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ANNIHILATING CONTENT IN POLYNOMIAL AND POWER

SERIES RINGS

Emad Abuosba and Manal Ghanem

Abstract. Let R be a commutative ring with unity. If f(x) is a zero-
divisor polynomial such that f(x) = cff1(x) with cf ∈ R and f1(x) is

not zero-divisor, then cf is called an annihilating content for f(x). In

this case Ann(f) = Ann(cf ). We defined EM-rings to be rings with
every zero-divisor polynomial having annihilating content. We showed

that the class of EM-rings includes integral domains, principal ideal rings,

and PP-rings, while it is included in Armendariz rings, and rings having
a.c. condition. Some properties of EM-rings are studied and the zero-

divisor graphs Γ(R) and Γ(R[x]) are related if R was an EM-ring. Some
properties of annihilating contents for polynomials are extended to formal

power series rings.

1. Introduction

In this article all rings R are assumed to be commutative rings with unity
1, Z(R) the set of zero-divisors in R, and reg(R) = R \ Z(R). Let R[x] be the
ring of polynomials defined on R and R[[x]] the ring of formal power series.

Polynomial rings R[x] are used in almost all branches of mathematics. Poly-
nomials were used to construct splitting fields, and they were also generalized
to power series, and Laurent series in complex analysis. The Hilbert basis the-
orem (if R is Noetherian, then so is R[x]) motivated mathematicians to study
properties joint between R and R[x]. Zero-divisor polynomials were character-
ized in [17], and zero-divisor power series were characterized in [11], if R was
Noetherian.

In this article, we study the concept of annihilating content of a zero-divisor
polynomial, and define EM-rings to be rings in which all polynomials have an-
nihilating contents. Annihilating content simplifies computing the annihilator
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2 E. ABUOSBA AND M. GHANEM

of a polynomial, which is not always an easy task. Then we relate EM-rings to
some famous rings.

It was shown in [17] that if f(x) ∈ Z(R[x]), then there exists a non-zero
constant c ∈ R \ {0} such that cf(x) = 0. Polynomials with such property
are called McCoy polynomials, and rings with every polynomial having this
property are called McCoy rings, and so, every commutative ring is a McCoy
ring. A similar result was proved in [11] for power series in Z(R[[x]]), when R
is a Noetherian ring, and a counterexample was given to show that the result
may be false if R is not Noetherian. Thus one can conclude that if R is a
Noetherian ring, T = R[x] or R[[x]], then f =

∑
aix

i ∈ Z(T ) if and only if
Ann(a0, a1, . . .) 6= {0}. This motivated mathematicians to define rings with
property A to be rings R, in which every finitely generated ideal contained in
Z(R) has a non-zero annihilator. It was proved that for any ring R, the ring
R[x] has property A. Kaplansky in [15, page 56], proved that every Noetherian
ring has property A, and gave an example of a non-Noetherian ring that does
not have property A. A ring R is said to have the a.c. condition if for each
a, b ∈ R there exists c ∈ R such that Ann(a, b) = Ann(c).

As a continuation of this, and trying to simplify computations with zero-
divisors in T = R[x] or R[[x]], the authors in [1] proved that if R is a finite
commutative principal ideal ring with unity, then for each f ∈ Z∗(T ), there
exists cf ∈ R, f1 ∈ reg(T ) such that f = cff1. They called the constant
cf an annihilating content for f . They proved the result first for finite local
principal rings, and then used the fact that a finite ring is a product of finitely
many local rings to generalize it. In fact their proof can be extended easily to
Artinian principal ideal rings. Note that if a polynomial f has an annihilating
content cf , then AnnR[x](f(x)) = AnnR[x](cf ), and AnnR(C(f)) = AnnR(cf ),
which relates annihilators of polynomials to annihilators of R, and simplifies
computations.

In this article, we generalize the results of [1], and define the EM-rings to
be the rings in which any zero-divisor polynomial has an annihilating content,
and define strongly EM-rings to be EM-rings in which any zero-divisor power
series has an annihilating content. We show that in Noetherian rings EM and
strongly EM are equivalent, and gave an example of a non-Noetherian EM-ring
that is not strongly EM. We show that the class of EM-rings includes integral
domains, principal ideal rings, Bézout rings, Baer rings, von Neumann rings
and PP-rings, while it is included in Armendariz rings and rings having a.c.
condition. We prove that a Noetherian ring R is an EM-ring if and only if it is
generalized morphic. Finally, we study some relations between the zero-divisor
graphs of R,R[x] and R[[x]], if R was an EM-ring or strongly EM-ring.

2. Annihilating content

In [1], the authors gave the following definition:
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ANNIHILATING CONTENT 3

Definition 2.1. Let R be a ring, T = R[x] or R[[x]], and let f(x) ∈ Z(T ) such
that f(x) = cff1(x), where cf ∈ R and f1(x) ∈ reg(T ). Then cf is called an
annihilating content for f(x). In case of R[x], it is clear that deg(f) ≤ deg(f1).

It was proved in [1] that if R is a finite commutative principal ideal ring,
then any zero-divisor in R[x] or R[[x]] has an annihilating content. We will
generalize their result to any principal ideal ring, but first we will present the
following lemma.

Let f(x) =
∑n
i=0 aix

i ∈ R[x]. Then the content of f is the ideal generated
by the coefficients of f , in this case we write C(f) = (a0, a1, . . . , an).

The following lemma can be found in [2, Lemma 2.3].

Lemma 2.2. Let f =
∑n
i=0 aix

i ∈ R[x]. Then f(x) = ag(x) with C(g) = R if
and only if C(f) = aR, a principal ideal.

