and refer to W as a Coxeter group.

Theorem 3.4 ([39, page 133]). W is a Coxeter group. The following are
equivalent:

(1) W is finite.
(2) W is a finite reflection group.

Theorem 3.5 ([62, Theorem 3]). All finite reflection groups are ambivalent.

By Theorem 3.4 and Theorem 3.5, we know all the finite Coxeter groups are
ambivalent.

Definition 3.6 ([11, Definition IV.1.9.4]). Let Ξ be a set. A Coxeter matrix of
type Ξ is a symmetric square matrix M = (mjk)j,k∈Ξ whose entries are integers
or +∞ satisfying the relations

mjj = 1 for all j ∈ Ξ,

mjk ≥ 2 for j, k ∈ Ξ with j 6= k .

A Coxeter graph of type Ξ is (by abuse of language) a pair consisting of a
graph Ψ having Ξ as its set of vertices and a map f from the set of edges of
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this graph to the set consisting of +∞ and the set of integers ≥ 3. Ψ is called
the underlying graph of the Coxeter graph (Ψ, f).

Definition 3.7 ([11, page 14]). If (W,S) is a Coxeter system, the matrix
M = (m(s, s′))s,s′∈S , where m(s, s′) is the order of ss′, is a Coxeter matrix of
type S which is called the Coxeter matrix of (W,S). The Coxeter graph (Ψ, f)
associated to M is called the Coxeter graph of (W,S).

We remark that two vertices s and s′ of Ψ are joined if and only if s and s′

do not commute.

Definition 3.8 ([11, page 14]). A Coxeter system (W,S) is said to be irredu-
cible if the underlying graph of its Coxeter graph is connected and non-empty.

Theorem 3.9 ([11, Theorem VI.4.1.1]). The graph of any irreducible finite
Coxeter system (W,S) is isomorphic to one of the following:

(3.10)

An (n ≥ 1 vertices)

Bn 4 (n ≥ 2 vertices)

Dn (n ≥ 4 vertices)

E6

E7

E8

F4
4

G2
6

H3
5

H4
5

I2(n) n (n = 5 or n ≥ 7) .

No two of these graphs are isomorphic.

Theorem 3.11 ([11, Theorem VI.4.1.2]). The Coxeter groups defined by the
Coxeter graph An,Bn, . . . , I2(n) of Theorem 3.9 are finite.

3.2. Representations of W (An), W (Bn) and W (Dn)

For the finite Coxeter groups corresponding to the Coxeter graphs An, Bn
and Dn in Theorem 3.9, we denote these groups by W (An), W (Bn) and
W (Dn), respectively. Finite Coxeter groups W (An), W (Bn) and W (Dn) are
isomorphic to some already known finite groups that are easier to work with.
To write down the results, we first review the definition of wreath product of
groups.

Definition 3.12 ([67, page 55]). Let G be a group and X be a set, we call X
a G-set if there is a function

α : G×X → X
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(called an action), denoted by

α : (g, x) 7→ gx ,

such that:

(i) 1x = x for all x ∈ X,
(ii) g(hx) = (gh)x for all g, h ∈ G and x ∈ X.

One also says that G acts on X. If ]X = n, then n is called the degree of the
G-set X.

Definition 3.13 ([67, page 172]). Let D and Q be groups, let Ω be a finite
Q-set, and let K =

∏
ω∈ΩDω, where Dω ' D for all ω ∈ Ω. Then the wreath

product of D by Q, denoted by D o Q, is the semidirect product of K by Q,
where Q acts on K by

q · (dω) = (dqω)

for q ∈ Q and (dω) ∈
∏
ω∈ΩDω.

Theorem 3.14 ([39, pages 41–42], [7, page 3172], [76, page 384], [13, pages
374–376]). For the Coxeter groups W (An), W (Bn) and W (Dn), we have the
following isomorphisms:

W (An) ' Sn+1,

W (Bn) ' (Z/2Z)n o Sn ' S2 o Sn,
W (Dn) ' (Z/2Z)n−1 o Sn ,

here Sn is the symmetric group. Therefore, we get the orders of these groups:

]W (An) = (n+ 1)!,

]W (Bn) = 2n · (n!),

]W (Dn) = 2n−1 · (n!) .

