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ON EVOLUTION OF FINSLER RICCI SCALAR

BEHROZ BIDABAD AND MARAL KHADEM SEDAGHAT

ABSTRACT. Here, we calculate the evolution equation of the reduced hh-
curvature and the Ricci scalar along the Finslerian Ricci low. We prove
that Finsler Ricci flow preserves positivity of the reduced hh-curvature on
finite time. Next, it is shown that evolution of Ricci scalar is a parabolic-
type equation and moreover if the initial Finsler metric is of positive flag
curvature, then the flag curvature, as well as the Ricci scalar, remain
positive as long as the solution exists. Finally, we present a lower bound
for Ricci scalar along Ricci flow.

Introduction

In the last two decades, geometric flows and more notably among them,
Ricci flow, have proven to be useful in the study of long-standing conjectures
in geometry and topology of Riemannian manifolds. One of its important
issues concerns discovering the so-called round metrics (of constant curvature,
Einstein, Soliton, etc.) on manifolds by evolving an initial Riemannian metric
tensor to make it rounder and draw geometric and topological conclusions from
the final round metric. Similarly, several natural questions arise in Finsler
geometry, among them is S. S. Chern’s question which asks whether there
exists a Finsler-Einstein metric on every smooth manifold.

Introducing a similar evolution equation in Finsler geometry involves over-
coming a number of new conceptual and fundamental issues in relation to
the different definitions of Ricci tensors, existence problem and geometric and
physical characterizations of the resulting flows. In [3], D. Bao based on the
Akbar-Zadeh’s Ricci tensor and in analogy with the Ricci flow in Riemann-
ian geometry has considered the following equation as Ricci flow in Finsler
geometry

(1) gtlogF = —Ric, F(0) = Fp,
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where Fy is the initial Finsler structure. Comparing the definition of Ricci
tensor by Hilbert as a critical point of an energy functional and Hamilton’s
tricks for the definition of normal Ricci flow in Riemannian geometry shows
that the definition of D. Bao for Finslerian Ricci flow is quite reasonable. This
equation addresses the evolution of the Finsler structure F' and seems to make
sense, as an un-normalized Ricci flow for Finsler spaces on both the bundle
of nonzero tangent vectors T'My and the sphere bundle SM. One feature of
the equation (1) is its independence to the choice of Cartan, Berwald or Chern
connections.

In recent years the interest in Ricci flow in Finsler geometry has grown
drastically, where we just cite more recent ones, for instance, [2,10, 11, 13],
etc. The present authors in several joint works, have studied the evolution of
Finsler metrics under different Ricci flows. First, the Finslerian Ricci soliton
as a self-similar solution to the Finslerian Ricci flow has been introduced and it
was shown if there is a Ricci soliton on a compact Finsler manifold then there
exists a solution to the Finsler Ricci flow equation and vice-versa, see [9]. Next,
as a first step to answering Chern’s question, we have considered evolution of
a family of Finsler metrics, first under a general flow next under the Finsler
Ricci flow and it has been shown that a family of Finsler metrics g(¢) which are
solutions to the Finsler Ricci flow converge to a smooth limit Finsler metric
as t approaches the finite time T, see [15]. Moreover, a Bonnet-Myers type
theorem was studied and it is proved that on a Finsler space, a forward complete
shrinking Ricci soliton is compact if and only if the corresponding vector field is
bounded, using which we have shown a compact shrinking Finsler Ricci soliton
has finite fundamental group and hence the first de Rham cohomology group
vanishes, see [14].

The existence and uniqueness of solution to the evolution equation (1) in
Finsler geometry, is also studied by the present authors in [6,7]. Finally, another
significant Ricci flow in Finsler geometry is considered and evolution of Cartan
hh-curvature, Ricci tensor and scalar curvature have been obtained in [8].