It is clear that if C(g) = R or even C(g) * Z(R), then Ann(b0, b1, . . . , bm) =
{0}, and a is an annihilating content for f(x). So, the condition C(f) = aR is
sufficient to get an annihilating content for f(x), but it is not necessary, since
we will show later on that in Z[y]× Z[y] every polynomial has an annihilating
content, but f(x) = (y, 0) + (2, 0)x ∈ Z((Z[y] × Z[y])[x]), while C(f) is not a
principal ideal.

Recall that a ring R is called a Bézout ring if each finitely generated ideal
in R is principal.

Corollary 2.3. If R is a Bézout ring, then every polynomial in Z(R[x]) has
an annihilating content.

The following theorem shows the importance of the annihilating content of
a polynomial or a power series.

Theorem 2.4. Let R be a ring, T = R[x] or R[[x]]. If f, g ∈ Z(T ), have
annihilating contents, then fg = 0 if and only if cfcg = 0.

One can ask about the uniqueness of an annihilating content of a polynomial
or a power series. Unfortunately, the annihilating content is not unique, as seen
in the following example, but they have the same annihilator.

Example 2.5. Let R = Z× Z, and f(x) = (6, 0) + (12, 0)x. Then f(x) =
(2, 0)((3, 1) + (6, 1)x) = (3, 0)((2, 1) + (4, 1)x). Note that Ann((2, 0)) = {0} ×
Z = Ann((3, 0)), but ((2, 0))R = 2Z×{0} 6= 3Z×{0} = ((3, 0))R.

Let R be a ring, and let f(x) = cff1(x) ∈ Z(R[[x]]) \ {0} such that cf ∈
R and f1(x) ∈ reg(R[[x]]). It is clear that g(x) ∈ Ann(cf ) if and only if
g(x)f(x) = 0 if and only if g(x) ∈ Ann(f(x)). So, Ann(cf ) = Ann(f(x)).
Thus, if f(x) = af1(x) = bf2(x) ∈ Z(R[[x]]) \ {0} such that a, b ∈ R and
f1(x), f2(x) ∈ reg(R[[x]]), then Ann(a) = Ann(f(x)) = Ann(b), and so, aR ≈
R /AnnR(a) = R /AnnR(b) ≈ bR asR-modules. Thus if (R,+) is a finite cyclic
group, then aR = bR, since the two subgroups have the same cardinality.
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4 E. ABUOSBA AND M. GHANEM

Thus, one can easily compute the annihilator of a polynomial or a power
series by computing the annihilator of the annihilating content, whenever it
exists.

Do all polynomials in any ring R have annihilating content? The following
example shows that this may be false, even if R was Artinian ring.

Example 2.6. Let R = Z4[x]
/

(x2) = {a0+a1X : ai ∈ Z4 and X2 = 0}. Then
R is an Artinian local ring with maximal ideal 2R +XR. If f(y) = 2 +Xy ∈
R[y], then f(y) ∈ Z∗(R[y]), since 2Xf(y) = 0. But f(y) has no annihilating
content, since if f(y) = af1(y), a ∈ R and f1(y) =

∑n
i=0 biy

i ∈ reg(R[y]),
then 2 = ab0 and X = ab1, and so 2R + XR ⊆ aR ⊂ R, which implies that
2R+XR = aR, a contradiction.

3. EM-rings

If R is a principal ideal ring, then every polynomial in Z(R[x]) and every
power series in Z(R[[x]]) has an annihilating content, but we found other classes
of rings with this property, this motivated us to give the following definitions,
in order to study the effect of annihilating contents.

Definition 3.1. Let R be a ring. Then R is called an EM-ring if every zero-
divisor polynomial in R[x] has an annihilating content. R is called strongly
EM-ring if it is an EM-ring and every zero-divisor power series in R[[x]] has an
annihilating content.

Question. According to the above definition, one can ask whether if every
power series in R[[x]] has an annihilating content, then every polynomial in
R[x] has an annihilating content.

This is not a trivial question. The following example gives a polynomial that
has an annihilating content as a power series but has no annihilating content
as a polynomial.

Example 3.2. Let K = {y, t, s0, s1, {xi}∞i=0} be a set of indeterminants, S =
Q[K] and let the ideal I = (yx0− s0, yx1− s1, ty, tx0, tx1, t2, {yxi, x2i : i ≥ 2}).
For each a ∈ S, let Λ(a) = {α ∈ K : α has non-zero coefficient in the expansion
of a}. It is clear that for each a ∈ S \ {0}, |Λ(a)| < ∞. Now consider the
ring R = S /I . Then Z(R) = (y, t, s0, s1, {xi}∞i=0) is an ideal in R. Note
that

∑∞
i=2 xiT

i is a zero-divisor power series that has no annihilating content.
Consider the polynomial f(T ) = s0 + s1T ∈ R[T ]. Then tf = 0, and f has no
annihilating content in R[T ]. But we have

f(T ) = s0 + s1T = y

∞∑
i=0

xiT
i.
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ANNIHILATING CONTENT 5

We want to show that g(T ) =
∑∞
i=0 xiT

i is a regular power series. Assume

to the contrary that there exists h(T ) =
∑∞
i=0 hiT

i such that( ∞∑
i=0

xiT
i

)( ∞∑
i=0

hiT
i

)
= 0.

Without loss of generality we can assume that h0 6= 0. Now we have:

x0h0 = 0,

and so, h0 ∈ Ann(x0) = tR, i.e., t|h0. Also we have:

x0h1 + x1h0 = x0h1 + 0 = 0,

and so, h1 ∈ Ann(x0) = tR, i.e., t|h1. Assume now that t|hi for all i < m, then
we have:

x0hm + x1hm−1 + · · ·+ xmh0 = 0.