Definition 3.15 ([68, page 2]). For a nonnegative integer n, a partition of n
is a sequence

λ = (λ1, λ2, . . . , λl),

where the nonnegative integers {λj} are weakly decreasing and

|λ| :=
n∑
j=1

λj

= n .

We write λ ` n to denote that λ is a partition of n, and we use P(n) to
denote the set of all partitions of n, and we set

P(0) := {∅} .
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For a symmetric group Sn and its dual (cf. Definition 2.10) Ŝn, there is a
one-to-one correspondence between the irreducible representation of Sn and a
partition of n (cf. [76, page 382]):

Ŝn −→ P(n)

(ρλ, Vλ) 7−→ λ .

For the Coxeter group W (An), we know

W (An) ' Sn+1

according to Theorem 3.14. Therefore, the dual Ŵ (An) is determined by
P(n+ 1).

For the Coxeter group W (Bn), we know

W (Bn) ' (Z/2Z)n o Sn ' S2 o Sn

according to Theorem 3.14. We still use Sn and (Z/2Z)n to denote their subg-
roups

Sn = {(1, σ) : σ ∈ Sn} ⊂ (Z/2Z)n o Sn,

(Z/2Z)n = {(σ, 1) : σ ∈ (Z/2Z)n} ⊂ (Z/2Z)n o Sn .

Then W (Bn) is generated by Sn and σ0 = (−1, 1, 1, . . . , 1) ∈ (Z/2Z)n ([76, page
384]).

Following notations in [76, Section 2], we review the representations of
W (Bn). Let

BP(n) := {(λ, µ) : λ and µ are partitions such that |λ|+ |µ| = n}

=

n⋃
m=0

P(m)× P(n−m).

Let (ρλ, Vλ) be the irreducible representation of the symmetric group Sn.
We define a representation ρ(λ,∅) of W (Bn) on Vλ by

ρ(λ,∅)(τ) = ρλ(τ) for any τ ∈ Sn,
ρ(λ,∅)(σ0) = IVλ identity transformation.

Similarly, we define a representation ρ(∅, λ) of W (Bn) on Vλ by

ρ(∅, λ)(τ) = ρλ(τ) for any τ ∈ Sn,
ρ(∅, λ)(σ0) = −IVλ .

Let λ and µ be partitions where |λ| = n1, |µ| = n2, and n1 +n2 = n. We define
ρ(λ, µ) by the following induced representation:

ρ(λ, µ) = ρ(λ,∅)× ρ(∅, µ)
∣∣W (Bn)

W (Bn1 )×W (Bn2 )
.
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Theorem 3.16 ([76, page 385]). ρ(λ, µ) is an irreducible representation of
W (Bn) and

{ρ(λ, µ) : (λ, µ) ∈ BP(n)}
is the dual of W (Bn).

Since the number of irreducible representations of a finite group is equal to

its number of conjugacy classes (cf. Theorem 2.11), we know ]Ŵ (Bn) according
to [7, page 3174]:

(3.17) ]Ŵ (Bn) =
∑

η1, η2, . . . , ηn ≥ 0∑n
j=1 j · ηj = n

 n∏
j=1

(ηj + 1)

 .

For the Coxeter group W (Dn), it is a subgroup of index 2 in W (Bn) [76,
page 388]. We can characterize its characters using those of W (Bn). For the
irreducible representation ρ(λ, µ) of W (Bn), we denote its character by χ(λ,µ).
Then we define a character χ[λ,µ] of W (Dn) by restriction:

χ[λ,µ] := χ(λ,µ)|W (Dn) .

Theorem 3.18 ([76, page 388]).

(i) χ[λ,µ] is irreducible if and only if λ 6= µ.
(ii) χ[λ,λ] is a direct sum of two non-equivalent irreducible characters.
(iii) χ[λ,µ] = χ[µ,λ].

The complete irreducible characters of Ŵ (Dn) consist of the characters con-
structed as above in (i), (ii), and (iii).

Based on the calculation of W (Bn), we know the number of irreducible
characters of W (Dn) is given by (cf. [72], [13, page 376])

(3.19) ]Ŵ (Dn) =

{
]Ŵ (Bn)

2 n is odd,
]Ŵ (Bn)+3]P(n2 )

2 n is even.