In the present work, we derive evolution equations for the reduced hh-
curvature of Finsler structure R(X, Z) and the Ricci scalar Ric along the Ricci
flow and show that the evolution of Ricci scalar is a parabolic type equation.
Next another step to the study of Chern’s question is taken and it is shown that
if (M, F(0)) has positive reduced hh-curvature at the initial time ¢ = 0 then
its sign remains positive for all ¢ € [0,7). More precisely, among the others,
we prove the following main theorems.

Theorem 1. Let (M™, Fy) be a compact Finslerian manifold and F(t) a so-
lution to the evolution equation (1), satisfying a uniform bound for the Ricci
tensor on a finite time interval [0,T), where F(0) = Fy. If (M, F(0)) is of
positive flag curvature, then (M, F(t)) has positive flag curvature and positive
Ricci scalar for allt € [0,T).
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Theorem 2. Let (M™, Fy) be a compact Finslerian manifold and F(t) a so-
lution to the evolution equation (1), satisfying a uniform bound for the Ricci
tensor on a finite time interval [0,T), where F(0) = Fy. If (M, F(0)) has pos-
itive flag curvature and infgn Ricyoy = a > 0, then Ricyyy > for all
tel0,T).

_a
14+at

1. Preliminaries and notations

In order to study evolution equations in Finsler geometry, in analogy with
Riemannian geometry, it is more convenient to use global definitions of curva-
ture tensors. In the present work, we use notations and terminologies of [1] and
[4]. Here and everywhere in this paper all manifolds are assumed to be closed
(compact and without boundary).

Let M be a real n-dimensional manifold of class C*°. We denote by T'M
the tangent bundle of tangent vectors, by « : TMy — M the fiber bundle of
non-zero tangent vectors and by 7*T'M — T M the pull back tangent bundle.
Let F be a Finsler structure on TMy and g the related Finslerian metric. A
Finsler manifold is denoted here by the pair (M, F). Any point of TMj is
denoted by z = (x,y), where x = 7z € M and y € T, M. We denote by
TT My, the tangent bundle of TMy and by p, the canonical linear mapping
p:TTMy — 7*TM, where p = m,. For all z € T My, let V.. TM be the set
of all vertical vectors at z, that is, the set of vectors which are tangent to the
fiber through z.

It is well known that TT' My can be decomposed on horizontal and vertical
subspaces, TT My = HI'M & VT M. This decomposition permits to write a
vector field X € X (T'Mp) into the horizontal and vertical form X = HX +V X,
uniquely. The corresponding bases are denoted by {%7 8%,} where % =

B‘Zi — G{% and G’ are the spray coefficients defined by G = %gih(azigij Yl —

gf: ). In the sequel, we will denote all the vector fields on T'M; by X and Y,
etc. and the corresponding sections of 7*TM by X and Y, etc. respectively,
unless otherwise specified.

Let V : X(TMy) x T'(n*TM) — T'(m*T M) be the Cartan connection. The

horizontal and vertical coefficients of Cartan connection are given by F;k =

%gih(fsjghk + 0kg;n — Ong;k) and C’;k — %gilléhgjk, respectively where 6 = %
and O, = %. The horizontal covariant derivative of a (0, 2) tensor 7" is written
as follows.

@) (VaxD(Y,2) =V T, 2) = T(VpY, 2) = T(Y, V3 Z).

1.1. The hh-curvature tensor of Cartan connection

Let us consider the horizontal curvature operator

R(X,Y)Z = VuxVuyZ =VyyVgxZ - V[HX',HY]Z’
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where X,Y,Z € I'(z*TM) and X,Y € X(T'My). The hh-curvature tensor of
Cartan connection V is defined by R(W, Z, X,Y) := g(R(X,Y)Z,W). Replac-
ing W with the local frame {ex}}_, we get

(3) R(X,Y)Z = Rlex,Z,X,Y)ey.
k=1

One can check that the hh-curvature of Cartan connection is skew-symmetric
with respect to the first two vector fields as well as the last two vector fields,
see [1, p. 43]. That is,

