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WEIGHTED VECTOR-VALUED BOUNDS FOR A CLASS OF
MULTILINEAR SINGULAR INTEGRAL OPERATORS AND
APPLICATIONS

JIECHENG CHEN AND GUOEN Hu

ABSTRACT. In this paper, we investigate the weighted vector-valued
bounds for a class of multilinear singular integral operators, and its com-
mutators, from LP1({91; R™, wy) X -+ - X LPm (19m; R™ wy,) to LP(19;R"™,
vg), With p1,...,pm, q1, .-, gm € (1,00), 1/p = 1/p1 + -+ + 1/pm,
1/g=1/q1 + -+ +1/gm and @& = (w1, ..., wm) a multiple A5 weights.
Our argument also leads to the weighted weak type endpoint estimates
for the commutators. As applications, we obtain some new weighted es-
timates for the Calderén commutator.

1. Introduction

In his remarkable work [31], Muckenhoupt characterized the class of weights
w such that M, the Hardy-Littlewood maximal operator, satisfies the weighted
LP (p € (1, o0)) estimate

(1.1) 1M fllpe oo @r,w) S I lle@e, w)-
The inequality (1.1) holds if and only if w satisfies the A,(R™) condition, that

[w]a, = sgp (@/@w(m)dx) (a/Qw_Pil(x)dx)p_l < o0,

where the supremum is taken over all cubes in R™, [w]4, is called the A,
constant of w. Also, Muckenhoupt proved that M is bounded on LP(R"™, w) if
and only if w satisfies the A,(R™) condition. Since then, considerable attention
has been paid to the theory of A,(R") and the weighted norm inequalities with
Ap(R™) weights for main operators in Harmonic Analysis, see [15, Chapter 9]
and related references therein.
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However, the classical results on the weighted norm inequalities with A,(R"™)
weights did not reflect the quantitative dependence of the L?(R", w) operator
norm in terms of the relevant constant involving the weights. The question
of the sharp dependence of the weighted estimates in terms of the A,(R™)
constant specifically raised by Buckley [1], who proved that if p € (1, co) and
w € Ay(R™), then

1
(1.2) 1M fllze@n,w) Snop WA 1 lLe@n, w)-

Moreover, the estimate (1.2) is sharp in the sense the exponent 1/(p—1) can not
be replaced by a smaller one. Hytoénen and Pérez [23] improved the estimate
(1.2), and showed that

_ 1 1
(1.3) IMfllio@n,w) Snop ([wla, [w™ 7714 ) P Ifllon, ),
where and in the following, for a welght u, [u]a_, is defined by
[u]a, = sup / M (uxg)(
Qcrn u(

It is well known that for w € A,(R"), [w 7 T|4_ < [w]h *. Thus, (1.3) is
more subtle than (1.2).

The sharp dependence of the weighted estimates of singular integral opera-
tors in terms of the A,(R™) constant was much more complicated. Petermichl
[33,34] solved this question for Hilbert transform and Riesz transform. Hytonen
[21] proved that for a Calderén-Zygmund operator T and w € As(R™),

(1.4) 1T fll 2@ w) Sn [w]as|[fllz2 @, w)-

This solved the so-called Ay conjecture. Combining the estimate (1.4) and the
extrapolation theorem in [11], we know that for a Calderén-Zygmund operator
T, pe(l,0)and w e A,(R"™),
max{1, 2=}

(1.5) ITfllr @ w) Snop [Wla, 7 I e @e, w)-
In [24], Lerner gave a much simplier proof of (1.5) by directly controlling the
Calderén-Zygmund operator using sparse operators.

