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WEIGHTED VECTOR-VALUED BOUNDS FOR A CLASS OF

MULTILINEAR SINGULAR INTEGRAL OPERATORS AND

APPLICATIONS

Jiecheng Chen and Guoen Hu

Abstract. In this paper, we investigate the weighted vector-valued
bounds for a class of multilinear singular integral operators, and its com-

mutators, from Lp1 (lq1 ; Rn, w1)× · · · ×Lpm (lqm ; Rn, wm) to Lp(lq ;Rn,

ν~w), with p1, . . . , pm, q1, . . . , qm ∈ (1, ∞), 1/p = 1/p1 + · · · + 1/pm,
1/q = 1/q1 + · · ·+ 1/qm and ~w = (w1, . . . , wm) a multiple A~P

weights.

Our argument also leads to the weighted weak type endpoint estimates

for the commutators. As applications, we obtain some new weighted es-
timates for the Calderón commutator.

1. Introduction

In his remarkable work [31], Muckenhoupt characterized the class of weights
w such that M , the Hardy-Littlewood maximal operator, satisfies the weighted
Lp (p ∈ (1, ∞)) estimate

‖Mf‖Lp,∞(Rn, w) . ‖f‖Lp(Rn, w).(1.1)

The inequality (1.1) holds if and only if w satisfies the Ap(Rn) condition, that
is,

[w]Ap := sup
Q

( 1

|Q|

∫
Q

w(x)dx
)( 1

|Q|

∫
Q

w−
1
p−1 (x)dx

)p−1
<∞,

where the supremum is taken over all cubes in Rn, [w]Ap is called the Ap
constant of w. Also, Muckenhoupt proved that M is bounded on Lp(Rn, w) if
and only if w satisfies the Ap(Rn) condition. Since then, considerable attention
has been paid to the theory of Ap(Rn) and the weighted norm inequalities with
Ap(Rn) weights for main operators in Harmonic Analysis, see [15, Chapter 9]
and related references therein.
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2 J. CHEN AND G. HU

However, the classical results on the weighted norm inequalities with Ap(Rn)
weights did not reflect the quantitative dependence of the Lp(Rn, w) operator
norm in terms of the relevant constant involving the weights. The question
of the sharp dependence of the weighted estimates in terms of the Ap(Rn)
constant specifically raised by Buckley [1], who proved that if p ∈ (1, ∞) and
w ∈ Ap(Rn), then

‖Mf‖Lp(Rn, w) .n, p [w]
1
p−1

Ap
‖f‖Lp(Rn, w).(1.2)

Moreover, the estimate (1.2) is sharp in the sense the exponent 1/(p−1) can not
be replaced by a smaller one. Hytönen and Pérez [23] improved the estimate
(1.2), and showed that

‖Mf‖Lp(Rn, w) .n, p
(
[w]Ap [w−

1
p−1 ]A∞

) 1
p ‖f‖Lp(Rn, w),(1.3)

where and in the following, for a weight u, [u]A∞ is defined by

[u]A∞ = sup
Q⊂Rn

1

u(Q)

∫
Q

M(uχQ)(x)dx.

It is well known that for w ∈ Ap(Rn), [w−
1
p−1 ]A∞ . [w]

1
p−1

Ap
. Thus, (1.3) is

more subtle than (1.2).
The sharp dependence of the weighted estimates of singular integral opera-

tors in terms of the Ap(Rn) constant was much more complicated. Petermichl
[33,34] solved this question for Hilbert transform and Riesz transform. Hytönen
[21] proved that for a Calderón-Zygmund operator T and w ∈ A2(Rn),

‖Tf‖L2(Rn, w) .n [w]A2
‖f‖L2(Rn, w).(1.4)

This solved the so-called A2 conjecture. Combining the estimate (1.4) and the
extrapolation theorem in [11], we know that for a Calderón-Zygmund operator
T , p ∈ (1, ∞) and w ∈ Ap(Rn),

‖Tf‖Lp(Rn, w) .n, p [w]
max{1, 1

p−1}
Ap

‖f‖Lp(Rn, w).(1.5)

In [24], Lerner gave a much simplier proof of (1.5) by directly controlling the
Calderón-Zygmund operator using sparse operators.

Let K(x; y1, . . . , ym) be a locally integrable function defined away from the
diagonal x = y1 = · · · = ym in Rmn. An operator T defined on S(Rn) ×
· · · × S(Rn) (Schwartz space) and taking values in S ′(Rn), is said to be an
m-multilinear singular integral operator with kernel K, if T is m-multilinear,
and satisfies that

(1.6) T (f1, . . . , fm)(x) =

∫
Rmn

K(x; y1, . . . , ym)

m∏
j=1

fj(yj)dy1 . . . dym

for bounded functions f1, . . . , fm with compact supports, and x ∈ Rn\ ∩mj=1

supp fj . Operators of this type were originated in the remarkable works of
Coifman and Meyer [6], [7], and are useful in multilinear analysis. We say
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MULTILINEAR SINGULAR INTEGRAL OPERATORS 3

that T is an m-linear Calderón-Zygmund operator with kernel K, if T is
bounded from Lr1(Rn)×· · ·×Lrm(Rn) to Lr(Rn) for some r1, . . . , rm ∈ (1, ∞)
and r ∈ (1/m, ∞) with 1/r = 1/r1 + · · · + 1/rm, and K is a multilinear
Calderón-Zygmund kernel, that is, K satisfies the size condition that for all
(x, y1, . . . , ym) ∈ R(m+1)n with x 6= yj for some 1 ≤ j ≤ m,

(1.7) |K(x; y1, . . . , ym)| . 1(∑m
j=1 |x− yj |

)mn ,
and satisfies the regularity condition that for some α ∈ (0, 1],

‖K(x; y1, . . . , ym)−K(x′; y1, . . . , ym)|(1.8)

.
|x− x′|α(∑m

j=1 |x− yj |
)mn+α , if max

1≤k≤m
|x− yk| ≥ 2|x− x′|,

and for all 1 ≤ j ≤ m,∣∣K(x; y1, . . . , yj . . . , ym)−K(x; y1, . . . , y
′
j , . . . , ym)

∣∣ . |yj − y′j |α

(
∑m
i=1 |x− yi|)

mn+α

whenever max1≤k≤m |x− yk| ≥ 2|yj − y′j |. Grafakos and Torres [17] considered

the behavior of multilinear Calderón-Zygmund operators on L1(Rn) × · · · ×
L1(Rn), and established a T1 type theorem for the operator T . To consider the
weighted estimates for the multilinear Calderón-Zygmund operators, Lerner,
Ombrossi, Pérez, Torres and Trojillo-Gonzalez [26] introduced the following
definition.

Definition 1.1. Let m ∈ N, w1, . . . , wm be weights, p1, . . . , pm ∈ [1, ∞),

p ∈ [1/m, ∞) with 1/p = 1/p1 + · · · + 1/pm. Set ~w = (w1, . . . , wm), ~P =

(p1, ..., pm) and ν~w =
∏m
k=1 w

p/pk
k . We say that ~w ∈ A~P (Rmn) if

[~w]A~P = sup
Q⊂Rn

( 1

|Q|

∫
Q

ν~w(x) dx
) m∏
k=1

( 1

|Q|

∫
Q

w
− 1
pk−1

k (x) dx
)p/p′k

<∞,

here and in the following, for r ∈ [1, ∞), r′ = r
r−1 ; when pk = 1,(

1
|Q|
∫
Q
w
− 1
pk−1

k

) 1
p′
k is understood as (infQ wk

)−1
.

Lerner et al. [26] proved that if p1, . . . , pm ∈ [1, ∞) and p ∈ [1/m, ∞)
with 1/p = 1/p1 + · · · + 1/pm, and ~w = (w1, . . . , wm) ∈ A~P (Rmn), then an
m-linear Calderón-Zygmund operator T is bounded from Lp1(Rn, w1)× · · · ×
Lpm(Rn, wm) to Lp,∞(Rn, ν~w), and when min1≤j≤m pj > 1, T is bounded from
Lp1(Rn, w1)×· · ·×Lpm(Rn, wm) to Lp(Rn, ν~w). Li, Moen and Sun [29] consid-
ered the sharp dependence of the weighted estimates of multilinear Calderón-
Zygmund operators in terms of theA~P (Rmn) constant, and proved the following
theorem.
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4 J. CHEN AND G. HU

Theorem 1.2. Let T be an m-linear Calderón-Zygmund operator, p1, . . . , pm ∈
(1, ∞), p ∈ [1, ∞) such that 1/p = 1/p1 + · · · + 1/pm, ~w = (w1, . . . , wm) ∈
A~P (Rmn). Then

‖T (f1, . . . , fm)‖Lp(Rn,ν~w) . [~w]
max{1, p

′
1
p ,··· ,

p′m
p }

A~P

m∏
j=1

‖fj‖Lpj (Rn,wj).