RX,Y,ZW)=—-R(Y,X,Z W),

R(X,Y,Z, W)= —-R(X,Y,W, 2).
In a local coordinate system we have

R(0;,0;)0k = R';;0n.
Recall that the upper index is placed in the first position, that is
Ry = ghtthij = g(R(0i,05)0k, Of).
The components of Cartan hh-curvature tensor are given by
(4) thij = 6iF}gL'k — 6" + Fljkr}ill - FlikF}}z + Rlijc?lw
where Rlij = prlpij. The reduced hh-curvature is defined by
R(X,Z):=R(X,l,Z,1),

where [ := £ a?ci is the unitary global section. The reduced hh-curvature is a

connection free tensor called also Riemann curvature by certain authors. In the
local coordinates the reduced hh-curvature is given by R’ := %yf R y™
which are entirely expressed in terms of  and y derivatives of spray coefficients
G' as follows.

1 ( oG! ’G e 0*G! oG 0G7
F2°7 9k 5‘:1:j8yky Oyidyk Oyl Oyt
Note that the components of reduced hh-curvature tensor in (5) are different
in a sign by that in [4, p. 66], using Chern connection.

(5) Rik = —

1.2. Flag curvature and Ricci scalar

Qonsider the vector field [, called the flagpole, and the unit vector V =
Vi admi € I'(n*TM), called the transverse edge, which is perpendicular to the
flagpole, the flag curvature is defined by

K(z,y,l AV) = VI(I'Rjipl ) VF = VIR V",

If the transverse edge V is orthogonal to the flagpole but not necessarily of
unit length, then

ViR, VF

(6) K(amy,l/\V):W.
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The case in which V is neither of unit length nor orthogonal to [ is treated in
[4, p. 191]. The Ricci scalar is defined as trace of the flag curvature, i.e.,

n—1

(7) Ric = ZK(m,y,l/\ea),
a=1
where {e1,...,e,_1,0} is considered as a g-orthonormal basis for T,, M. Equiv-

alently,
Ric = g'* Ry, = R',,
where RY, are defined by (5).

1.3. A Riemannian connection on the indicatrix

For a fixed point zg € M, the fiber 7~ !(zg) = Ty, M is a submanifold of
T M, with the Riemannian metric §(X,Y) = gi;(zo, y)dy'dy? (X,Y) determined
by the vertical part of Sasakian metric on T'M, where X,Y € V, T, , M. The
hyper-surface S, M = {y € T, M : F(xo,y) = 1} of T, M is called indicatriz
in g € M. On the other hand a hyper-surface S;,M can be expressed in local
coordinates by the coordinate functions

y =y,
where the Greek letters o, 3,7, ... run over the range 1,...,n—1 and the Latin
letters 4, j, k,... run over the range 1,...,n. Let f be a real function defined
on Sy, M. By chain rule we have df (y(t)) = 0q fdt®, where
. oy
8 Oa =y, F0i, yl, = .
(8) Yo Yo = Fpa

Hence 0,, define (n — 1) tangent vectors on Sy, M. The induced Riemannian
metric tensor g,g on Sy, M is given by

9oB = GijUeYh,
where g;;(z0,y) are the components of Riemannian metric tensor on T, M. Let

y = yjéj be a vector field tangent to the fiber through z = 7=1(zg). Partial
derivatives of F?(x,y) = 1 with respect to y', yields

9) 979"yt = 9(a, ) = 0.
Therefore, ¢ is normal to the (n— 1) tangent vectors 3, of S,, M and hence the
pair (¢, 7) defines n linearly independent tangent vector fields on T,, M. We

denote by D, the corresponding Riemannian covariant derivative on (Tyo M, q),
where the coefficients are given by

Dé,ﬁj = C;k(xm y)az

Let V be the induced connection on (SzoM, gop). Relation between D and V
is given by the Gaussian formula