3.3. Bounds of largest Kronecker multiplicity of W (Bn) and W (Dn)

Definition 3.20 ([60, page 3264]). For a finite group G and its dual Ĝ. Define
the largest Kronecker multiplicity of G by

K(G) := max
ρ,φ,ψ∈Ĝ

g(ρ, φ, ψ) ,

here g(ρ, φ, ψ) is the Kronecker multiplicity (cf. Definition 2.16).

Proposition 3.21 ([60, Proposition 7.3]). For a finite group G and its dual

Ĝ, let

k(G) := ]Ĝ ,
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and b(G) be the biggest dimension of all the dimensions of irreducible represen-

tations in Ĝ. Then we have

(3.22)
(]G)

1
2

(k(G))
3
2

≤ K(G) ≤ b(G) .

By using Proposition 3.21, we calculate the lower bounds of largest Krone-
cker multiplicity for W (Bn) and W (Dn).

Theorem 3.23. For the Coxeter group W (Bn), the largest Kronecker multi-
plicity is greater than or equal to 2 when n ≥ 8.

Proof. We want to find the condition for K(W (Bn)) ≥ 2. By Proposition 3.21,
Theorem 3.14 and the equation (3.17), we have

K(W (Bn)) ≥ (]W (BN ))
1
2

(k(W (Bn)))
3
2

=
(2n · (n!))

1
2 ∑

η1, η2, . . . , ηn ≥ 0∑n
j=1 j · ηj = n

 n∏
j=1

(ηj + 1)




3
2

.

For the denominator part of the above expression, we have

n∏
j=1

(ηj + 1) ≤ (η1 + 1) · (η2 + 1)2 · · · · · (ηn + 1)n (because (ηj + 1) ≥ 1)

≤

(
(η1 + 1) + 2(η2 + 1) + · · ·+ n(ηn + 1)

n(n+1)
2

)n(n+1)
2

(3.24)

=

(
(η1 + 2η2 + · · ·+ nηn) + 1 + 2 + · · ·+ n

n(n+1)
2

)n(n+1)
2

=

(
n+ n(n+1)

2
n(n+1)

2

)n(n+1)
2

=

(
n+ 3

n+ 1

)n(n+1)
2

=

((
1 +

1
n+1

2

)n+1
2

)n
< en ,

where the inequality in (3.24) is given by the inequality of arithmetic and
geometric means. The number of elements of

{(η1, . . . , ηn) : η1, . . . , ηn ≥ 0,

n∑
j=1

j · ηj = n}
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is equal to ]P(n) (cf. [82, page 6], [10]). By the Hardy-Ramanujan asymptotic
formula (cf. [60, page 3268], [2, Theorem 6.3]), we know

]P(n) ∼ 1

4n
√

3
eπ
√

2n
3 as n→∞ .

In our calculation, we just use the relation ]P(n) < eπ
√

2n
3 [6, page 197]. Hence

we get

(3.25)
∑

η1, η2, . . . , ηn ≥ 0∑n
j=1 j · ηj = n

 n∏
j=1

(ηj + 1)

 < eπ
√

2n
3 · en = e

(√
2
3π
√
n+n

)
,

and

K(W (Bn)) ≥

√√√√√√√√√√√

2n · (n!) ∑
η1, η2, . . . , ηn ≥ 0∑n

j=1 j · ηj = n

 n∏
j=1

(ηj + 1)




3

>

√
2n · (n!)

e(
√

6π
√
n+3n)

≥ 1.09914 when n ≥ 67 ,(3.26)

this means K(W (Bn)) ≥ 2 when n ≥ 67. The inequality (3.26) holds because
of the following Stirling’s formula (cf. [64, page 26]) for n = 1, 2, . . .

n! =
√

2πnn+1/2e−nern

where rn satisfies the double inequality

1

12n+ 1
< rn <

1

12n
.

If we pick a weaker inequality

0 < rn ,

then we get the following lower bound of the Stirling’s formula

(3.27) n! >
√

2πnn+1/2e−n .

Therefore, we have the following inequality in the equation (3.26):√
2n · (n!)

e(
√

6π
√
n+3n)

>

√
2n ·
√

2π · nn+1/2

e(
√

6π
√
n+4n)

=

√√
π · (2n)n+1/2

e(
√

6π
√
n+4n)

≥

√√
π · (2n)n+1/2

e(
√

6π+4)n
>

√√
π · (n)n

e(
√

6π+4)n
.