Moreover, the exponent on [~w]A~P is sharp.

Conde-Alonso and Rey [8], Lerner and Nazarov [25] proved that the conclu-
sion in Theorem 1.2 is still true for the case p ∈ (1/m, 1). For other works
about the weighted estimates of multilinear Calderón-Zygmund operators, see
[2, 10,30] and references therein.

To consider the mapping properties for the commutator of Calderón, Duong,
Grafakos and Yan [13] introduced a class of multilinear singular integral oper-
ators via the following generalized approximation to the identity.

Definition 1.3. A family of operators {At}t>0 is said to be an approximation
to the identity, if for every t > 0, At can be represented by the kernel at in
the following sense: for every function u ∈ Lp(Rn) with p ∈ [1, ∞] and a.e.
x ∈ Rn,

Atu(x) =

∫
Rn
at(x, y)u(y)dy,

and the kernel at satisfies that for all x, y ∈ Rn and t > 0,

|at(x, y)| ≤ ht(x, y) = t−n/sh
( |x− y|

t1/s

)
,(1.9)

where s > 0 is a constant and h is a positive, bounded and decreasing function
such that for some constant η > 0,

lim
r→∞

rn+ηh(r) = 0.(1.10)

Assumption 1.4. For each fixed j with 1 ≤ j ≤ m, there exists an approxima-
tion to the identity {Ajt}t>0 with kernels {ajt (x, y)}t>0, and there exist kernels

Kj
t (x; y1, . . . , ym), such that for bounded functions f1, . . . , fm with compact

supports, and x ∈ Rn\ ∩mk=1 supp fk,

T (f1, . . . , fj−1, A
j
tfj , fj+1 . . . , fm)(x) =

∫
Rnm

Kj
t (x; y1, . . . , ym)

m∏
k=1

fk(yk)d~y,

and there exists a function φ ∈ C(R) with suppφ ⊂ [−1, 1], and a constant ε ∈
(0, 1], such that for all x, y1, . . . , ym ∈ Rn and all t > 0 with 2t1/s ≤ |x− yj |,

|K(x; y1, . . . , ym)−Kj
t (x; y1, . . . , ym)|

.
tε/s

(
∑m
k=1 |x− yk|)mn+ε

+
1

(
∑m
k=1 |x− yk|)mn

∑
1≤i≤m, i 6=j

φ
( |yi − yj |

t1/s

)
.
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MULTILINEAR SINGULAR INTEGRAL OPERATORS 5

As it was pointed out in [13], an operator with such a kernel is called a mul-
tilinear singular integral operator with non-smooth kernel, since the kernel K
may enjoy no smoothness in the variables y1 . . . , ym. Also, it was pointed out
in [13] that if T is an m-linear Calderón-Zygmund operator, then T also satis-
fies Assumption 1.4. Duong, Grafakos and Yan [13] proved that if T satisfies
Assumption 1.4, and is bounded from Lr1(Rn)×· · ·×Lrm(Rn) to Lr,∞(Rn) for
some r1, . . . , rm ∈ (1, ∞) and r ∈ (1/m, ∞) with 1/r = 1/r1+· · ·+1/rm, then
T is also bounded from L1(Rn)×· · ·×L1(Rn) to L1/m,∞(Rn). Recently, Hu and
Li [19] considered the mapping properties from L1(lq1 ; Rn)×· · ·×L1(lqm ; Rn)
to L1/m,∞(lq; Rn) for the multilinear operator which satisfies Assumption 1.4.

To consider the weighted estimates with Ap(Rn) weights for multilinear sin-
gular integral operators with nonsmooth kernels, Duong et al. [12] introduced
the following two assumptions.

Assumption 1.5. There exists an approximation to the identity {Bt}t>0 with
kernels {bt(x, y)}t>0, and there exist kernels {K0

t (x; y1, . . . , ym)}t>0 such that

K0
t (x; y1, . . . , ym) =

∫
Rn
K(z; y1, . . . , ym)bt(x, z)dz,

and there exists a function ψ ∈ C(R) with suppψ ⊂ [−1, 1], and a constant
γ ∈ (0, 1], such that for all x, y1, . . . , ym ∈ Rn and all t > 0 with 2t1/s ≤
max1≤k≤m |x− yk|,

|K(x; y1, . . . , ym)−K0
t (x; y1, . . . , ym)|

.
tγ/s

(
∑m
k=1 |x− yk|)mn+γ

+
1

(
∑m
k=1 |x− yk|)mn

∑
1≤j≤m

ψ
( |x− yj |

t1/s

)
.

Assumption 1.6. The kernel K0
t (x; y1, . . . , ym) in Assumption 1.5 satisfies

the size condition that

|K0
t (x; y1, . . . , ym)| . 1

(
∑m
j=1 |x− yj |)mn

whenever 2t1/s ≤ min1≤j≤m |x− yj |, and the regularity condition that

|K0
t (x; y1, . . . , ym)−K0

t (x′; y1, . . . , ym)| . tγ/s

(
∑m
j=1 |x− yj |)mn+γ

whenever 2|x− x′| ≤ t1/s and 2t1/s ≤ min1≤j≤m |x− yj |.

Duong et al. [12] proved that if T satisfies Assumption 1.4, Assumption 1.5
and Assumption 1.6, and is bounded from Lq1(Rn)×· · ·×Lqm(Rn) to Lq,∞(Rn)
for some q1, . . . , qm ∈ (1, ∞) and q ∈ (0, ∞) with 1/q = 1/q1 + · · · + 1/qm,
then for p1, . . . , pm ∈ [1, ∞) and p ∈ (0, ∞) with 1/p = 1/p1 + · · · + 1/pm,
and w ∈ Amin1≤j≤m pj (Rn), both T and T ∗ are bounded from Lp1(Rn, w) ×
· · · × Lpm(Rn, w) to Lp,∞(Rn, w), and when min1≤j≤m pj > 1, T is bounded
from Lp1(Rn, w) × · · · × Lpm(Rn, w) to Lp(Rn, w). Grafakos, Liu and Yang
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6 J. CHEN AND G. HU

[16] proved that if T satisfies Assumption 1.4, Assumption 1.5 and Assumption
1.6, and is bounded from Lq1(Rn) × · · · × Lqm(Rn) to Lq,∞(Rn) for some
q1, . . . , qm ∈ (1, ∞) and q ∈ (0, ∞) with 1/q = 1/q1 + · · · + 1/qm, then T
enjoy the same weighted estimates with A~P (Rmn) as the multilinear Calderón-
Zygmund operators.

The first purpose of this paper is to give an extension of Theorem 1.2 to the
operators satisfying Assumption 1.4. We further assume the kernel K satisfies
the following regularity condition: for x, x′, y1, . . . , ym ∈ Rn with

|K(x; y1, . . . , ym)−K(x′; y1, . . . , ym)|(1.11)

.
|x− x′|γ(∑m

j=1 |x− yj |)nm+γ
, if 12|x− x′| < min

1≤j≤m
|x− yj |.

We remark that the regularity condition (1.11) was introduced in [20] in order
to established certain weighted estimates for the Calderón commutators. The
condition (1.11) is different from, and weaker than the condition (1.8). As
in the proof of Theorem 1.1 in [20], we can proved that if K satisfies the
Assumption 1.5 and Assumption 1.6, it then also satisfies (1.11). On the other
hand, it is obvious that if T is an m-linear Calderón-Zygmund operator, then
T also satisfies (1.11). Thus, the operators we consider here contain multilinear
Calderón-Zygmund operators and multilinear singular integral operators with
non-smooth kernels. To state our results, we first recall some notations.