DYX = VYX 7§(X7Y)ya
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where X,Y € T,(S;,M). Replacing X and Y by the basis fields 9, and 0g
yields

(10) Ve = —Ayiys — gapy's
where A% = FC%,, see [1, pp. 147-149).
1.4. Local basis on the unitary sphere bundle SM

Consider the sphere bundle SM := T'M/ ~ as a quotient space, where the
equivalent relation is defined by y ~ ¢’ if and only if y = Ay’ for some A > 0.
Given any (x,y) € TM, we shall denote its equivalence class as a point in
SM by (x,[y]) € SM. The natural projection p : SM — M pulls back the
tangent bundle T'M to an n-dimensional vector bundle p*T' M over the 2n — 1
dimensional base SM. Given local coordinates (z*) on M, we shall economize
on notation and regard the corresponding collections {32 }, {dz"} as local bases
for the pull back bundle p*T'M and its dual p*T™* M, respectively.

Let {e, = u, 52} be a local orthonormal frame for p*TM and {w® = vidz'}

its co-frame, where w?(e;) = 0. Clearly we have e, := [, where [ = %% is
the distinguished global section and w™ = gji dxz'. Also we have 621' = vie,
and da’ = ujw", where relation between (uf,) and (vf) are given by viu, = &
and ugv] = d7. For convenience, we shall also regard the e,’s and w®’s as local
vector fields and 1-forms, respectively on SM, see [5]. Let us define

. .0 R NG
ea:’U/ZW’ €n+a:U£F@=

w® = vidat, Wt = 513; .

It can be shown that {é,,é,1q} and {w?®, W™t} are local basis for the tangent
bundle T'SM and the cotangent bundle T*SM, respectively, where the Latin
indices a,b,... run over the range 1,...,n and the Greek indices run over
the range 1,...,n — 1. Tangent vectors on SM which are annihilated by all
{w"™T}’s form the horizontal sub-bundle HSM of T'SM. The fibers of HSM
are n-dimensional and {é,} is a local basis for the fibers of HSM. On the
other hand, let VSM := UyepT(S. M) be the vertical sub-bundle of TSM.
Its fibers are n — 1 dimensional and {é, 1.} is a local basis for the fibers of
VSM. Here, é,44 coincide with 9, previously mentioned in Subsection 1.3.
The decomposition TSM = HSM &V SM holds well because HSM and V.SM
are directly summed, see [5].

1.5. Ricci tensors and Ricci flows in Finsler space

There are several well known definitions for Ricci tensor in Finsler geome-
try. For instance, H. Akbar-Zadeh has considered two Ricci tensors on Finsler
manifolds in his works namely, one is defined by Ric;; := [§F?Ric],i,; and an-
other by Rc;; = %(Rij +Rj;), where R;; is the trace of hh-curvature of Cartan
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connection defined by R;; = Rl ;- D. Bao based on the first definition of Ricci
tensor has considered the following Ricci flow in Finsler geometry,

0 .
(11) agjk(t) = —2Ricjr,  g@=0) = 9o,

where g¢,(t) is a family of Finslerian metrics defined on 7*T'M x [0,T). Con-
tracting (11) with 37y*, via Euler’s theorem, leads to %FQ = —2F?Ric. That
is,

0 .
(12) En log F'(t) = —Ric, Fi—oy = Fo,

where Fj is the initial Finsler structure, see [3]. It can be easily verified that (11)
and (12) are equivalent. This Ricci flow is used in [6,9,10,14,15]. Throughout
the present work, we consider the first Akbar-Zadeh’s definition of Ricci tensor
and the related Ricci flow studied by D. Bao.

One of the advantages of the Ricci quantity used here is its independence on
the choice of Cartan, Berwald or Chern(Rund) connections. Another feature
of this Ricci tensor is the parabolic form of the evolution of its Ricci scalar in
the sense of Proposition 3.1.

We say that the Ricci tensor has a uniform bound if there is a constant K
such that || Ric(; y.4)llg) < K, where [|.||4¢ is the norm defined by g(t).