Let K(x; y1, .- -, ym) be alocally integrable function defined away from the
diagonal x = y; = -+ = y,, in R™. An operator T defined on S(R™) x

- x S(R™) (Schwartz space) and taking values in §’(R™), is said to be an
m~multilinear singular integral operator with kernel K, if T' is m-multilinear,
and satisfies that

m

(16) T(fl) afm)(x) = K(.’L‘7 Y1, -y Ym H y] dyl y

RmMmn

for bounded functions fi,..., fm with compact supports, and z € R™\ Nty
supp f;. Operators of this type were originated in the remarkable works of
Coifman and Meyer [6], [7], and are useful in multilinear analysis. We say
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that T is an m-linear Calderén-Zygmund operator with kernel K, if T is
bounded from L™ (R™) x -+ x L™ (R™) to L"(R™) for some 71, ..., rm € (1, 00)
and r € (1/m, o0) with 1/r = 1/ry + -+ + 1/ry,, and K is a multilinear
Calderén-Zygmund kernel, that is, K satisfies the size condition that for all
(T, Y1, .-+, Ym) € ROFD™ with x 2 y; for some 1 < j < m,

1

(Zj:l |z — yj‘)
and satisfies the regularity condition that for some « € (0, 1],
(1.8) 1K (5 g1, ym) = K5 41, ym)|
o
< v = 2] e if max | — yi| > 2|z — 2/,
m 1<k<m
(Zj:l |z — y]‘)

and for all 1 < j <m,
ly; — y;®
+

(i o =)™
whenever maxi <r<m | —yx| > 2|y; — yj|. Grafakos and Torres [17] considered
the behavior of multilinear Calderén-Zygmund operators on L!'(R") x --- x
L'(R™), and established a T'1 type theorem for the operator T'. To consider the
weighted estimates for the multilinear Calderén-Zygmund operators, Lerner,

Ombrossi, Pérez, Torres and Trojillo-Gonzalez [26] introduced the following
definition.

’K(l‘; Yty Ui Ym) — K(z; yl,...,y;,...,ym)‘ <

Definition 1.1. Let m € N, wy,...,w,, be weights, p1,...,pm € [1, 00),
p € [1/m, 00) with 1/p = 1/p1 + -+ + 1/pm. Set & = (w1, ..., wy), P =
(P1s -y Pm) and v = [, wi/p". We say that @ € Ag(R™") if

[W]a, = sup (@/Ql/w(x) dm) kl;[l (@/kapkll(x) dx>p/17k ‘.

QcRr
here and in the following, for r € [I,00), 7 = -L3; when pp = 1,
1\ _
(‘712‘ Jo wi p‘"l) "% is understood as (infq wy) '
Lerner et al. [26] proved that if py, ..., pm € [1, 00) and p € [1/m, c0)
with 1/p = 1/p1 + -+ + 1/pm, and @ = (w1, ..., wy) € As(R™"), then an

m-linear Calderén-Zygmund operator T is bounded from LP*(R™, w;y) X - -+ X
LPm (R™, wyy,) to LP°(R™, vz), and when min;<j<m, p; > 1, T is bounded from
LPr(R™ wy) X - - - x LPm (R™ wyy,) to LP(R™, vg). Li, Moen and Sun [29] consid-
ered the sharp dependence of the weighted estimates of multilinear Calderén-
Zygmund operators in terms of the A 5(R™") constant, and proved the following
theorem.
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Theorem 1.2. Let T be an m-linear Calderon-Zygmund operator, p1,...,Dm €
(1, ), p € [1, 00) such that 1/p = 1/p1+ -+ + 1/pm, & = (w1, ..., Wn) €
Aps(R™™). Then

’
max{1,%L

. e Py
1T f) e @evg) S [W0] 4 LT 150 2es @ -
j=1

Moreover, the exponent on [w]a, is sharp.

Conde-Alonso and Rey [8], Lerner and Nazarov [25] proved that the conclu-
sion in Theorem 1.2 is still true for the case p € (1/m, 1). For other works
about the weighted estimates of multilinear Calderén-Zygmund operators, see
[2,10,30] and references therein.