Let p, r ∈ (0, ∞] and w be a weight. As usual, for a sequence of numbers

{ak}∞k=1, we denote ‖{ak}‖lr =
(∑

k |ak|r
)1/r

. The space Lp(lr; Rn, w) is
defined as

Lp(lr; Rn, w) =
{
{fk}∞k=1 : ‖{fk}‖Lp(lr;Rn, w) <∞

}
,

where

‖{fk}‖Lp(lr;Rn, w) =
(∫

Rn
‖{fk(x)}‖plrw(x) dx

)1/p
.

When w ≡ 1, we denote ‖{fk}‖Lp(lr;Rn, w) by ‖{fk}‖Lp(lr;Rn) for simplicity.
Our first result can be stated as follows.

Theorem 1.7. Let m ≥ 2, T be an m-linear operator with kernel K in the
sense of (1.6), r1, . . . rm ∈ (1, ∞), r ∈ (1/m, ∞) such that 1/r = 1/r1 + · · ·+
1/rm. Suppose that

(i) T is bounded from Lr1(Rn)× · · · × Lrm(Rn) to Lr(Rn);
(ii) The kernel K satisfies size condition (1.7) and regular condition (1.11);
(iii) T satisfies the Assumption 1.4.

Let p1, . . . , pm, q1, . . . , qm ∈ (1, ∞), p, q ∈ ( 1
m ,∞) such that 1/p = 1/p1+· · ·+

1/pm, 1/q = 1/q1 + · · ·+ 1/qm, ~w = (w1, . . . , wm) ∈ A~P (Rmn). Then
(1.12)

‖{T (fk1 , . . . , f
k
m)}‖Lp(lq ;Rn,ν~w) . [~w]

max{1, p
′
1
p ,··· ,

p′m
p }

A~P

m∏
j=1

‖{fkj }‖Lpj (lqj ;Rn,wj).

Ah
ea
d 
of
 P
rin
t



MULTILINEAR SINGULAR INTEGRAL OPERATORS 7

Remark 1.8. As we pointed out, operators in Theorem 1.7 contain multilinear
Calderón-Zygmund operators as examples. This, together with the examples
in [29], shows that the estimate (1.12) is sharp. On the other hand, Theorem
1.7 gives an vector-valued analogy of the weighted bounds for the multilinear
Calderón-Zygmund operators obtained in [8, 25,29].

Now let b be a locally integrable function. For 1 ≤ j ≤ m, define the
commutator [b, T ]j by

[b, T ]j(f1, . . . , fm)(x) = b(x)T (f1, . . . , fm)(x)

− T (f1, . . . , fj−1, bfj , fj+1, . . . , fm)(x).

Let b1, . . . , bm be locally integrable functions and ~b = (b1, . . . , bm). The mul-

tilinear commutator of T and ~b is defined by

T~b(f1, . . . , fm)(x) =

m∑
j=1

[bj , T ]j(f1, . . . , fm)(x).(1.13)

As it was showed in [5,10,23], by the conclusion (1.12), we can prove that, for
p1, . . . , pm, p ∈ (1, ∞) and ~w ∈ A~P (Rmn),

‖T~b(f1, . . . , fm)‖Lp(Rn, ν~w) . [~w]
max{1, p

′
1
p ,...,

p′m
p }

Ap

(
[ν~w]A∞ +

m∑
j=1

[σj ]A∞
)

×
m∏
j=1

‖fj‖Lpj (Rn, wj),

where and in the following, for ~P = (p, . . . , pm) and ~w ∈ A~P (Rmn), σj =

w
− 1
pj−1

j .

However, the argument in [5, 10,23] does not apply to the case p ∈ (0, 1).
Our result concerning the weighted bound of T~b can be stated as follows.

Theorem 1.9. Let T be an m-linear operator in Theorem 1.7, b1, . . . , bm ∈
BMO(Rn), and T~b the commutator defined by (1.13). Then for p1, . . . , pm,
q1, . . . , qm ∈ (1, ∞), p, q ∈ (1/m, ∞) with 1/p = 1/p1 + · · ·+ 1/pm and 1/q =
1/q1 + · · ·+ 1/qm, and ~w ∈ A~P (Rmn),

‖{T~b(f
k
1 , . . . , f

k
m)}‖Lp(lq ;Rn,ν~w)(1.14)

.
(

[ν~w]A∞ +

m∑
i=1

[σi]A∞

)
[~w]

max{1, p
′
1
p ,··· ,

p′m
p }

A~P

m∏
j=1

‖{fkj }‖Lpj (lqj ;Rn,wj).

Our argument in the proof of Theorems 1.7 and 1.9 also leads to the following
weighted weak type endpoint estimate of T~b.

Theorem 1.10. Let T be an m-linear operator in Theorem 1.7, b1, . . . , bm ∈
BMO(Rn) and T~b be the commutator defined by (1.13). Then for q1, . . . , qm ∈

Ah
ea
d 
of
 P
rin
t



8 J. CHEN AND G. HU

(1, ∞), q ∈ (1/m, ∞) with 1/q = 1/q1 + · · · + 1/qm, ~w ∈ A1, ..., 1(Rmn) and
λ > 0,

ν~w({x ∈ Rn : ‖{T~b(f
k
1 , . . . , f

k
m)(x)}‖lq > λ})(1.15)

.~w

m∏
j=1

(∫
Rn

‖{fkj (yj)}‖lqj
λ

1
m

log
(

1 +
‖{fkj (yj)}‖lqj

λ
1
m

)
wj(yj)dyj

) 1
m

.

Remark 1.11. For the case that T is multilinear Calderón-Zygmund operator
and b1, . . . , bm ∈ BMO(Rn), (1.15) (the case {fkj } = {fj}) was proved in [26].
As far as we know, there has been no result about the endpoint estimate of the
commutators of multilinear singular integral operators with nonsmooth kernels,
namely, even for the unweighted case and {fkj } = {fj}, the endpoint estimate
(1.15) is new.

In what follows, C always denotes a positive constant that is independent of
the main parameters involved but whose value may differ from line to line. We
use the symbol A . B to denote that there exists a positive constant C such
that A ≤ CB. Constant with subscript such as C1, does not change in different
occurrences. For any set E ⊂ Rn, χE denotes its characteristic function. For a
cube Q ⊂ Rn and λ ∈ (0, ∞), we use `(Q) (diamQ) to denote the side length
(diamter) of Q, and λQ to denote the cube with the same center as Q and
whose side length is λ times that of Q. For x ∈ Rn and r > 0, B(x, r) denotes
the ball centered at x and having radius r.

2. Estimates for sparse operators

This section is devoted to some weighted estimates for multilinear sparse op-
erators, which will be used in the proof of our theorems and are of independent
interest.

Recall that the standard dyadic grid in Rn consists of all cubes of the form

2−k([0, 1)n + j), k ∈ Z, j ∈ Zn.

Denote the standard dyadic grid by D. For a fixed cube Q, denote by D(Q)
the set of dyadic cubes with respect to Q, that is, the cubes from D(Q) are
formed by repeating subdivision of Q and each of descendants into 2n congruent
subcubes.

As usual, by a general dyadic grid D , we mean a collection of cube with the
following properties: (i) for any cube Q ∈ D , its side length `(Q) is of the form
2k for some k ∈ Z; (ii) for any cubes Q1, Q2 ∈ D , Q1 ∩Q2 ∈ {Q1, Q2, ∅}; (iii)
for each k ∈ Z, the cubes of side length 2k form a partition of Rn.

Let S be a family of cubes and η ∈ (0, 1). We say that S is η-sparse, if,
for each fixed Q ∈ S, there exists a measurable subset EQ ⊂ Q, such that
|EQ| ≥ η|Q| and {EQ} are pairwise disjoint. A family is called simply sparse
if η = 1/2.
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MULTILINEAR SINGULAR INTEGRAL OPERATORS 9

For constants β1, . . . , βm ∈ [0, ∞), let ~β = (β1, . . . , βm). Associated with

the sparse family S and ~β, we define the sparse operator Am;S,L(logL)~β by

(2.1) Am;S, L(logL)~β (f1, . . . , fm)(x) =
∑
Q∈S

m∏
j=1

‖fj‖L(logL)βj , QχQ(x),

with

‖fj‖L(logL)βj , Q = inf
{
λ > 0 :

1

|Q|

∫
Q

|f(y)|
λ

logβj
(

1 +
|f(y)|
λ

)
dy ≤ 1

}
.