1.6. Statement of the maximum principle

We recall here the weak maximum principle states that the extremum of so-
lutions to elliptic equations are dominated by their extremum on the boundary,
more intuitively we have the following theorem.

Theorem A ([12], Weak maximum principle for scalars). Let M be a closed
manifold. Assume, for t € [0,T], where 0 < T < oo, that g(t) is a smooth
family of metrics on M, and X (t) is a smooth family of vector fields on M. Let
f:Rx[0,T] — R be a smooth function. Suppose that u € C*°(M x [0,T],R)
solves

0
S < Ayt (X, Vu) + flut).

Suppose further that ¢ : [0,T] — R solves

{ % = f(¢(t)vt)v
¢(0) =aeR.
If u(-,0) < «, then u(-,t) < ¢(t) for allt € [0,T).

By applying this result when the signs of u, ¢ and « are reversed and f is
appropriately modified, we find the following modification:

Corollary B ([12], Weak minimum principle). Theorem A also holds with the
sense of all three inequalities reversed, that is, replacing all three instances of
< by >.
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2. Evolution of the reduced curvature tensor

In this section, we derive evolution equation for the reduced hh-curvature
R(X, Z) along the Ricci flow and show that if (M, F'(0)) has positive reduced
hh-curvature at the initial time, namely, Ry > 0, then (M, F'(t)) has posi-
tive reduced hh-curvature Ry > 0 for all ¢ € [0,T). Let X and Y be two
fixed sections of the pulled back bundle 7*T'M in the sense that X and Y are
independent of ¢t and define A(X,Y) := %<VHXY)' Now we are in a position
to prove the following proposition.

Proposition 2.1. Let Z,X € I'(w*T'M) be two fized vector fields on T M.
Then
0

(13) a(F2R(Z, X)) = =2 F?R(ey, X)Ric(ex, 2),
k=1

where R(Z,X) is the reduced hh-curvature and {ek}2:1 is an orthonormal
basis for m*T M.

Proof. Let W, Z € T'(z*TM) and X,Y € X(TMy) be fixed vector fields on
TM. By definition of the hh-curvature tensor and the equations (3) and (11)
we have

0

0
= L (g(RIX, Y)W, 2))
= (S ROCYIW, 2) + g0 ROX Y)W, 2)

= —2Ric(>_ R(ex, W, X,Y)ey, Z)
k=1

0
+ Q(Q(VHXVHYW Ve VpxW - V[HX,HY]W)v Z)-

Using the notation A(X,Y) = %(VHXY) leads
0 S ,
S(R(ZW,X,Y)) = —2 Rler, W. X, Y)Ric(er, Z) + g(A(X, VW), Z)
k=1
+9(Vig (A, W), Z) = (A, VW), Z)
— g(V (A, W), 2) = g (Alp[HX, HY], W), Z).
By means of the horizontal torsion freeness of Cartan connection, see [1], we
have V, ¢W — Vi X = p[HX,HW]. Applying the horizontal covariant
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derivative (2) to A, the above equation leads to

gt(R(Z W, X,Y)) = 7223 en, W, X, Y)Ric(ex, Z)+ g((VHXA)(Y, W),Z)
k=1
(14) - g((vaAm w). Z).

namely VHXU =0, we have
9(VxA)(u,u), Z) = g(VaA) (X, u), Z) = 0,

where @ = 3 521" Therefore, letting Y = W = w and using R(Z,u, X,u) =
F2R(Z,X) the equation (14) reduces to

0
8t(F2 :—ZZF2 (er, X)Ric(e, Z).
This completes the proof. O
If we put R(Z,X) := F?R(Z, X), then (13) reads
0
(15) &R (Z,X) —ZZR ex, X)Ric(ey, Z).