Multiply by x0 to get:

x20hm = 0,

and so, hm ∈ Ann(x20) = Ann(x0) = tR. Thus, t|hi for all i. Therefore we
have:

0 =

( ∞∑
i=0

xiT
i

)( ∞∑
i=0

hiT
i

)
=

( ∞∑
i=2

xiT
i

)( ∞∑
i=0

hiT
i

)
.

But x2i = 0 for each i ≥ 2, so we can follow the technique in [13] to write∑∞
i=2 xiT

i = Pk + T k+1gk+1, where Pk =
∑k
i=2 xiT

i for k = 2, 3, . . ..
Since Pk is nilpotent, there exists nk such that Pnkk = 0. Now since

h(T )
∑∞
i=2 xiT

i = 0, we get −h(T )Pk = h(T )T k+1gk+1. Thus

0 = h(T )
(
Pk + T k+1gk+1

)nk
= h(T )

nk∑
i=0

(
nk
i

)
Pnk−ik (T k+1gk+1)i

= h(T )(T k+1gk+1)nk ,

and hence h0xk+1xk+2 · · ·xk+nk = 0.

If h0 /∈ yR, then h0 = a+ yc, with a /∈ I. But

x2h0 = 0.

So, x2h = 0, that is x2a ∈ I, and hence we have x2 ∈ Λ(a). Also for
k = 2, 3, 4 we have:

xkxk+1 · · ·xk+nkh0 = 0,

which implies that xkxk+1 · · ·xk+nka ∈ I, and hence we have xk+i ∈ Λ(a) for

some i. Continue to get |Λ(a)| = ∞, that is a = 0. Hence we have tα = h0 =
yc, which implies that c ∈ Ann(y2) = Ann(y). Therefore, h0 = yc = 0, a
contradiction. Therefore g(T ) =

∑∞
i=0 xiT

i is a regular power series in R[[T ]],
although every polynomial made up of g(T ) is zero-divisor.
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6 E. ABUOSBA AND M. GHANEM

In the following, we will give some positive partial answers, showing that
the result is true in a wide class of rings. But first we note that if every power
series in R[[x]] has an annihilating content, then

(∑∞
i=0 aix

i
) (∑∞

i=0 bix
i
)

= 0

if and only if aibj = 0 for each i and j. In particular
∑∞
i=0 aix

i is a zero-divisor
in R[[x]] if and only if there exists a ∈ R \ {0} such that aai = 0 for each i.

We here give a partial answer to the previous question. But we still don’t
know the answer for the general case.

Recall that a ring R is called a countably McCoy ring, according to [16], if
each countably generated ideal contained in Z(R) has a non-zero annihilator.

Theorem 3.3. Assume R is a countably McCoy ring. Then R is a strongly
EM-ring if and only if every power series in R[[x]] has an annihilating content.

Proof. Let
∑n
i=0 fix

i be a zero-divisor polynomial in R[x]. Then there exists
a regular power series

∑∞
i=0 gix

i ∈ R[[x]] such that
∑n
i=0 fix

i = c
∑∞
i=0 gix

i.
Then we have:

fi = cgi for each i ∈ {0, 1, . . . , n},
0 = cgi for each i > n.

But the countably generated ideal (g0, g1, . . .) is not contained in Z(R),

since
∑∞
i=0 gix

i is regular, and so there exists r =
∑k
i=0 rigi ∈ reg(R). Let

m = Max{n, k}. Then
∑n
i=0 fix

i = c
∑m
i=0 gix

i, and
⋂m
i=0Ann(gi) = {0}.

Thus R is an EM-ring. �

Corollary 3.4. Assume R is a Noetherian ring. Then R is a strongly EM-ring
if and only if every power series in R[[x]] has an annihilating content.

Theorem 3.5. Let R be a ring such that Z(R[[x]]) is an ideal in R[[x]]. Then
R is a strongly EM-ring if and only if every power series in R[[x]] has an
annihilating content.

Proof. Let
∑n
i=0 fix

i be a zero-divisor polynomial in R[x]. Then there exists
a regular power series

∑∞
i=0 gix

i ∈ R[[x]] such that
∑n
i=0 fix

i = c
∑∞
i=0 gix

i.
Then we have:

fi = cgi for each i ∈ {0, 1, . . . , n},
0 = cgi for each i > n.

But
∑∞
i=0 gix

i =
∑n
i=0 gix

i +
∑∞
i=n+1 gix

i is regular and
∑∞
i=n+1 gix

i is zero-

divisor, so
∑n
i=0 gix

i must be regular. Hence
∑n
i=0 fix

i = c
∑n
i=0 gix

i with∑n
i=0 gix

i is regular. Thus R is an EM-ring. �

We have shown that any Bézout ring, or in particular any principal ideal
ring is an EM-ring.

Clearly, any strongly EM-ring is an EM-ring, and we will give later on an
example of an EM-ring that is not strongly EM.

We now study some basic properties of EM-rings.
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ANNIHILATING CONTENT 7

Theorem 3.6. Assume R is an EM-ring, and S is a multiplicatively closed
subset of R. Then S−1R is an EM-ring.

Proof. Assume that h(x) ∈ S−1R[x]. Then there exists t ∈ S, f(x) ∈ R[x]

such that h(x) = f(x)
t . Since R is an EM-ring there exist c ∈ R and a regular

polynomial g(x) =
∑n
i=0 gix

i ∈ R[x] such that f(x) = cg(x), and g(x) is

regular. So, h(x) = c g(x)
t . If there exists d

k ∈ S
−1R such that d

k
gi
1 = 0 for each

i, then there exists ui ∈ S such that uidgi = 0 for each i. Let u =
∏n
i=0 ui.