For locally integrable functions b ∈ BMO(Rn) and a sparse family S, let

(2.2) Am;S, b(f1, . . . , fm)(x) =
∑
Q∈S

(
|b(x)− 〈b〉Q|

) m∏
j=1

〈fj〉QχQ(x).

For the case of ~β = (0, . . . , 0), we denote Am;S, L(logL)~β by Am;S for simplic-

ity. Also, we denote A1;S, L(logL)β (A1;S) by AS, L(logL)β (AS). For a weight
u, let

〈h〉uQ =
1

u(Q)

∫
Q

h(y)u(y)dy,

and

Ãm;S(f1, . . . , fm)(x) = Am;S(f1σ1, . . . , fmσm)(x).(2.3)

For a dyadic grid D and sparse family S ⊂ D , it was proved in [29] that
for p1, . . . , pm ∈ (1, ∞), p ∈ (0, ∞) such that 1/p = 1/p1 + · · · + 1/pm,
~w = (w1, . . . , wm) ∈ A~P (Rmn),

‖Ãm;S(f1, . . . , fm)‖Lp(Rn, ν~w) . [~w]
max{1, p

′
1
p , ...,

p′m
p }

Ap

m∏
j=1

‖fj‖Lpj (Rn, σj),(2.4)

and so

‖Am;S(f1, . . . , fm)‖Lp(Rn, ν~w) . [~w]
max{1, p

′
1
p , ...,

p′m
p }

Ap

m∏
j=1

‖fj‖Lpj (Rn, wj).(2.5)

Theorem 2.1. Let p1, . . . , pm ∈ (1, ∞), p ∈ (0,∞) such that 1/p = 1/p1 +
· · · + 1/pm, and ~w = (w1, . . . , wm) ∈ A~P (Rmn). Let S be a sparse family.
Then for β1, . . . , βm ∈ [0, ∞),

‖Am;S,L(logL)~β (f1, . . . , fm)‖Lp(Rn,ν~w)(2.6)

. [~w]
max{1, p

′
1
p ,...,

p′m
p }

Ap

m∏
j=1

[σj ]
βj
A∞
‖fj‖Lpj (Rn,wj).

Proof. We employ the ideas used in the proof of Theorem 3.2 in [29], in which
Theorem 2.1 was proved for the case of β1 = · · · = βm = 0, see also the proof
of Theorem B in [2]. By the well known one-third trick (see [22, Lemma 2.5]),
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10 J. CHEN AND G. HU

we know that if S is a sparse family, then there exist general dyadic grids
D1, . . . ,D3n , and sparse families Si ⊂ Di with i = 1, . . . , 3n, such that

Am;S, L(logL)~β (f1, . . . , fm)(x) .n

3n∑
i=1

Am;Si, L(logL)~β (f1, . . . , fm)(x).

Thus, it suffices to assume that S ⊂ D with D a dyadic grid. As it is well

known, ~w ∈ A~P (Rmn) implies σj = w
− 1
pj−1

j ∈ Amp′j (R
n) (see [26]). Also, it

was pointed out in [23] that for the constant rσj = 1+ 1
τn[σj ]A∞

with τn = 211+n,( 1

|Q|

∫
Q

σ
rσj
j (x)dx

) 1
rσj ≤ 2

1

|Q|

∫
Q

σj(x)dx.(2.7)

Let %j = (1 + pj)/2. We can verify that∥∥σ 1
%′
j

j

∥∥
L
%′
j (logL)

%′
j
βj , Q

. ‖σj‖
1
%′
j

L(logL)
%′
j
βj , Q

.

Recall that

‖h‖L(logL)%, Q . max
{

1,
1

(δ − 1)%
}( 1

|Q|

∫
Q

|h(y)|δdy
) 1
δ

.(2.8)

It then follows that∥∥σ 1
%′
j

j

∥∥
L
%′
j (logL)

%′
j
βj , Q

.
1

(rσj − 1)βj

( 1

|Q|

∫
Q

σ
rσj
j (y)dy

) 1
%′
j
rσj

. [σj ]
βj
A∞

( 1

|Q|

∫
Q

σj(y)dy
) 1
%′
j .

Applying the generalization of Hölder’s inequality (see [35]), we deduce that

‖fjσj‖L(logL)βj , Q .
( 1

|Q|

∫
Q

|fj |%jσj
) 1
%j ‖σ

1
%′
j

j ‖L%′j (logL)%′jβj , Q(2.9)

. [σj ]
βj
A∞

( 1

|Q|

∫
Q

|fj |%jσj
) 1
%j
( 1

|Q|

∫
Q

σj

) 1
%′
j

= [σj ]
βj
A∞

( 1

σj(Q)

∫
Q

|fj |%jσj
) 1
%j σj(Q)

|Q|

. [σj ]
βj
A∞
〈MD

σj , %jfj〉
σj
Q 〈σj〉Q,

here and in the following, MD
σj , %j is the maximal operator defined by

MD
σj , %jfj(x) = sup

I3x, I∈D

( 1

σj(I)

∫
I

|fj(y)|%jσj(y)dy
) 1
%j
.

We then deduce that
m∏
j=1

‖fjσj‖L(logL)βj , Q .
m∏
i=1

[σi]
βi
A∞

∑
Q∈S

m∏
j=1

〈MD
σj , %jfj〉

σj
Q 〈σj〉Q.
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MULTILINEAR SINGULAR INTEGRAL OPERATORS 11

This, via the estimate (2.4) and the fact that MD
σj , %j is bounded on Lpj (Rn, σj)

with bounds independent of σj , yields∥∥∥∑
Q∈S

m∏
j=1

‖fjσj‖L(logL)βj , QχQ
∥∥∥
Lp(Rn, ν~w)

.
m∏
i=1

[σi]
βi
A∞

∥∥∥∑
Q∈S

m∏
j=1

〈Mσj , %jfj〉
σj
Q 〈σj〉QχQ

∥∥∥
Lp(Rn, ν~w)

. [~w]
max{1, p

′
1
p , ...,

p′m
p }

Ap

m∏
i=1

[σi]
βi
A∞

m∏
j=1

‖MD
σj , %jfj‖Lpj (Rn, σj),

and then completes the proof of Theorem 2.1. �

Theorem 2.2. Let p1, . . . , pm ∈ (1, ∞), p ∈ (0, ∞) such that 1/p = 1/p1 +
· · · + 1/pm, and ~w = (w1, . . . , wm) ∈ A~P (Rmn). Let S be a sparse family,
b ∈ BMO(Rn) with ‖b‖BMO(Rn) = 1. Then

‖Am;S,b(f1, . . . , fm)‖Lp(Rn,ν~w)(2.10)

. [~w]
max{1, p

′
1
p ,...,

p′m
p }

Ap
[ν~w]A∞

m∏
j=1

‖fj‖Lpj (Rn,wj).

Proof. Again we assume that S ⊂ D with D a dyadic grid. We first consider
the case of p ∈ (0, 1]. Write∫

Rn

(
Am,S, b ~f(x)

)p
ν~w(x)dx ≤

∑
Q∈S

m∏
j=1

〈|fj |〉pQ
∫
Rn
|b(x)− 〈b〉Q|pν~w(x)dx

≤
∑
Q∈S

m∏
j=1

〈|fj |〉pQ|Q|‖ν~w‖L(logL)p, Q

≤ [ν~w]pA∞

∑
Q∈S

m∏
j=1

〈|fj |〉pQν~w(Q),

where in the last inequality, we have invoked the estimates (2.8) and (2.7) for
ν~w. It was proved in [29, pp. 757–758] that∑

Q∈S

m∏
j=1

〈|fj |〉pQν~w(Q) . [~w]
max{p′1, ..., p

′
m}

Ap

m∏
j=1

‖fj‖pLpj (Rn, wj).

The inequality (2.10) then follows in this case.