(3.28)
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We know

nn

emn
> 1 when n > em, m, n ∈ Z>0 ,

therefore, the right hand side formula in the equation (3.28) is strictly greater
than 1 if we pick the number n greater than a big number. By our calculation,
when n ≥ 67, the equation (3.26) holds.

For n < 67, we can calculate directly by using the table of number of conju-
gacy classes in [7, page 3174]. Our calculation is listed in Table 1 of Subsection
3.5. �

Theorem 3.29. For the Coxeter group W (Dn), the largest Kronecker multi-
plicity is greater than or equal to 2 when n ≥ 7.

Proof. We want to find the condition for K(W (Dn)) ≥ 2. By Proposition 3.21,
Theorem 3.14 and the equation (3.19), we have

K(W (Dn)) ≥ (]W (Dn))
1
2

(k(W (Dn)))
3
2

.

When n is odd, we know

k(W (Dn)) =
k(W (Bn))

2
,

hence we get

K(W (Dn)) ≥

√√√√√√√√√√√

2n−1 · (n!)1

2

∑
η1, η2, . . . , ηn ≥ 0∑n

j=1 j · ηj = n

 n∏
j=1

(ηj + 1)




3

=

√√√√√√√√√√√

2n+2 · (n!) ∑
η1, η2, . . . , ηn ≥ 0∑n

j=1 j · ηj = n

 n∏
j=1

(ηj + 1)




3

>

√
2n+2 · (n!)

e(
√

6π
√
n+3n)

(use the equation (3.25))

≥ 2.19828 for odd n ≥ 67.(3.30)
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When n is even, we have

k(W (Dn)) =

∑
η1, η2, . . . , ηn ≥ 0∑n

j=1 j · ηj = n

 n∏
j=1

(ηj + 1)

+ 3 · ]P(
n

2
)

2

<

∑
η1, η2, . . . , ηn ≥ 0∑n

j=1 j · ηj = n

 n∏
j=1

(ηj + 1)

+ 3 · e
√

2
3π
√

n
2

2

<
e(
√

2
3π
√
n+n) + 3e

π√
3

√
n

2
,

hence we get

K(W (Dn)) >

√√√√ 2n+2 · (n!)(
e(
√

2
3π
√
n+n) + 3e

π√
3

√
n
)3

≥ 1.07753 for even n ≥ 66.(3.31)

The inequalities (3.30) and (3.31) hold because of the Stirling’s lower bound
formula (3.27).

For n < 66, we find that K(W (Dn)) ≥ 2 when n ≥ 7. Our calculation is
listed in Table 2 of Subsection 3.5. �

3.4. List of simply reducible groups

For the finite Coxeter groups with irreducible finite Coxeter systems, their
Coxeter graphs are given in Theorem 3.9. We denote these groups by W (An),
W (Bn), . . ., respectively. Now we classify them according to whether they are
simply reducible group (abbr. SR-group).

Theorem 3.32. Finite Coxeter groups with irreducible finite Coxeter systems
are simply reducible groups under certain requirements about number n.

Coxeter group Order of the group SR-group not SR-group
W (An) (n+ 1)! W (A1),W (A2),W (A3) W (An), n ≥ 4
W (Bn) 2n · (n!) W (B2),W (B3) W (Bn), n ≥ 4
W (Dn) 2n−1 · (n!) none W (Dn), n ≥ 4
W (E6) 51840 none W (E6)
W (E7) 52903040 none W (E7)
W (E8) 696729600 none W (E8)
W (F4) 1152 none W (F4)
W (G2) 12 W (G2) none
W (H3) 120 none W (H3)
W (H4) 14400 none W (H4)
W (I2(n)) 2 · n W (I2(n)), n = 5, n ≥ 7 none
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Proof. We use χa,b to denote the characters in the character table of Coxeter
group, here a is the dimension of the character and b is the b-th appearance of
this same dimension character appearing in the character table. If there is only
one such character of dimension a, then we denote this character by χa. In the
following decompositions of tensor product representations, the coefficients of
the decompositions are calculated directly by Theorem 2.15.

For the Coxeter group W (An), by Theorem 3.14, we know it is isomorphic
to the symmetric group Sn+1. By Theorem 2.31, we know W (A1), W (A2),
W (A3) are simply reducible groups and all the other groups are not simply
reducible groups.