Proposition 2.2. Let (M"™, F(t)) be a family of solutions to the Finslerian

Ricci flow. If there is a constant K such that ||Ric| g < K on the time

interval [0,T), and the reduced hh-curvature Ry of F(0) is positive that is,

Ry0)(V,V) >0 for all V € I'(m*T M) perpendicular to the distinguished global

section 1, then there exists a positive constant C(n) such that
672KCTR(x,y,O)(‘/7 V) < R(;c,y,t)(v’ V) < 62KCT[%(ac,y,O)(Vvv V)

for all (z,y) € TM and t € [0,T).

Proof. Let (z,y) € TM, to € [0,T) and V € I'(n*TM) be a nonzero arbitrary

section perpendicular to the distinguished global section [ := % aw. We have

R(z Y, to)(V V /to
Rigyo(V,V) log R, V,V)]dt
R 7y,0)(V,V L ot [log R(zy,¢) (V. V)]dt||

o at yt) )
16 = / = dt
(16) LI e raandt

[[log(

By means of (15) we have

o 2 2>, (ex, V)Ric (ex, V)
(z,y,t) (z,y,t)\Ck> z,y,t)\ €k,
| [ Seent (e n) gy o [ 22k e st gy
(x,

Y, t) V V R(a:,y,t)(‘/a V)
Therefore, (16) becomes
o (R(:v y,t0) (V. _ / —2% ks Riay (ex, VI Ric(a gy (ex, V) |
R(ﬂc Y, 0) V V R(w,y,t) (‘/7 V)
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|| / R($7y7t) ) RZC ,y,t)(v»
R(ﬂ?’y bV, V)

/ H <R(ar,y,£)(v)a ch(x,y,t)(v»
0 R(m,y,t) (‘/a V)

dt|

<

.

By means of Cauchy-Schwarz inequality we have
(R @,6) (V)5 Rica,y,6) (VD < IR,y (VI Rica,y,6) (V)]
Therefore, we obtain

an o <M>())H_ / Ry (VI Rice g0 (V)]

dt.

There exists a positive constant C', depending only on n such that
(18) [ Reay.ey (V) Ric(a,y,ty (V)| < CllR(a,y,0) (Ve VI Ric(z 17 (V. V-

By means of (17) and (18) and using the fact that ||T'(U, U)|| < ||T'||4() for any
2-tensor T and the unit vector U, we have

Ry, to)(V V)

log

to
) < / 2C Ricay ) (V. V)t

to
< / QCHRZ'C(I’%U ||g(t)dt
0

to
< / 2C K dt
0
< 2CKT.

By assumption R, ,, 0)(V, V) > 0 and hence R, , 0)(V,V) > 0. Therefore, the
uniform bound on R(I y,t)(V, V) follows from exponentiation, namely,

e_QKCTR(a:,y,O) (‘/a V) < R(z,y,t) (‘/7 V) < eQKCTR(m,y,O) (‘/a V)
for all (z,y) € TM and ¢t € [0,T). This completes the proof. O

Proposition 2.2 implies that if (M™, F(t)) is a family of solutions to the
Finslerian Ricci flow satisfying a uniform Ricci tensor bound on a finite time
interval [0, T), then positive reduced hh-curvature is preserved under the Ricci
flow. More precisely,

Proposition 2.3. Let (M™, F(t)) be a family of solutions to the Finslerian
Ricci flow with F'(0) = Fy. If there is a constant K such that || Ric||4) < K on
the time interval [0,T) and the reduced hh-curvature Ry of F(0) is positive,
that is, Ryy(V, V) > 0 for all V € T'(n*T M) perpendicular to the distinguished
global section 1, then the reduced hh-curvature Ry of F(t) remains positive
in short time, namely, Ry (V,V) >0 for allt € [0,T).
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Proof of Theorem 1. By assumption (M, F(0)) has positive flag curvature. Def-
inition of the flag curvature (6) implies that Ry, > 0. By means of Proposition
2.3, Ryry > 0 for all t € [0,T). Using the definition of the flag curvature (6)
once more shows that F'(t) has positive flag curvature, as long as the solution
exists. By means of this fact and definition of the Ricci scalar (7) we have
Ricg(y > 0 for all t € [0,T). This completes the proof of Theorem 1. O