To consider the case of p ∈ (1, ∞), let % = 1+p′

2 . Observe that by (2.8),

‖gν~w‖L(logL), Q .
( 1

|Q|

∫
Q

|g(x)|%ν~w(x)dx
) 1
% ‖ν

1
%′

~w ‖L%′ (logL)%′ , Q

.
( 1

|Q|

∫
Q

|g(x)|%ν~w(x)dx
) 1
% ‖ν~w‖

1
%′

L(logL)%′ , Q
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12 J. CHEN AND G. HU

. [w]
1
s

A∞

( 1

ν~w(Q)

∫
Q

|g(x)|%ν~w(x)dx
) 1
% ν~w(Q)

|Q|
.

Therefore, by the generalization of Hölder’s inequality (see [35]),∫
Rn
Am,S, b(f1, . . . , fm)(x)g(x)ν~w(x)dx

=
∑
Q∈S

m∏
j=1

〈|fj |〉Q
∫
Rn
|b(x)− 〈b〉Q|g(x)ν~w(x)dx

≤
∑
Q∈S

m∏
j=1

〈|fj |〉Q|Q|‖gν~w‖L logL,Q

≤ [ν~w]A∞
∑
Q∈S

m∏
j=1

〈|fj |〉Q inf
x∈Q

MD
ν~w, %

g(x)ν~w(Q)

≤ [ν~w]A∞‖AS(f1, . . . , fm)‖Lp(Rn, ν~w)‖MD
ν~w, %

g‖Lp′ (Rn, ν~w).

Our desired conclusion then follows from (2.5) and the fact that MD
ν~w, %

is

bounded on Lp
′
(Rn, ν~w) with bound independent of ν~w. �

For β1, . . . , βm ∈ [0, ∞), letML(logL)~β be the maximal operator defined by

ML(logL)~β (f1, . . . , fm)(x) = sup
Q3x

m∏
j=1

‖fj‖L(logL)βj , Q.

For the case of ~β = (0, . . . , 0), we denote ML(logL)~β by M. As in [26] and

[32], we can prove the following lemma.

Lemma 2.3. Let β1, . . . , βm ∈ [0, ∞), |β| = β1 + · · ·+ βm and ~w = (w1, . . . ,
wm) ∈ A1,..., 1(Rmn). Then for each λ > 0,

ν~w
(
{x ∈ Rn : ML(logL)~β (f1, . . . , fm)(x) > λ}

)
.

m∏
j=1

(∫
Rn

|fj(x)|
λ

1
m

log|β|
(

1 +
|fj(x)|
λ

1
m

)
wj(x)dx

) 1
m

.

The following conclusion was established by Lerner et al. in [27].

Lemma 2.4. Let β ∈ [0, ∞) and S be a sparse family of cubes. Then for each
fixed λ > 0,

|{x ∈ Rn : AS, L(logL)βf(x) > λ}| .
∫
Rn

|f(x)|
λ

logβ
(

1 +
|f(x)|
λ

)
dx,

and for b ∈ BMO(Rn),

|{x ∈ Rn : AS, bf(x) > λ}| . λ−1
∫
Rn
|f(x)|dx.
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MULTILINEAR SINGULAR INTEGRAL OPERATORS 13

Lemma 2.5. Let % ∈ [0, ∞) and δ ∈ (0, 1), T be a sublinear operator which
satisfies the weak type estimate that

|{x ∈ Rn : |Tf(x)| > λ}| .
∫
Rn

|f(x)|
λ

log%
(

1 +
|f(x)|
λ

)
dx.

Then for any cube I and appropriate function f with supp f ⊂ I,( 1

|I|

∫
I

|Tf(x)|δdx
) 1
δ

. ‖f‖L(logL)%, I .

For the proof of Lemma 2.5, see [18].

Lemma 2.6. Let τ ∈ (0, 1) and Mτ be the maximal operator defined by

Mτf(x) =
(
M(|f |τ )(x)

) 1
τ .

Then for any p ∈ (τ, ∞) and u ∈ Ap/τ (Rn),

u({x ∈ Rn : ‖{Mτfk(x)}‖lq > λ})
.u,p λ

−p sup
t≥Cλ

tpu({x ∈ Rn : ‖{fk(x)}‖lq > t}).

Proof. For each fixed λ > 0, decompose fk as

fk(y) = fk(y)χ{‖{fk(y)}‖lq≤λ}(y) + fk(y)χ{‖{fk(y)}‖lq>λ}(y) := f1k (y) + f2k (y).

It then follows that

u({x ∈ Rn : ‖{Mτfk(x)}‖lq > 2
1
τ λ})

≤ u({x ∈ Rn : ‖{M(|f2k |τ )(x)}‖
l
q
τ
> λτ}).

Recall that u ∈ Ap/τ (Rn) implies that u ∈ A p−ε
τ

(Rn) for some ε ∈ (0, p − τ),

and that M is bounded on L
p−ε
τ (lq; Rn, u) (see [14]). Therefore,

u({x ∈ Rn : ‖{M(|f2k |τ )(x)}‖
l
q
τ
> λτ})

. λ−p+ε
∫
Rn
‖{f2k (x)}‖p−εlq u(x)dx

. u({x ∈ Rn : ‖{fk}‖lq > λ})

+ λ−p+ε
∫ ∞
λ

u({x ∈ Rn : ‖{f2k (x)}‖lq > t})tp−ε−1dt

. λ−p sup
t≥λ

tpu({x ∈ Rn : ‖{fk(x)}‖lq > t}).

This yields our desired conclusion. �

Let D be a dyadic grid. Associated with D , define the sharp maximal

function M ]
D as

M ]
Df(x) = sup

Q3x
Q∈D

inf
c∈C

1

|Q|

∫
Q

|f(y)− c|dy.
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14 J. CHEN AND G. HU

For δ ∈ (0, 1), let M ]
D, δf(x) =

[
M ]

D(|f |δ)(x)
]1/δ

. Repeating the argument in

[36, p. 153], we can verify that if u ∈ A∞(Rn) and Φ is a increasing function
on [0, ∞) which satisfies that

Φ(2t) ≤ CΦ(t), t ∈ [0, ∞),

then

sup
λ>0

Φ(λ)u({x ∈ Rn : |h(x)| > λ})(2.11)

. sup
λ>0

Φ(λ)u({x ∈ Rn : M ]
D,δh(x) > λ}),

provided that supλ>0 Φ(λ)u({x ∈ Rn : Mδh(x) > λ}) < ∞, here and in the

following, Mδf(x) =
(
M(|f |δ)(x)

)1/δ
.

Theorem 2.7. Let m ≥ 2 be an integer, β1, . . . , βm ∈ [0, ∞), S be a finite
sparse family. Then for ~w = (w1, . . . , wm) ∈ A1, ...,m(Rn),

ν~w({x ∈ Rn : Am;S,L(logL)~β (f1, . . . , fm)(x) > λ})(2.12)

.
m∏
j=1

(∫
Rn

|fj(yj)|
λ

1
m

log|
~β|
(

1 +
|fj(yj)|
λ

1
m

)
wj(yj)dyj

) 1
m

,

and for b ∈ BMO(Rn),

ν~w({x ∈ Rn : Am;S, b(f1, . . . , fm)(x) > 1}) .
m∏
j=1

‖fj‖
1
m

L1(Rn, wj).(2.13)

Proof. Again by the one-third trick (see [22, Lemma 2.5]), we assume that
S ⊂ D with D a dyadic grid, and the family is finite. Without loss of generality,
we may assume that the functions f1, . . . , fm are nonnegative, bounded and
have compact support. We claim that for δ ∈ (0, 1

m ),

(2.14) M ]
D, δ

(
A
m;S,L(logL)~βi (f1, . . . , fm)

)
(x) .ML(logL)~β (f1, . . . . , fm)(x).

To see this, for fixed I ∈ D , let c0 =
∑
Q⊃I

∏m
j=1 ‖fj‖L(logL)βj , Q. As in [9], it

follows that ∫
I

|Am;S, L(logL)~β (f1, . . . , fm)(y)− c0|δdy

.
∫
I

∣∣∣ ∑
Q∈S, Q⊂I

‖fj‖L(logL)βj , QχQ(y)
∣∣∣δdy

.
∫
I

∣∣∣Am;S,L(logL)~β (f1χI , . . . , fmχI)(y)
∣∣∣δdy.