For the Coxeter group W (Bn), the largest Kronecker multiplicity is greater
than or equal to 2 when n ≥ 8 (cf. Theorem 3.23), this means W (Bn) is not
multiplicity-free for n ≥ 8, and we get that W (Bn) is not simply reducible for
n ≥ 8. For n < 8, we can verify them one by one. Since W (B2) is isomorphic
to the dihedral groups D4, we know it is a simply reducible group by Theorem
2.42. For W (B3) ' S2 o S3, its character table can be found in [42, page 443]:

Class order 1 3 3 6 6 1 6 6 8 8
χ1,1 1 1 1 1 1 1 1 1 1 1
χ2,1 2 2 2 0 0 2 0 0 −1 −1
χ1,2 1 1 1 −1 −1 1 −1 −1 1 1
χ1,3 1 −1 1 1 −1 −1 −1 1 1 −1
χ2,2 2 −2 2 0 0 −2 0 0 −1 1
χ1,4 1 −1 1 −1 1 −1 1 −1 1 −1
χ3,1 3 1 −1 1 1 −3 −1 −1 0 0
χ3,2 3 1 −1 −1 −1 −3 1 1 0 0
χ3,3 3 −1 −1 1 −1 3 1 −1 0 0
χ3,4 3 −1 −1 −1 1 3 −1 1 0 0

We can use GAP to get the above character table. The codes are as following.

gap> WBthree:=WreathProduct(SymmetricGroup(2),

SymmetricGroup(3));

gap> Irr(CharacterTable(WBthree));

We can also use SAGE to get the above character table. The codes are as
following.

sage: WeylGroup(["B",3]).character_table()

Denote the set of all the irreducible characters of W (B3) by

Ŵ (B3) = {χ1,1, χ2,1, χ1,2, χ1,3, χ2,2, χ1,4, χ3,1, χ3,2, χ3,3, χ3,4} .

By direct calculations, we have the following decompositions for product of

any two irreducible characters in Ŵ (B3), this also gives us the Clebsch-Gordan
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coefficients for W (B3):

χ1,c · χa,b = χa,d, here

{
∀ c ∈ {1, 2, 3, 4}, ∀χa,b ∈ Ŵ (B3)

some d such that χa,d ∈ Ŵ (B3)

}
,

χ2,1 · χ2,2 = χ2,2 · χ2,2 = χ1,1 + χ1,2 + χ2,1,

χ2,1 · χ2,2 = χ1,3 + χ1,4 + χ2,2,(3.33)

χ3,1 · χ3,1 = χ3,2 · χ3,2 = χ3,3 · χ3,3 = χ3,4 · χ3,4

= χ1,1 + χ2,1 + χ3,3 + χ3,4,

χ3,1 · χ3,2 = χ3,3 · χ3,4 = χ1,2 + χ2,1 + χ3,3 + χ3,4,

χ3,1 · χ3,3 = χ3,2 · χ3,4 = χ1,3 + χ2,2 + χ3,1 + χ3,2,

χ3,1 · χ3,4 = χ3,2 · χ3,3 = χ1,4 + χ2,2 + χ3,1 + χ3,2 .

The above decomposition (3.33) is multiplicity-free. Hence we know W (B3)
is a simply reducible group. For W (B4) = S2 o S4, by the character table in
[42, page 445], we have

χ8,1 · χ8,1 = (64, 16, 0, . . . , 0)

= 2χ3,1 + · · · ,
here

χ8,1 = (8, 4, 0, 0, 0,−4, 0, 0,−1,−1,−8, 0, 0, 0, 0, 1, 1, 0, 0, 0),

χ3,1 = (3, 3, 3, 1, 1, 3, 1, 1, 0, 0, 3, 1,−1, 1,−1, 0, 0,−1,−1,−1) .

The decomposition is not multiplicity-free. Hence W (B4) is not a simply re-
ducible group. We can use SAGE or GAP to get the character tables of the
Coxeter groups W (B5),W (B6) and W (B7). For W (B5), we get its character
table via the following SAGE codes

sage: WeylGroup(["B",5]).character_table()

or GAP codes

gap> Irr(CharacterTable(WreathProduct(SymmetricGroup(2),

SymmetricGroup(5))));

We get all the 36 irreducible characters of the Coxeter group W (B5). A-
mong all these characters, there are four 20-dimensional irreducible characters.
Consider the last one,

χ20,4 = (20,−4,−4, 4, 4,−20, 2,−2, 2,−2,−2, 2,−2, 2,

− 1,−1,−1, 1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
6

,−1,−1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
6

).