Then dugi = 0 for each i and so, ud = 0, since g(x) is a regular polynomial

in R[x]. Thus d
k = 0, since u ∈ S. Therefore g(x)

t is a regular polynomial in

S−1R[x], and S−1R is an EM-ring. �

Recall that if R is a commutative ring with unity, the total quotient ring of
R is the localization T (R) = (reg(R))−1R.

Corollary 3.7. If R is an EM-ring, then S−1R is an EM-ring for any multi-
plicatively closed subset S ⊆ reg(R). In particular T (R) is an EM-ring, if R
is.

Theorem 3.8. If T (R) is an EM-ring, then for every f ∈ Z(R[x]), there exists
k ∈ R such that AnnR[x](f) = AnnR[x](k).

Proof. Assume that f(x) ∈ Z(R[x]) ⊆ Z(T (R)[x]). Then there exist k
s ∈

T (R) and a regular polynomial g(x) ∈ T (R)[x] such that f(x) = k( 1
sg(x)).

Now, since 1
sg(x) is regular we have AnnR[x](f) = AnnR[x](k). Moreover,

AnnR(C(f)) = AnnR(k). �

Definition 3.9. A ring R is called locally EM-ring if T (R) is an EM-ring.

For an example of a locally EM-ring which is not an EM-ring, see Example
3.11 below.

Theorem 3.10. If R is an EM-ring with property A, then T (R) is a Bézout
ring.

Proof. Let I =
∑n
i=0 aiT (R) be a finitely generated ideal in T (R). If (a0, . . .,

an) * Z(R), then I contains a unit and so, I = T (R). If (a0, . . . , an) ⊆ Z(R),
and since R has property A, we must have Ann(a0, . . . , an) 6= {0}, and so,
f(x) =

∑n
i=0 aix

i ∈ Z(R[x]) \ {0}. Hence, we have f(x) = a
∑m
i=0 uix

i, with
Ann(u0, . . . , um) = {0}, and there exists r =

∑m
i=0 riui ∈ R\Z(R). So we have

I =
∑n
i=0 aiT (R) = a

∑m
i=0 uiT (R) = aT (R), since

∑m
i=0 uiT (R) contains a

unit. Thus, T (R) is a Bézout ring. �

The converse of these theorems needs not be true as shown in the following
example.

Example 3.11. Let R = Z6[x, y] /(xy) . Then R is a reduced Noetherian ring,
and so T (R) is a von Neumann regular ring, and hence it is a Bézout EM-ring.
But R is not an EM-ring, since Ann(2y) = 3R + xR, which is not principal,
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8 E. ABUOSBA AND M. GHANEM

and we will see in Theorem 3.26 that this prevents R to be an EM-ring. Hence
Z6[x, y] /(xy) is a locally EM-ring which is not an EM-ring.

Theorem 3.12. Let R =
∏
α∈I Rα. Then R is an EM-ring if and only if Rα

is an EM-ring for each α.

Proof. Assume R is an EM-ring, and let f(x) =
∑n
i=0 aix

i ∈ Z∗( Rj [x])
for some j ∈ I. For each i construct the sequence (bα,i) such that bα,i ={
ai, α = j
0, otherwise.

Then g(x) =
∑n
i=0(bα,i)x

i ∈ Z∗(R[x]), and so there exist

cg = (cα) ∈ R and g1(x) =
∑m
i=0(dα,i)x

i ∈ reg(R[x]) such that g(x) = cgg1(x),
m ≥ n. For each i, let wi = dj,i . Then ai = cjwi for each i. If ywi = 0 for each

i, then let zα =

{
y, α = j
0, otherwise,

and so (zα)(dα,i) = (0) for each i. Hence,

y = 0 and f(x) = cj
∑m
i=0 wix

i.
To see the converse, assume that Rα is an EM-ring for each α, and let

f(x) =
∑n
i=0(aα,i)x

i ∈ Z∗(R[x]). Then there exists (bα) 6= (0) such that
(bα)(aα,i) = (0) for each i. Note that if

⋂n
i=0Ann{aα,i} = {0}, then bα = 0.

Since (bα) 6= (0), one can construct for each j ∈ I such that
⋂n
i=0Ann{aj,i} 6=

{0}, the polynomial fj(x) =
∑n
i=0 aj,ix

i ∈ Z(Rj [x]), and so we have fj(x) =
cfj
∑m
i=0 dj,ix

i with
⋂n
i=0Ann{dj,i} = {0}, m ≥ n. Now let

cα =

{
cfα ,

⋂m
i=0Ann{aα,i} 6= {0}

1, otherwise,
and

kα,i =

{
dα,i,

⋂m
i=0Ann{aα,i} 6= {0}

aα,i, otherwise
for each i.

Then f(x) = (cα)
∑m
i=0(kα,i)x

i with

m⋂
i=0

Ann{(kα,i)} =

m⋂
i=0

(
∏
α∈I

Ann{kα,i}) =
∏
α∈I

(

m⋂
i=0

Ann{kα,i}) = {(0)}.
�

We now give examples of EM-rings that are not principal ideal rings.

Theorem 3.13. If R is an EM-ring, then R[x] is also an EM-ring.

Proof. Let f(x, y) =
∑n
i=0 fi(x)yi be a zero-divisor in R[x, y] = (R[x])[y]. Then

there exists nonzero h(x) such that hfi = 0 for all i. Define

g(x) = f0 + f1x
deg(f0)+1 + f2x

deg(f0)+deg(f1)+2 + · · ·+ fnx
∑n−1
i=1 deg(fi)+n.

Since hg = 0, there exists cg ∈ Z(R) and nonzero-divisor g1 =
∑m
i=1 bix

i such

that g = cgg1. So, ∩Ann(bi) = {0}, and f0 = cg
∑deg(f0)
i=0 bix

i = cgh0(x), f1 =

cg
∑deg(f1)
i=0 bi+deg(f0)+1x

i = cgh1, and so on. Hence, f(x, y) = cg
∑n
i=0 hi(x)yi.