On the other hand, by Lemma 2.4 and Lemma 2.5, we know that( 1

|I|

∫
I

∣∣∣AS,L(logL)βj (fjχI)(y)
∣∣∣mδdy) 1

mδ

. ‖fj‖L(logL)βj , I .
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MULTILINEAR SINGULAR INTEGRAL OPERATORS 15

This, together with Hölder’s inequality, leads to that( 1

|I|

∫
I

∣∣∣Am;S,L(logL)~β (f1χI , . . . , fmχI)(y)
∣∣∣δdy) 1

δ

.
m∏
j=1

( 1

|I|

∫
I

∣∣∣AS,L(logL)βj (fjχI)(y)
∣∣∣mδdy) 1

mδ

.
m∏
j=1

‖fj‖L(logL)βj , I ,

and then establishes (2.14).

We can now prove (2.12). Let ψ(t) = t
1
m log−|

~β|(1 + t−
1
m ). By a standard

limit argument, it suffices to consider the case that the sparse family S is
finite. Then for bounded functions f1, . . . , fm with compact supports, and
~w = (w1, . . . , wm) ∈ A1, ...,1(Rn),∥∥Am;S,L(logL)~β (f1, . . . , fm)

∥∥
L

1
m (Rn,ν~w)

<∞.

This, together with the fact that Mδ is bounded from L
1
m (Rn) to L

1
m ,∞(Rn),

implies that

sup
λ>0

ψ(λ)ν~w({x ∈ Rn : Mδ

(
Am;S,L(logL)~β (f1, . . . , fm)

)
(x) > λ})

. sup
λ>0

ψ(λ)λ−
1
m

∥∥A
m;S,L(logL)~βi (f1, . . . , fm)‖

L
1
m (Rn,ν~w)

<∞.

Therefore, by Lemma 2.3, inequalities (2.11) and (2.14), we deduced that

ν~w({x ∈ Rn : Am;S, L(logL)~β (f1, . . . , fm)(x) > 1})

. sup
t>0

ψ(t)ν~w
(
{x ∈ Rn : M ]

D,δ

(
Am;S,L(logL)~β (f1, . . . , fm)

)
(x) > t}

)
.

m∏
j=1

(∫
Rn
|fj(yj)| log

(
1 + |fj(yj)|

)
wj(yj)dyj

) 1
m

.

We turn our attention to the estimate (2.13). We claim that for δ ∈ (0, 1/m)
and γ ∈ (δ, 1/m),

M ]
δ

(
Am;S, b(f1, . . . , fm)

)
(x) . Mγ

(
Am;S(f1, . . . , fm)

)
(x)(2.15)

+M(f1, . . . , fm)(x).

To prove this, we first observe that, for each constant c ∈ C and a cube I ⊂ D ,∣∣Am;S, b(f1, . . . , fm)(y)− c
∣∣ ≤ |b(y)− 〈b〉I |Am;S(f1, . . . , fm)(y)

+
∣∣∣ ∑
Q∈S

(
|〈b〉I − 〈b〉Q|

) m∏
j=1

〈fj〉QχQ(y)− c
∣∣∣.
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16 J. CHEN AND G. HU

Let c1 =
∑
Q∈S, Q⊃I

∣∣〈b〉I − 〈b〉Q∣∣∏m
j=1〈fj〉Q, we thus have that

inf
c∈C

( 1

|I|

∫
I

|Am;S, b(f1, . . . , fm)(y)− c|δdy
) 1
δ

.
( 1

|I|

∫
I

∣∣∣∣∣b(y)− 〈b〉I
∣∣Am;S(f1, . . . , fm)(y)

∣∣∣δdy) 1
δ

+
( 1

|I|

∫
I

∣∣∣ ∑
Q∈S

∣∣〈b〉I − 〈b〉Q∣∣ m∏
j=1

〈fj〉QχQ(y)− c1
∣∣∣δdy) 1

δ

.

It follows from Hölder’s inequality that( 1

|I|

∫
I

∣∣∣(b(y)− 〈b〉I
)
Am;S(f1, . . . , fm)(y)

∣∣∣δdy) 1
δ

. inf
y∈I

Mγ

(
Am;S(f1, . . . , fm)

)
(y).

On the other hand, we deduce from Hölder’s inequality, Lemma 2.4 and Lemma
2.5, that

( 1

|I|

∫
I

∣∣∣ ∑
Q∈S, Q⊂I

∣∣〈b〉I − 〈b〉Q∣∣ m∏
j=1

〈fjχI〉QχQ(y)
∣∣∣δdy) 1

δ

.
( 1

|I|

∫
I

(
Am;S, b(f1χI , . . . , fmχI)(y)

)δ
dy
) 1
δ

+
( 1

|I|

∫
I

(
|b(y)− 〈b〉I |

)δ(
Am;S(f1χI , . . . , fmχI)(y)

)δ
dy
) 1
δ

.
m∏
j=1

〈|fj |〉I .

Combining the estimates above leads to (2.15).
Recalling that ν~w ∈ A∞(Rmn), we can choose δ and γ in (2.15) small enough

such that ν~w ∈ A 1
mγ

(Rmn). It then follows from Lemma 2.6, the inequality

(2.12) and Lemma 2.3 that

λ
1
m ν~w({x ∈ Rn : Mγ

(
Am;S(f1, . . . , fm)

)
(x) > λ})

. sup
t>0

t
1
m ν~w({x ∈ Rn : Am;S(f1, . . . , fm)(x) > t})

. sup
t>0

t
1
m ν~w({x ∈ Rn : M ]

D, δ

(
Am;S(f1, . . . , fm)

)
(x) > t})

.
m∏
j=1

‖fj‖
1
m

L1(Rn, wj).
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Note that if the sparse family S is finite, and f1, . . . , fm are bounded with
compact supports, then for ~w = (w1, . . . , wm) ∈ A1, ..., 1(Rmn),

sup
λ>0

λ
1
m ν~w({x ∈ Rn : Mδ

(
Am;S,b(f1, . . . , fm)

)
(x) > λ}) <∞.

This, together with inequalities (2.11) and (2.15), leads to that

ν~w({x ∈ Rn : Am;S, b(f1, . . . , fm)(x) > 1})

. sup
t>0

t
1
m ν~w

(
{x ∈ Rn : M ]

D, δ

(
Am;S, b(f1, . . . , fm)

)
(x) > t}

)
.

m∏
j=1

‖fj‖
1
m

L1(Rn, wj),

and then establishes the inequality (2.13). �

3. Proof of theorems

Let T be an m-sublinear operator. Associated with T , let

MT (f1, . . . , fm)(x) = sup
Q3x

∥∥T (f1, . . . , fm)(ξ)−T (f1χ3Q, . . . , fmχ3Q)(ξ)
∥∥
L∞(Q)

.

Following the argument in [24], we have

Lemma 3.1. Let q1, . . . , qm ∈ (1, ∞), q ∈ (1/m, ∞) such that 1/q = 1/q1 +
· · ·+ 1/qm, T be an m-sublinear operator which is bounded from L1(lq1 ; Rn)×
· · · × L1(lqm ; Rn) to L

1
m ,∞(lq; Rn). Then for any cube Q0 and a. e. x ∈ Q0,

we have that

‖{T (fk1 χ3Q0 , . . . , f
k
mχ3Q0)(x)}‖lq ≤ C1

m∏
j=1

‖{fkj (x)}‖lqj

+
∥∥{MT (fk1 χ3Q0

, . . . , fkmχ3Q0
)(x)}

∥∥
lq
,

provided that ‖{fk1 }‖lq1 , . . . , ‖{fkm}‖lqm ∈ L1
loc(Rn).