We have
χ20,4 · χ20,4 = (400, . . .) .

Since the sum of the dimensions of all the 36 irreducible representations is equal
to 312, it is strictly less than 400, this means some of the coefficients in the
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decomposition of χ20,4 · χ20,4 must be strictly larger than 1, hence we know
the decomposition is not multiplicity-free and W (B5) is not a simply reducible
group.

For W (B6), there are 65 irreducible characters, the sum of all these dimen-
sions is equal to 1384. The biggest dimension of these irreducible character
is 80. The dimension of the product of this biggest dimension character with
itself is equal to 6400, which is strictly greater than 1384. Thus we know the
decomposition of this tensor product must not be multiplicity-free.

For W (B7), there are 110 irreducible characters, the sum of all these dimen-
sions is equal to 6512. The biggest dimension of these irreducible character is
210. The dimension of the product of this biggest dimension character with
itself is equal to 44100, which is strictly greater than 6512. Thus we know the
decomposition of this tensor product must not be multiplicity-free.

For the Coxeter group W (Dn), the largest Kronecker multiplicity is greater
than or equal to 2 when n ≥ 7 (cf. Theorem 3.29), this means W (Dn) is not
multiplicity-free for n ≥ 7, and we get that W (Dn) is not simply reducible for
n ≥ 7. For n < 7, we can verify them one by one. We use SAGE to get the
character tables of W (D4), W (D5), and W (D6).

For W (D4), the SAGE codes are:

sage: WeylGroup(["D",4]).character_table()

There is only one 8-dimensional irreducible representation, its character is

χ8 = (8, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0,−8) .

The product is

χ8 · χ8 = (64, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 64) .

The sum of the dimensions of all the irreducible representations is equal to

44 = 1 + 1 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 4 + 4 + 6 + 8 ,

which is strictly less than 64, this means some of the coefficients in the decompo-
sition of χ8 ·χ8 must be strictly larger than 1, hence we know the decomposition
is not multiplicity-free and W (D4) is not a simply reducible group.

For W (D5), there are 18 irreducible characters, the sum of all these dimen-
sions is equal to 156. The biggest dimension of these irreducible character is
20. The dimension of the product of this biggest dimension character with
itself is equal to 400, which is strictly greater than 156. Thus we know the
decomposition of this tensor product must not be multiplicity-free.

For W (D6), there are 37 irreducible characters, the sum of all these dimen-
sions is equal to 752. The biggest dimension of these irreducible character is
45. The dimension of the product of this biggest dimension character with
itself is equal to 2025, which is strictly greater than 752. Thus we know the
decomposition of this tensor product must not be multiplicity-free.

For the Coxeter group W (E6), its character table can be found in [24, page
104]. We can also use SAGE to get its character table via the following codes:
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sage: WeylGroup(["E",6]).character_table()

The biggest dimension is equal to 90, we denote this character by χ90, it is

χ90 = (90,−6,−6, 2, 2, 0, . . . , 0︸ ︷︷ ︸
5

, 9,−3,−1, 0, . . . , 0︸ ︷︷ ︸
10

) ,

here we use the character value in [24, page 104]. The product of χ90 with itself
is

χ90 · χ90 = (8100, 36, 36, 4, 4, 0, . . . , 0︸ ︷︷ ︸
5

, 81, 9, 1, 0, . . . , 0︸ ︷︷ ︸
10

)

= 14χ90 + · · · .

Hence we know the decomposition is not multiplicity-free and W (E6) is not a
simply reducible group.

For the Coxeter group W (E7), its character table can be got from [24, Table
III] or SAGE. The biggest dimension is equal to 512 and there are two of them,
we denote one of these characters by χ512,1. It is

χ512,1 = (512, 512, 0, . . . , 0︸ ︷︷ ︸
8

,−16,−16, 0, . . . , 0︸ ︷︷ ︸
4

,−4,−4, 0, 0, 8, 8,

0, . . . , 0︸ ︷︷ ︸
4

,−1,−1, 2, 2, 0, . . . , 0︸ ︷︷ ︸
20

,−1,−1, 0, . . . , 0︸ ︷︷ ︸
6

, 1, 1) .