Note that g1 belongs to the R[x]-content of the polynomial
∑n
i=0 hi(x)yi,

thus AnnR[x](h0, h1, . . . , hn) ⊆ AnnR[x](g1) = {0}, and we have R[x] is an
EM-ring. �
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ANNIHILATING CONTENT 9

Corollary 3.14. Let R be an EM-ring. Then R[x1, x2, . . . , xn] is an EM-ring.

Lemma 3.15. Let R0 be ring, and let Ri = R0[x1, . . . , xi]. If r ∈ reg(Rj),
then r ∈ reg(Ri) for every i ≥ j.

Proof. Note that, for any ring S, Z(S[x]) ∩ S = Z(S), otherwise there exists
t ∈ Z(S[x]) ∩ reg(S), and so tf(x) = 0 for some f(x) =

∑n
i=1 aix

i ∈ Z∗(S[x]).
Then ai 6= 0 for some i and tai = 0, a contradiction. �

Corollary 3.16. Let R be an EM-ring, and let f ∈ Z(Rn), where Ri =
R[x1, . . . , xi]. Then there exist cf ∈ R and g ∈ reg(Rn) such that f = cfg.

Proof. f = cnfn, where cn ∈ Z(Rn−1) and fn ∈ reg(Rn). Repeat the work to
get f = cn−1fn−1fn, where cn−1 ∈ Z(Rn−2) and fn−1 ∈ reg(Rn−1). Continue
to obtain f = c1f1f2 · · · fn, where c1 ∈ R and fi ∈ reg(Ri) for i = 1, 2, . . . , n.
Let g = f1f2 · · · fn. Then by Lemma 3.15, g ∈ reg(Rn), and the result holds.

�

We now give an example of a non-Noetherian EM-ring.

Theorem 3.17. Let S be an EM-ring, and let R = S[x1, x2, . . .]. Then R is
an EM-ring.

Proof. The ring R is not Noetherian, since the ideal
∑∞
i=1 xiR is not finitely

generated. Let f ∈ Z(R[x0]). Then f =
∑∞
i=0 ai

∏∞
j=0 x

ni,j
j , such that ai = 0

for all but finitely many i and ni,j = 0 for all but finitely many i and j. Thus
f ∈ S[x0, x1, . . . , xm] for some m. There exists g ∈ S[x0, x1, . . . , xn] such that
fg = 0. Let k = Max{m,n}. Then f, g ∈ Z(S[x0, x1, . . . , xk]), and it follows
by Lemma 3.15 and Corollary 3.16 that f = cff1 such that cf ∈ S ⊂ R and
f1 ∈ reg(R[x0]). �

If R is an EM-ring and I is an ideal of R, then R /I needs not be EM-ring,
since Z6[x, y] is an EM-ring, but Z6[x, y] /(xy) is not, as shown in Example
3.11.

Now, we relate EM-rings with some famous rings.
A ring R is said to be Armendariz if the product of two polynomials in R[x]

is zero if and only if the product of their coefficients is zero. Note that the ring
Z4[x]

/
(x2) in Example 2.6 is not an Armendariz ring, since if f(y) = 2+Xy =

g(y), then f(y)g(y) = 0, but 2X 6= 0.

Theorem 3.18. If R is an EM-ring, then it is an Armendariz ring.

Proof. Let f(x) =
∑n
i=0 aix

i, g(x) =
∑m
j=0 bjx

j ∈ Z(R[x]), with f(x)g(x) = 0.

Then f(x) = cf
∑n1

i=0 αix
i, and g(x) = cg

∑m1

j=0 βjx
j . So, aibj = cfαicgβj = 0,

for each i, j, since cfcg = 0. �

Theorem 3.19. If a ring R is an integral domain, then R[x]
/

(x2) = {a0 +

a1X : ai ∈ R,X2 = 0} = S is an EM-ring .
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Proof. Note first that a0 + a1X is a zero-divisor in S if and only if a0 = 0.
Thus if f(y) =

∑n
i=0 (ai,0 + ai,1X)yi ∈ Z∗(S[y]), then f(y) =

∑n
i=0 ai,1Xy

i =

X
∑n
i=0 ai,1y

i. Thus R[x]
/

(x2) is an EM-ring. �

The converse of this theorem is not true, since Z6[x]
/

(x2) is an EM-ring,
while Z6 is not an integral domain.

Theorem 3.20. If S = R[x]
/

(x2) is an EM-ring, then R is a reduced EM-
ring.

Proof. S is an Armendariz ring, and so R is a reduced ring, see [4]. To show
that R is an EM-ring, let f(y) =

∑n
i=0 aiy

i ∈ Z(R[y]), and so, f(y) ∈ Z(S[y]).
Hence f(y) = (c0 + c1X)

∑m
i=0 (bi,0 + bi,1X)yi, with

⋂m
i=0Ann(bi,0 + bi,1X) =

{0}, which yields that
⋂m
i=0Ann(bi,0) = {0}. But ai = (c0+c1X)(bi,0+bi,1X) =

cobi,0 for each i. Hence f(y) = c0
∑m
i=0 bi,0y

i, and R is an EM-ring. �

Recall that a ring R is called a PP-ring if every principal ideal in R is
a projective R-module, which is equivalent to annihilator of any element is
generated by an idempotent.

Theorem 3.21. If R is a PP-ring, then it is an EM-ring.