Proof. We follow the line in [27]. Let x ∈ intQ0 be a point of approximation
continuity of ‖{T (f1χ3Q0 , . . . , fmχ3Q0)}‖lq . For r, ε > 0, the set

Er(x) = {y ∈ B(x, r) :
∣∣∣‖{T (fk1 χ3Q0

, . . . , fkmχ3Q0
)(x)}‖lq

− ‖{T (fk1 χ3Q0
, . . . , fkmχ3Q0

)(y)}‖lq
∣∣∣ < ε}

satisfies that limr→0
|Er(x)|
|B(x, r)| = 1. Denote by Q(x, r) the smallest cube centered

at x and containing B(x, r). Let r > 0 small enough such that Q(x, r) ⊂ Q0.
Then for y ∈ Er(x),

‖{T (fk1 χ3Q0
, . . . , fkmχ3Q0

)(x)}‖lq

≤ ‖{T (fk1 χ3Q(x, r), . . . , f
k
mχ3Q(x, r))(y)}‖lq

+
∥∥{MT (fk1 χ3Q0

, . . . , fkmχ3Q0
)(x)}

∥∥
lq

+ ε.
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18 J. CHEN AND G. HU

Thus, for ς ∈ (0, 1/m),∥∥{T (fk1 χ3Q0 , . . . , f
k
mχ3Q0)(x)

}∥∥
lq

≤
( 1

|Es(x)|

∫
Es(x)

‖{T (fk1 χ3Q(x,r), . . . , f
k
mχ3Q(x,r))(y)}‖ςlqdy

) 1
ς

+
∥∥{MT (fk1 χ3Q0

, . . . , fkmχ3Q0
)(x)}

∥∥
lq

+ ε

≤ C

m∏
j=1

〈‖{fkj }‖lqj 〉3Q(x, r) +
∥∥{MT (fk1 χ3Q0

, . . . , fkmχ3Q0
)(x)}

∥∥
lq

+ ε,

since T is bounded from L1(lq1 ; Rn) × · · · × L1(lqm ; Rn) to L
1
m ,∞(lq; Rn).

Taking r → 0 then leads to the desired conclusion. �

Theorem 3.2. Let q1, . . . , qm ∈ (1, ∞) and q ∈ (1/m, ∞) with 1/q = 1/q1 +
· · · + 1/qm. Suppose that both the operators T and MT are bounded from
L1(lq1 ; Rn)×· · ·×L1(lqm ; Rn) to L1/m,∞(lq; Rn). Then for N ∈ N and bounded
functions {fk1 }1≤k≤N , . . . , {fkm}1≤k≤N with compact supports, there exists a
1
2

1
3n -sparse of family S such that for a.e. x ∈ Rn,

‖{T (fk1 , . . . , f
k
m)(x)}‖lq . Am;S(‖{fk1 }‖lq1 , . . . , ‖{fkm}‖lqm )(x).(3.1)

Proof. Again, we only consider the case m = 2. We follow the argument
used in [27]. As it was pointed out in [27], it suffices to prove that for each
cube Q0 ⊂ Rn, there exist pairwise disjoint cubes {Pj} ⊂ D(Q0), such that∑
j |Pj | ≤

1
2 |Q0| and for a.e. x ∈ Q0,∥∥{T (fk1 χ3Q0 , f

k
2 χ3Q0)(x)

}∥∥
lq
χQ0(x)(3.2)

≤ C

2∏
i=1

〈‖{fki }‖lqi 〉3Q0
+
∑
j

‖{T (fk1 χ3Pj , f
k
2 χ3Pj )(x)}‖lqχPj (x).

To prove (3.2), let C2 > 0 which will be chosen later and

E =
{
x ∈ Q0 : ‖{fk1 (x)}‖lq1 ‖{fk2 (x)}‖lq2 > C2

2∏
i=1

〈‖{fki }‖lqi 〉3Q0

}
∪
{
x ∈ Q0 : ‖{MT (fk1 χ3Q0

, fk2 χ3Q0
)(x)}‖lq > C2〈

2∏
i=1

〈‖{fki }‖lqi 〉3Q0

}
.

If we choose C2 large enough, our assumption then says that |E| ≤ 1
2n+2 |Q0|.

Now applying the Calderón-Zygmund decomposition to χE on Q0 at level 1
2n+1 ,

we then obtain a family of pairwise disjoint cubes {Pj} such that

1

2n+1
|Pj | ≤ |Pj ∩ E| ≤

1

2
|Pj |,
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MULTILINEAR SINGULAR INTEGRAL OPERATORS 19

and |E\ ∪j Pj | = 0. It then follows that
∑
j |Pj | ≤

1
2 |E|, and Pj ∩ Ec 6= ∅.

Therefore, for some ξ0 ∈ Pj ∩ Ec,∥∥∥{∥∥T (fk1 χ3Q0
, fk2 χ3Q0

)− T (fk1 χ3Pj , f
k
2 χ3Pj )

∥∥
l∞(Pj)

}∥∥∥
lq

(3.3)

≤ ‖{MT (fk1 χ3Q0
, fk2 χ3Q0

)(ξ0)}‖lq ≤ C2

2∏
i=1

〈‖{fki }‖lqi 〉3Q0
.

Note that

‖{T (fk1 χ3Q0 , f
k
2 χ3Q0)(x)}‖lqχQ0(x)(3.4)

≤ ‖{T (fk1 χ3Q0
, fk2 χ3Q0

)(x)}‖lqχQ0\∪jPj (x)

+
∑
j

‖{T (fk1 χ3Pj , f
k
2 χ3Pj )(x)}‖lqχPj (x)

+
∑
j

∥∥∥{T (fk1 χ3Q0 , f
k
2 χ3Q0)(x)− T (fk1 χ3Pj , f

k
2 χ3Pj )(x)

}∥∥∥
lq
χPj (x).

(3.2) now follows from (3.3), (3.4) and Lemma 3.1. �

Similar to the proof of Theorem 3.2, by mimicking the proof of Theorem 1.1
in [27], we can prove the following theorem.

Theorem 3.3. Let q1, . . . , qm ∈ (1, ∞) and q ∈ (1/m, ∞) with 1/q = 1/q1 +
· · · + 1/qm, b ∈ L1

loc(Rn). Suppose that both the operators T and MT are

bounded from L1(lq1 ; Rn)×· · ·×L1(lqm ; Rn) to L1/m,∞(lq; Rn). Then for N ∈
N and bounded functions {fk1 }1≤k≤N , . . . , {fkm}1≤k≤N with compact supports,
there exists a 1

2
1
3n -sparse of family S such that for a.e. x ∈ Rn,∥∥{[b, T ]i(f

k
1 , . . . , f

k
m)(x)}

∥∥
lq

.
∑
Q∈S
|b(x)− 〈b〉Q|

m∏
j=1

〈‖{fkj }‖lqj 〉QχQ(x)

+
∑
Q∈S
〈|b− 〈b〉Q|‖{fki }‖lqi 〉Q

∏
j 6=i

〈‖{fkj }‖lqj 〉QχQ(x).

Lemma 3.4. Let q1, . . . , qm ∈ (1, ∞), q ∈ (1/m, ∞) such that 1/q = 1/q1 +
· · ·+ 1/qm. Under the hypothesis of Theorem 1.7, the operator MT is bounded

from L1(lq1 ; Rn)× · · · × L1(lqm ; Rn) to L
1
m ,∞(lq; Rn).

Proof. For simplicity, we only consider the case m = 2. For ε > 0, let

Tε(f1, f2)(x) =

∫
minj |x−yj |>ε

K(x; y1, y2)f1(y1)f2(y2)dy1dy2.

We claim that for each τ ∈ (0, 1/2),

sup
ε>0
|Tε(f1, f2)(x)| .Mτ (T (f1, f2))(x) +Mf1(x)Mf2(x).(3.5)
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20 J. CHEN AND G. HU

To prove this, let

f
(0)
j (y) = fj(y)χB(x, ε)(y), f∞j = fj(y)χRn\B(x, ε)(y).

For each z ∈ B(x, ε/12), it follows from the regularity condition (1.11) that

|Tε(f1, f2)(x)| = |T (f∞1 , f∞2 )(x)− T (f∞1 , f∞2 )(z)|+ |T (f∞1 , f∞2 )(z)|
. Mf1(x)Mf2(x) + |T (f1, f2)(z)|+ |T (f01 , f

0
2 )(z)|

+ |T (f01 , f
∞
2 )(z)|+ |T (f∞1 , f02 )(z)|.

Again by the size condition (1.7), we can verify that

|T (f01 , f
∞
2 )(z)|+ |T (f∞1 , f02 )(z)| .Mf1(x)Mf2(x).

Therefore, for any z ∈ B(x, ε
12 ),

|Tε(f1, f2)(x)| ≤ |T (f1, f2)(z)|+ |T (f
(0)
1 , f

(0)
2 )(z)|+Mf1(x)Mf2(x).