The product of χ512,1 with itself is

χ512,1 · χ512,1 = (5122, 5122, . . .) = 91χ512,1 + · · · ,

hence we know the decomposition is not multiplicity-free and W (E7) is not a
simply reducible group.

For the Coxeter group W (E8), its character table can be got from [25] or
[27, page 415] or SAGE. The biggest dimension is equal to 7168, we denote this
character by χ7168. The product of χ7168 with itself is

χ7168 · χ7168 = (51380224, 51380224, . . .) .

Since the sum of the dimensions of all the 112 irreducible representations is
equal to 199952, it is strictly less than 51380224, this means some of the coeffi-
cients in the decomposition of χ7168 ·χ7168 must be strictly larger than 1, hence
we know the decomposition is not multiplicity-free and W (E8) is not a simply
reducible group.

For the Coxeter group W (F4), its character table can be got by combining
tables in [13, page 413] and [12, page 49]. The biggest dimension is equal to
16, we denote this character by χ16. The product of χ16 with itself is

χ16 · χ16 = (256, 256, 0, 4, 4, 0, 4, 4, 4, 4, 0, . . . , 0︸ ︷︷ ︸
15

)

= 5χ12 + · · · ,
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here

χ12 = (12, 12,−4, 0, 0, 4, 0, 0,−3,−3, 1, 0, . . . , 0︸ ︷︷ ︸
14

),

χ16 = (16,−16, 0,−2, 2, 0,−2, 2,−2, 2, 0, . . . , 0︸ ︷︷ ︸
15

) .

Hence we know the decomposition is not multiplicity-free and W (F4) is not a
simply reducible group.

For the Coxeter group W (G2), it is isomorphic to the dihedral group D6,
hence we know W (G2) is a simply reducible group.

For the Coxeter group W (H3), it is the full icosahedral group. Its character
table can be got from [21, page 485]. The biggest dimension is equal to 5 and
there are two of them, we denote one of these characters by χ5,1. The product
of χ5,1 with itself is

χ5,1 · χ5,1 = (25, 0, 0, 1, 1, 25, 0, 0, 1, 1)

= χ1,1 + χ3,1 + χ3,2 + 2χ4,1 + 2χ5,1 ,

hence we know the decomposition is not multiplicity-free and W (H3) is not a
simply reducible group.

For the Coxeter group W (H4), its character table can be got from [34, page
167]. The biggest dimension of irreducible representations is 48. We denote
this character by χ48, and the product of χ48 with itself is

χ48 · χ48 = (482, 482, . . .)

= (2304, 2304, 0, 0, 0, 4, 4, 4, 4, 0, 36, 36,

4, 4, 4, 4, 0, 0, 0, 1, 1, 1, 1, 4, 4, 0, . . . , 0︸ ︷︷ ︸
9

)

= 13χ40 + · · · ,

here

χ40 = (40, 40, 0,−2,−2, 0, 0, 0, 0, 4, 1, 1,−5,−5,−5,−5,

1,−1,−1, 1, 1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
11

),

χ48 = (48,−48, 0, 0, 0,−2, 2,−2, 2, 0,−6, 6, 2,−2,−2, 2, 0, 0, 0,

1,−1,−1, 1, 2,−2, 0, . . . , 0︸ ︷︷ ︸
9

) .

Hence we know the decomposition is not multiplicity-free and W (H4) is not a
simply reducible group.

For the Coxeter group W (I2(n)), this group is isomorphic to the dihedral
group Dn. By Theorem 2.42 we know W (I2(n)) is simply reducible for all
n ≥ 5. �
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3.5. Appendix: Tables of lower bounds

We calculate the lower bounds of the largest Kronecker multiplicity by the
equation (3.22). The lower bound calculated from the equation (3.22) is less
than 1 for W (Bn) (respectively, W (Dn)) when n ≤ 7 (respectively, n ≤ 6), this
is not useful for our verification of the multiplicity-free requirement. Hence we
do not list those cases. We use the software MATHEMATICA (cf. [84]) to do
those calculations.