Proof. Note first that if e1 and e2 are idempotents, then e = e1 + e2 − e1e2 is
also an idempotent. Moreover, eie = ei for i = 1, 2. So, eR = e1R + e2R, and
thus Ann(e1, e2) = Ann(e) = (1−e)R, also note that 1 = (e1+1−e)+(e2+1−
e)−(e1+1−e)(e2+1−e), which means that Ann((e1+1−e), (e2+1−e)) = {0}.
Using induction one can generalize this for any finite family of idempotents,
with 1 − e =

∏n
i=1(1 − ei). Now, let f(x) =

∑n
i=0 aix

i ∈ Z∗(R[x]). Then
ai = uiei, where ui ∈ reg(R) and ei is an idempotent for each i, see [10, Lemma
2]. There exists a ∈ R \ {0} such that af(x) = 0, and so aei = 0. Let e
be as above. Then {0} 6= Ann(e1, e2, . . . , en) = Ann(e) = (1 − e)R. Thus
f(x) = e

∑n
i=0 ui(ei + 1− e)xi, and

⋂n
i=0Ann(ui(ei + 1− e)) = {0}. �

The converse of this theorem needs not be true, since Z8 is an EM-ring
which is not a PP-ring, being nonreduced. Also this theorem shows that the
EM-rings include a large class of rings such as Baer rings, von Neumann rings,
and PP-rings.

If for every a, b ∈ R, there is c ∈ R such that Ann(a) ∩ Ann(b) = Ann(c),
then R is said to satisfy the annihilator condition or to be an a.c. ring, see [14].

Theorem 3.22. If R is an EM-ring, then it is an a.c. ring.

Proof. Assume that d ∈ Ann(a0, a1). Then f(x) = a0 + a1x ∈ Z(R[x]), and
so a0 + a1x = cf

∑n
i=0 bix

i, with Ann(b0, b1, . . . , bn) = {0}, n ≥ 1. Thus
0 = dai = dcfbi for i = 0, 1 and 0 = cfbi = dcfbi for i > 1, and hence,
dcf ∈ Ann(b0, b1, . . . , bn) = {0}, which implies that Ann(a0, a1) ⊆ Ann(cf ). If
k ∈ Ann(cf ), then kai = kcfbi = 0 for i = 0, 1. Hence, k ∈ Ann(a0, a1), and
so, Ann(cf ) ⊆ Ann(a0, a1). Thus R is an a.c. ring. �
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To get deeper results, we will assume that R is a Noetherian ring.
A ring R is called a morphic ring if for each a ∈ R, there exists b ∈ R such

that Ann(a) = bR and Ann(b) = aR. The ring R is called generalized morphic
if for each a ∈ R, there exists b ∈ R such that Ann(a) = bR. Clearly every
morphic ring is generalized morphic, but the ring Z is a generalized morphic
which is not morphic, see [19] and [9].

We first start with the following proposition.

Proposition 3.23. Let R be an EM-ring, and assume that b ∈ R such that
Ann(b) is finitely generated, then Ann(b) is principal.

Proof. Assume that Ann(b) =
∑n
j=1 ajR for some a1, . . . , an ∈ R. Let f(x) =∑n

j=1 ajx
j . Then f(x) ∈ Z∗(R[x]), since bf(x) = 0. But f(x) = cff1(x) =

cf
∑m
j=1 αjx

j , and so aj = cfαj ∈ cfR for each j. Thus we have Ann(b) =∑n
j=1 ajR ⊆ cfR. Also we have 0 = baj = bcfαj for each j. Then bcf = 0,

since Ann(α1, α2, . . . , αm) = {0}, because f1(x) is not a zero-divisor. Hence
cf ∈ Ann(b) =

∑n
j=1 ajR, and so we have Ann(b) =

∑n
j=1 ajR = cfR is

principal. �

We now use a definition of irreducible elements in commutative ring with
unity and contains zero-divisors, see [12].

Definition 3.24. A non-unit element a ∈ R is called irreducible element if
whenever a = bc, we have aR = bR or aR = cR.

It was shown in [5, Theorem 3.2] that if R has ascending chain condition on
principal ideals (in particular if R is Noetherian), then every non-zero non-unit
element in R is a finite product of irreducibles.

Lemma 3.25. Assume that R is a Noetherian ring, and bR is a prime principal
ideal with b ∈ Z(R). If a ∈ bR \ {0}, then a = bns for some n ∈ N and
s ∈ R \ bR.

Proof. Case 1: b2R = bR. So bR = eR, where e = e2. With a change of
notation R = R1 × R2, e = (0, 1), b = (0, u) where u is a unit in R2. Now,
a ∈ bR \ {0} implies that a = (0, r), with r ∈ R2 \ {0}. Then a = b(1, ru−1),
and clearly (1, ru−1) /∈ bR.

Case 2: b2R ( bR. Note that if s ∈ bR is irreducible, then sR = bR,
since otherwise sR ( bR implies that b /∈ Z(R), see [3, Theorem 1]. Now
sR = bR implies that s = br, with r /∈ bR, since otherwise, we would have
bR = sR ⊆ b2R ( bR.

Write a = s1s2 · · · sm where si is irreducible. Now either si /∈ bR or si = bs
′

i

with s
′

i /∈ bR. If si /∈ bR, put si = s
′

i. Let s = s
′

1s
2
2 · · · s

′

m. Then a = bns where
s /∈ bR and n = |{i : siR = bR}|. �

Theorem 3.26. Let R be a Noetherian ring. Then the following are equivalent:
(1) R is a strongly EM-ring.
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12 E. ABUOSBA AND M. GHANEM

(2) R is an EM-ring.
(3) R is a generalized morphic ring.
(4) Every ideal in Z(R) is contained in a principal ideal in Z(R).
(5) The maximal prime ideals of zero divisors are principal.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (3) Follows by Proposition 3.23.
(3) ⇒ (4) Let I be an ideal contained in Z(R). Then I is finitely generated,

and since R has property A, being Noetherian, there exists a 6= 0 such that
aI = 0. Thus I ⊆ Ann(a) = bR, a principal ideal.