3. Evolution of the Ricci scalar Ric

Proposition 3.1. The Ricci scalar of g(t) satisfies the evolution equation

9 92
19 —Ric=—F’RY ——TRic.
(19) ot oyidy
Proof. By means of (13) and taking the trace over Z and X we obtain

a n n )
(20) &(Z F?R(e,e1)) = —2F* > Rex, e1) Ric(ex. €1).
1=1 k=1

In the natural basis, (20) becomes

0 g
(21) E(FZ'R/L'C) = —2F%R" Ric;;.

By means of the chain rule and the definition of Ricci tensor, (21) is written

as follows.
9 L, O
—Ric=—F*R"Y ———
ot e Doy

Since tryR = Ric, we have

Ric — 2(tr,R)Ric + 2Ric*.

2

o 3
—Ric=—-F*RV ———
atch R 350y

This completes the proof. (I

Ric.

In the remainder of this section, we discuss one implication of Proposition
3.1.

Proof of Theorem 2. By means of Proposition 3.1, the Ricci scalar satisfies the
evolution equation (19). One can rewrite (19) with respect to the basis of
TSM. By means of (8) we have

- ORic
o
9sRic = Fyg a7
The vertical covariant derivative leads
0 . . ; ORic
Va0sRic = Vo (Fyp oy )
: - ORic . . ORic . . ORic
(22) = (VaF)yéTyj + F(Vayé) ay] + Fy,]B(VO‘TyJ)
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On the other hand

(23) VoF = vaga%iF = Fy.Fyi = Fy'li = g;jy"yl,.
By means of (9) and (23) we have V,F = 0. Using (10), equation (22) becomes
. ; JRic ORic
o — F(— AT b — J
Va0pRic = F( Aklyayﬁ GapY ) Dy + Fy (V Dy )
ORic 8ch
= —FALyhys— Dy + F@JB( -
ORic i 5‘ch
(24) = ~FAways 5 + F sV

By vertical covariant derivative, equatlon (24) is written

. IR . 0’Ric ORic
. kol 2. i k
VadsRic = FAM Ya¥p— 5 8 J “+F yayé(a oy U gk )
- 0%Ric 8ch
25 —2F ARyl o
( ) yayﬁa Za j 1] y yﬁ ay
Converting (25) in R*? = *QR”yf‘yj yields
. - 0?Ric Bch
26 R*PV o0sRic = RY —— — 2F A}, RY
(26) e dy' oy’ oy*
Using (8) we have Op = F~ 1y,’§\3)\ and from which %R,Zf =~ 1y,i‘8>\7€zc Hence,
replacing in (26) we obtain
.. 82Ric . .
2, _ pap - —2 Ak pij, A .
J Doy RV ,05Ric + 2F = Aj; Ry O\ Ric.

Putting H* := —QAijijy,?, we can rewrite (19) on SM as follows.
(27) %Rio = —F?R%V ,05Ric + H*O\Ric.

By means of (27) one can write the following inequality

(28) %Rie > —F2RPV ,05Ric + H*O\Ric — Ric%.

By assumption (M, F(0)) has positive flag curvature. Definition of the flag
curvature (6) shows that Ry, > 0. Hence, Proposition 2.3 implies that R*A(t)
is positive definite for all ¢ € [0, 7). Therefore, inequality (28) is an inequality
of parabolic type. Let ¢ be a solution to the ODE

d
(29) %Qﬁ = _¢2a

with initial value ¢(0) = infsns Ricyo) = a. Equation (29) is a Bernoulli
equation and its exact solution is
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Using the weak minimum principle, in the sense of Corollary B, and the in-

equality (28) we conclude that Ricyy) >

ﬁ. This completes the proof of

Theorem 2. O
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