Table 1. K(W (Bn)) ≥ 2 for 8 ≤ n ≤ 67

n k(W (Bn)) K(W (Bn)) ≥ n k(W (Bn)) K(W (Bn)) ≥
8 185 2 38 5374390 9.62357× 1017

9 300 3 39 6978730 5.74398× 1018

10 481 6 40 9035539 3.48732× 1019

11 752 14 41 11664896 2.15282× 1020

12 1164 36 42 15018300 1.35063× 1021

13 1770 96 43 19283830 8.60852× 1021

14 2665 275 44 24697480 5.57161× 1022

15 3956 832 45 31551450 3.6606× 1023

16 5822 2636 46 40210481 2.44043× 1024

17 8470 8760 47 51124970 1.6504× 1025

18 12230 30291 48 64854575 1.13178× 1026

19 17490 109181 49 82088400 7.86801× 1026

20 24842 407927 50 103679156 5.54307× 1027

21 35002 1.58069× 106 51 130673928 3.95643× 1028

22 49010 6.32829× 106 52 164363280 2.8602× 1029

23 68150 2.61754× 107 53 206327710 2.09373× 1030

24 94235 1.11531× 108 54 258508230 1.55152× 1031

25 129512 4.89478× 108 55 323275512 1.16361× 1032

26 177087 2.2076× 109 56 403531208 8.82996× 1032

27 240840 1.02283× 1010 57 502810130 6.7783× 1033

28 326015 4.85997× 1010 58 625425005 5.26251× 1034

29 439190 2.36715× 1011 59 776616430 4.1313× 1035

30 589128 1.18023× 1012 60 962759294 3.27877× 1036

31 786 814 6.02099× 1012 61 1191580872 2.63016× 1037

32 1046705 3.13927× 1013 62 1472454540 2.13214× 1038

33 1386930 1.67208× 1014 63 1816715170 1.74636× 1039

34 1831065 9.08943× 1014 64 2238075315 1.44496× 1040

35 2408658 5.04056× 1015 65 2753078840 1.20757× 1041

36 3157789 2.84926× 1016 66 3381689157 1.01912× 1042

37 4126070 1.64104× 1017 67 4147937540 8.68422× 1042
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Table 2. K(W (Dn)) ≥ 2 for 7 ≤ n ≤ 66

n k(W (Dn)) K(W (Dn)) ≥ n k(W (Dn)) K(W (Dn)) ≥
7 55 2 37 2063035 3.28207× 1017

8 100 3 38 2687930 1.92393× 1018

9 150 6 39 3489365 1.1488× 1019

10 251 11 40 4518710 6.97246× 1019

11 376 28 41 5832448 4.30564× 1020

12 599 68 42 7510338 2.70063× 1021

13 885 192 43 9641915 1.7217× 1022

14 1355 536 44 12350243 1.11412× 1023

15 1978 1664 45 15775725 7.32119× 1023

16 2944 5184 46 20107123 4.88017× 1024

17 4235 17519 47 25562485 3.3008× 1025

18 6160 59918 48 32429650 2.26332× 1026

19 8745 218362 49 41044200 1.5736× 1027

20 12484 809686 50 51842515 1.10852× 1028

21 17501 3.16139× 106 51 65336964 7.91287× 1028

22 24589 1.25918× 107 52 82185294 5.72002× 1029

23 34075 5.23508× 107 53 103163855 4.18746× 1030

24 47233 2.22244× 108 54 129258630 3.10288× 1031

25 64756 9.78955× 108 55 161637756 2.32721× 1032

26 88695 4.40388× 109 56 201771181 1.76592× 1033

27 120420 2.04566× 1010 57 251405065 1.35566× 1034

28 163210 9.70186× 1010 58 312719350 1.05247× 1035

29 219595 4.7343× 1011 59 388308215 8.2626× 1035

30 294828 2.35728× 1012 60 481388053 6.55736× 1036

31 393407 1.2042× 1013 61 595790436 5.26032× 1037

32 523699 6.27232× 1013 62 736237533 4.26419× 1038

33 693465 3.34415× 1014 63 908357585 3.49271× 1039

34 915978 1.81656× 1015 64 1119050181 2.88987× 1040

35 1204329 1.00811× 1016 65 1376539420 2.41514× 1041

36 1579472 5.6954× 1016 66 1690859793 2.03822× 1042
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