(4) ⇒ (5) Clear.
(5) ⇒ (1) Let T = R[x] or R[[x]], and let f =

∑
aix

i ∈ Z∗(T ), and let
C(f) the content of f , i.e., the ideal generated by the coefficients of f . Then
C(f) ⊆ Z(T ) and so, C(f) ⊆ M1 = c1R ⊆ Z(R), where M1 is a maximal
ideal consisting of zero divisors, and so it is prime, see [15, Theorem 6]. Hence,

using Lemma 3.25 if ai 6= 0, ai = αic
ki
1 with αi /∈ c1R, and ki ≥ 1 for each i.

Let k11 = Min{ki}, bi = αic
ki−k11
1 and let f1 =

∑
bix

i. Then f = ck111 f1 and
C(f1) * c1R, and thus fT ⊂ f1T . If f1 ∈ Z(T ) \ {0}, then repeat the work to

write f1 = ck222 f2 and fT ⊂ f1T ⊂ f2T . Continue to get fT ⊂ f1T ⊂ f2T ⊂
f3T ⊂ · · · , and since T is Noetherian ring, this ascending chain terminates.
Thus there exits fn /∈ Z(T ) and f(x) = ck111 ck222 ck333 · · · cknnn fn = cffn(x). �

It follows immediately from this theorem that any principal ideal ring is
strongly EM-ring.

Corollary 3.27. Let R be a reduced Noetherian ring. Then the following
statements are equivalent:

(1) R is an EM-ring.
(2) R is a generalized morphic ring.
(3) The maximal prime ideals of zero divisors are principal.
(4) Any minimal prime ideal of R is principal.

Proof. (1) ⇔ (2)⇔ (3) Follows from Theorem 3.26.
(2)⇒ (4) Assume that R is generalized morphic ring, and let P be a minimal

prime ideal in R. Then it follows by [15, Theorem 86] that P = Ann(a) for
some a ∈ R. Hence P is a principal ideal.

(4) ⇒ (3) Assume that every minimal prime ideal of R is principal. Since R
is Noetherian, R has a finite number of minimal prime ideals, P1, . . . , Pn, see
[15, Theorem 88]. Also since R is reduced, we have Z(R) = P1 ∪ · · · ∪ Pn. Let
M be a maximal ideal of Z(R). Then M ⊆ P1 ∪ · · · ∪ Pn, and so M ⊆ Pi for
some i. Thus, M = Pi which is principal. �

Although EM-rings and generalized morphic rings are equivalent in the class
of Noetherian rings, but they are not equivalent in general. In the following,
we will find an EM-ring that is not generalized morphic.
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A ring R is called a PF-ring if every principal ideal of R is a flat R-module.
It is well known that R is a PF-ring if and only if for each a ∈ R,Ann(a) is
pure (for each b ∈ Ann(a) there exists c ∈ Ann(a) such that b = bc). It is
easy to see that a ring R is a PP-ring if and only if it is a generalized morphic
PF-ring. Thus any PF-ring that is not a PP-ring is not generalized morphic.
But the ring C(X) of continuous real valued functions defined on a space X is
a PF-ring if and only if it is Bézout. Thus if C(X) is a PF-ring that is not a
PP-ring, then it is an EM-ring that is not generalized morphic.

4. Application to zero-divisor graphs

The zero-divisor graph for a ring R is a simple graph with vertex set Z∗(R) =
Z(R)\{0}, and two distinct elements a, b ∈ Z∗(R) are adjacent if ab = 0. This
graph is usually denoted by Γ(R). The idea of zero-divisor graphs was first
introduced in [8], then modified in its current status in [6]. The zero-divisor
graph is a tool to study Z(R), and it relates the algebraic properties of R
with the graph properties of Γ(R). The zero-divisor graphs for R[x] and R[[x]],
were studied in [7] and [16]. The authors tried to relate Γ(R) to Γ(R[x]) and
Γ(R[[x]]).

For any undefined terms concerning the zero-divisor graph, the reader may
contact [6].

We will write x ∼ y if Ann(y) = Ann(x). It is clear that ∼ is an equivalence
relation on R with equivalence classes [x] = {y ∈ R : x ∼ y}.

If x ∼ y and xz = 0, then z ∈ Ann(x) = Ann(y), and so zy = 0. Thus
multiplication on the equivalence classes of ∼ is well-defined. Hence the mul-
tiplication [x].[y] = [xy] make sense.

The graph of equivalence classes of zero-divisors of a ring R, denoted by
ΓE(R), is a graph associated to R, with vertex set {[x] : x ∈ Z∗(R)} and two
vertices [x] and [y] are adjacent if [x].[y] = [xy] = [0]. In many cases ΓE(R) is
finite when Γ(R) is infinite, for example in the ring R = Z[x, y]

/
(x3, xy) , Γ(R)

is infinite, while ΓE(R) has only 4 vertices, see [18].
Now, we will study some relations between Γ(R),Γ(R[x]),Γ(R[[x]]) and

ΓE(R), when R is strongly EM-ring.

Theorem 4.1. If R is a strongly EM-ring, then the zero-divisor graph of equiv-
alence classes ΓE(R) is isomorphic to ΓE(R[x]) and ΓE(R[[x]]) with the corre-
spondence f ↔ cf .

A graph is called bipartite if its vertex set can be partitioned into two parts
with no adjacency between the vertices in each part. If R is non-reduced ring,
then clearly, Γ(R[x]) and Γ(R[[x]]) cannot be bipartite, while Γ(R) could be
bipartite or not.