This, together with the fact that T is bounded from L1(Rn)× · · · ×L1(Rn) to
L1/m,∞(Rn), leads to (3.5).

Let Q ⊂ Rn be a cube and x, ξ ∈ Q. Denote by Bx the ball centered at x
and having diameter 12ndiamQ. Then 3Q ⊂ Bx. As in [27], we write∣∣T (f1χRn\3Q, f2χRn\3Q)(ξ)|

≤ |T (f1χRn\Bx , f2χRn\Bx)(ξ)− T (f1χRn\Bx , f2χRn\Bx)(x)
∣∣

+ sup
ε>0
|Tε(f1, f2)(x)|+ |T (f1χRn\Bx , f2χBx\3Q)(ξ)

∣∣
+ |T (f1χBx\3Q, f2χRn\3Q)(ξ)

∣∣.
It follows from the regularity condition (1.11) that∣∣T (f1χRn\Bx , f2χRn\Bx)(ξ)− T (f1χRn\Bx , f2χRn\Bx)(x)

∣∣ .Mf1(x)Mf2(x).

On the other hand, by the size condition (1.7), we have∣∣T (f1χBx\3Q, f2χRn\3Q)(ξ)
∣∣ . ∫

Bx

|f1(y1)|dy1
∫
Rn\3Q

|f2(y2)|
|x− y2|2n

dy2

.Mf1(x)Mf2(x).

Similarly, ∣∣T (f1χRn\Bx , f2χBx\3Q)(ξ)
∣∣ .Mf1(x)Mf2(x),

and ∣∣T (f1χRn\3Q, f2χ3Q)(ξ) + T (f1χ3Q, f2χRn\3Q)(ξ)
∣∣ .Mf1(x)Mf2(x).

Combining the estimates above leads to that

MT (f1, f2)(x) .Mτ (T (f1, f2))(x) +Mf1(x)Mf2(x).(3.6)

Recall that T is bounded from L1(lq1 ; Rn) × L1(lq2 ; Rn) to L
1
2 ,∞(lq; Rn)

(see [19]), and M is bounded from L1(lqj ; Rn) to L1,∞(lqj ; Rn). Now we choose
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MULTILINEAR SINGULAR INTEGRAL OPERATORS 21

τ ∈ (0, 1/2) in (3.6), our desired conclusion now follows from (3.6) and Lemma
2.6 immediately. �

We are now ready to prove our theorems.

Proof of Theorem 1.7. Obviously, it suffices to prove (1.12) for the case that
{fk1 }, . . . , {fkm} are finite sequences. But this follows from Theorem 3.2, Lemma
3.4 and the estimate (2.5) directly. �

Proof of Theorem 1.9. Let b1, . . . , bm ∈ BMO(Rn). By the generalization of
Hölder’s inequality (see [35]), we know that〈

|bi(x)− 〈bi〉Q|‖{fki }‖lqi
〉
Q
.
∥∥‖{fki }‖lqi∥∥L logL,Q

.

As in the proof of Theorem 1.7, Theorem 1.9 now follows from Theorem 3.3,
Lemma 3.4 and Theorem 2.1 and Theorem 2.2. �

Proof of Theorem 1.10. Theorem 1.10 now follows from Theorem 3.3, Lemma
3.4 and Theorem 2.7 immediately. �

4. Applications to the commutators of Calderón

Let us consider the m-th commutator of Calderón, which is defined by

Cm+1(a1, . . . , am, f)(x) = p. v.

∫
Rn

∏m
j=1(Aj(x)−Aj(y))

(x− y)m+1
f(y)dy,

where aj = A′j . This operator first appeared in the study of the Cauchy

integrals along Lipschitz curves and, in fact, led to the first proof of the L2

boundedness of the latter.
When m = 1, it is well known that C2 is bounded from Lp1(R)× Lp2(R) to

Lp(R) when 1 < p1, p2 ≤ ∞ and 1
2 < p ≤ ∞ satisfying 1/p = 1/p1 + 1/p2; and

moreover, it is bounded from Lp1(R)× Lp2(R) to Lp,∞(R) if min{p1, p2} = 1

and in particular it is bounded from L1(R)×L1(R) to L
1
2 ,∞(R); see [3,4]. The

corresponding result that C3 maps L1(R) × L1(R) × L1(R) to L
1
3 ,∞(R) was

proved by Coifman and Meyer; see [7], while the analogous result for Cm+1,
m ≥ 3, was established by Duong, Grafakos, and Yan [13]. As it was proved
in [13], Cm+1 can be rewritten as the following multilinear singular integral
operator

Cm+1(a1, . . . , am, f)(x)(4.1)

=

∫
Rm+1

K(x; y1, . . . , ym+1)

m∏
j=1

aj(yj)f(ym+1)dy1 . . . dym+1,

with

K(x; y1, . . . , ym+1) =
(−1)me(ym+1−x)

(x− ym+1)m+1

m∏
j=1

χ(min{x,ym+1},max{x,ym+1})(yj),
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and e is the characteristic function of [0, ∞). It was pointed out in [20] that
Cm+1 satisfies Assumption 1.4 and (1.11). Thus by Theorems 1.7, 1.9 and 1.10,
we have the following conclusions.

Corollary 4.1. Let m ≥ 1, p1, . . . , pm+1 ∈ (1, ∞), q1, . . . , qm+1 ∈ (1, ∞),
p, q ∈ ( 1

m+1 ,∞) with 1/p = 1/p1 + · · · + 1/pm+1, 1/q = 1/q1 + · · · + 1/qm+1,

~w = (w1, . . . , wm+1) ∈ A~P (Rm+1). Then

‖{Cm+1(ak1 , . . . , a
k
m, f

k)}‖Lp(lq ;Rn,ν~w)

. [~w]
max{1, p

′
1
p ,··· ,

p′m+1
p }

A~P

m∏
j=1

‖{akj }‖Lpj (lqj ;R,wj)‖{f
k}‖Lpm+1 (lqm+1 ;R,wm+1).

Corollary 4.2. Let m ≥ 1, p1, . . . , pm+1 ∈ (1, ∞), q1, . . . , qm+1 ∈ (1, ∞),
p, q ∈ ( 1

m+1 ,∞) with 1/p = 1/p1 + · · · + 1/pm+1, 1/q = 1/q1 + · · · + 1/qm+1,

~w = (w1, . . . , wm+1) ∈ A~P (Rm+1). Let b1, . . . , bm ∈ BMO(R). Then Cm+1,~b,

the commutator of Cm+1 defined as in (1.13), satisfies the weighted estimate
that

‖{Cm+1,~b(a
k
1 , . . . , a

k
m, f

k)}‖Lp(lq ;Rn,ν~w)

. [~w]
max{1, p

′
1
p ,··· ,

p′m+1
p }

A~P

×
(

[ν~w]A∞ +

m∑
i=1

[σi]A∞

) m∏
j=1

‖{akj }‖Lpj (lqj ;R,wj)‖{f
k}‖Lpm+1 (lqm+1 ;R,wm+1).

Moreover, if ~w = (w1, . . . , wm+1) ∈ A1, ...,1(Rm+1), then for each λ > 0,

ν~w({x ∈ Rn : ‖{Cm+1,~b(a
k
1 , . . . , a

k
m, f

k)(x)}‖lq > λ})

.
m∏
j=1

(∫
Rn

‖{akj (yj)}‖lqj
λ

1
m+1

log
(

1 +
‖{akj (yj)}‖lqj

λ
1

m+1

)
wj(yj)dyj

) 1
m+1

×
(∫

Rn

‖{fk(y)}‖lqj
λ

1
m+1

log
(

1 +
‖{fk(y)}‖lqj

λ
1

m+1

)
wm+1(y)dy

) 1
m

.

Added in Proof. After this paper was prepared, we learned that Dr. Kang-
wei Li [28] also observed that, Lerner’s idea in [24] applies to the multilinear
singular integral operators. We remark that our argument in the proof of The-
orem 3.2 also based on this observation. Li [28] proved that the multilinear
singular integral operators whose kernels satisfy Lr- Hörmander condition can
be dominated by multilinear sparse operators. The main results in [28] are
different from the results in this paper and are of independent interest.
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