Theorem 4.2. If R is a reduced strongly EM-ring, then the following are
equivalent:

(1) Γ(R[[x]]) is bipartite.
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(2) Γ(R[x]) is bipartite.
(3) Γ(R) is bipartite.

Proof. (1)⇒ (2)⇒ (3) is clear.
(3)⇒ (1) If f(x)−g(x)−h(x)−f(x) is a triangle in Γ(R[[x]]), then since R is

a reduced ring, cf−cg−ch−cf is indeed a triangle in Γ(R), a contradiction. �

A graph is called complete if all of its vertices are adjacent. It was shown
in [7] that if R 6= Z2 × Z2, then Γ(R) is complete if and only if Γ(R[x]) is
complete if and only if Γ(R[[x]]) is complete, and so the diameter of the graph
diam(Γ(R)) = diam(Γ(R[x])) = diam(Γ(R[[x]])) = 1, when R 6= Z2 × Z2,Z4

or Z2[x]/(x2), where the diameter of a graph is the supremum of the distances
between its vertices.

Theorem 4.3. Let R be a strongly EM-ring. Then the following are equivalent:
(1) diam(Γ(R)) = 2.
(2) diam(Γ(R[x])) = 2.
(3) diam(Γ(R[[x]]))) = 2.

Proof. (1)⇒ (2) Assume that f, g ∈ Z∗(R[x]) such that fg 6= 0, then cfcg 6= 0
where cf , cg are annihilating contents of f and g in R[x], respectively. Since
diam(Γ(R)) = 2, there exists r ∈ Z(R) − {cf , cg} such that cf − r − cg is a
path in Γ(R), even if cf = cg or not. Therefore f − r − g is a path in Γ(R[x]))
and hence d(f, g) = 2.

(2) ⇒ (3) Let f, g ∈ Z∗(R[[x]]) such that fg 6= 0, then cfcg 6= 0 where
cf , cg are an annihilating contents of f and g in R[[x]] respectively. Since
diam(Γ(R[x])) = 2, there exists h ∈ Z(R[x]) such that ch ∈ Z(R) − {cf , cg}
and cf − ch − cg is a path in Γ(R[x]), even if cf = cg or not. Hence f − h− g
is a path in Γ(R[[x]])).

(3) =⇒ (1) Since diam(Γ(R)) ≤ diam(Γ(R[[x]])) = 2 and R 6= Z2 × Z2,
diam(Γ(R)) = 2. �

Since diam(Γ(S)) ≤ 3 for any ring S, we have the following result.

Corollary 4.4. Let R be a strongly EM-ring, such that R is not isomor-
phic to Z2 × Z2,Z4 or Z2[x]/(x2). Then diam(Γ(R[[x]])) = diam(Γ(R[x])) =
diam(Γ(R)).

If R is an EM-ring, then we will get similar relations between Γ(R) and
Γ(R[x]).

Unfortunately, the converse of the above corollary is not true, since there
are rings R such that diam(Γ(R[[x]])) = diam(Γ(R[x])) = diam(Γ(R)), but
R is not strongly EM-ring, as shown in the following example. But we recall
first that if R is a ring, and M is an R-module, then the idealization R(+)M
is the set of all ordered pairs (r,m) ∈ R ×M , equipped with addition defined
by (r,m) + (s, n) = (r + s,m+ n) and multiplication defined by (r,m)(s, n) =
(rs, rn+ sn). It is well-known that R(+)R ' R[x]

/
(x2) .
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Example 4.5. Let p be a prime integer, and consider the idealization ring
R = Z(+)Zp. It was shown in [16] that diam(Γ(R[[x]])) = diam(Γ(R[x])) =
diam(Γ(R)) = 2, and Z(R) = pZ(+)Zp = Ann((0, 1)). But R is not an EM-
ring, since the polynomial f(x) = (p, 0)+(0, 1)x ∈ Z∗(R[x]) has no annihilating
content.

It is clear that if R is a strongly EM-ring, then it is an EM-ring, and we
showed in Theorem 3.26 that these conditions are equivalent in Noetherian
rings. Now, we will use the results obtained in Corollary 4.4 concerning zero-
divisor graphs to give an example of an EM-ring that is not strongly EM-ring.

Example 4.6. Let p be a prime integer, and consider the idealization ring
R = Z(+)Z(p∞). It was shown in [16] that diam(Γ(R)) = diam(Γ(R[x])) = 2,
while diam(Γ(R[[x]])) = 3, and Z(R) = pZ(+)Z(p∞) = Ann((0, 1p )). So, it

follows by Corollary 4.4 that R is not strongly EM-ring. Now to show that R
is an EM-ring, let f(x) =

∑n
i=0 aix

i ∈ Z∗(R[x]). We have two cases:
Case I: ai = (0, mi

pki
), gcd(mi, p) = 1 for each i. Let k = Max{k1, . . . , kn},

f1(x)=
∑n
i=0(mip

k−ki , 1
pki

)xi. Then f1(x)∈reg(R[x]), and f(x)=(0, 1
pk

)f1(x).

Case II: ai = (nip
li , mi

pki
), gcd(mi, p) = 1 = gcd(ni, p), li ≥ 1 and ni 6= 0

for some i. Let I = {i : ni 6= 0} and let l = Min{li : i ∈ I}, f1(x) =∑n
i=0(nip

li−l, mi
pki+l

)xi. Then f1(x) ∈ reg(R[x]), and f(x) = (pl, 0)f1(x).

Thus R is an EM-ring. Moreover, R is a generalized morphic ring, since
Ann((0, n

pk
)) = (pk, 0)R and Ann((mpl, n

pk
)) = (0, 1

pl
)R.
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