To consider the mapping properties for the commutator of Calderén, Duong,
Grafakos and Yan [13] introduced a class of multilinear singular integral oper-
ators via the following generalized approximation to the identity.

Definition 1.3. A family of operators {A; }+~¢ is said to be an approximation
to the identity, if for every t > 0, A; can be represented by the kernel at in
the following sense: for every function u € LP(R™) with p € [1, oo] and a.e.
r € R™,

Apu(x) = /n a(x, y)u(y)dy,

and the kernel a; satisfies that for all z, y € R™ and ¢ > 0,

—-n/s -
(19) |at($a y)' < ht(x7 y) =t / h<| tl/sy|>’

where s > 0 is a constant and h is a positive, bounded and decreasing function
such that for some constant n > 0,

(1.10) lim 7" T"h(r) = 0.

T—00

Assumption 1.4. For each fixed j with 1 < j < m, there exists an approxima-
tion to the identity {A7};~o with kernels {a/ (x, y)}+>0, and there exist kernels
Ktj(m; Y1,- -+, Ym), such that for bounded functions fi, ..., f, with compact
supports, and z € R™\ N7, supp fx,

T(f17 oo 7fj—17A{fja fj-‘rl cee 7fm)(x) = Ktj(xv Y1, .- 7ym) H fk(yk)dg7
R k=1
and there exists a function ¢ € C(R) with supp ¢ C [—1, 1], and a constant € €
(0, 1], such that for all z, y1, ..., ym € R™ and all t > 0 with 2t1/* < |z — yil,
K (25 915 s ym) = KL (2591, - ym))|

te/s

1 lyi —
S + —=m o =21,
(O per |z = yeD)mrte  (O2isy lz — yk)™ Z ( ti/s )

1<i<m, i#j
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As it was pointed out in [13], an operator with such a kernel is called a mul-
tilinear singular integral operator with non-smooth kernel, since the kernel K
may enjoy no smoothness in the variables ¥y ..., y,. Also, it was pointed out
in [13] that if T is an m-linear Calderén-Zygmund operator, then T" also satis-
fies Assumption 1.4. Duong, Grafakos and Yan [13] proved that if T satisfies
Assumption 1.4, and is bounded from L™ (R™) x - - - x L™ (R™) to L™ *°(R") for
some 71, ..., rm € (1, 00) and r € (1/m, oo) with 1/r = 1/ry+---4+1/r,,, then
T is also bounded from L*(R")x---x L'(R™) to L'/™ > (R™). Recently, Hu and
Li [19] considered the mapping properties from L (1%; R™) x - .- x L(19; R")
to LY/™ °°(1%; R™) for the multilinear operator which satisfies Assumption 1.4.

To consider the weighted estimates with A,(R™) weights for multilinear sin-
gular integral operators with nonsmooth kernels, Duong et al. [12] introduced
the following two assumptions.

Assumption 1.5. There exists an approximation to the identity {B;}+~¢ with
kernels {b;(x, y)}+>0, and there exist kernels { K (x; y1, ..., Ym)}¢>0 such that

K?(.I‘, Yt 7Z/m): K(Z, Y1, "'ay'm)bt(xv Z)dZ,
R’V‘L
and there exists a function ¥ € C(R) with supp® C [—1, 1], and a constant
v € (0, 1], such that for all @, y1, ..., ¥ € R™ and all ¢ > 0 with 2t1/5 <

maxi<k<m [ — Ykl

K (25 91, -y Ym) — KD (@591, -, Um)|
/s

x—
< o).
S EETA i v - 7 2 v
Assumption 1.6. The kernel K (z; y1, ..., Ym) in Assumption 1.5 satisfies

the size condition that
1

S ym) S
T =y

whenever 2t'/% < min; <<, |z — y;|, and the regularity condition that

K} (23 y1, -

v/s
T [P S A —
T — g

‘Kto(xa Yty -0y ym)iKE(xC Yt -

whenever 2|z — 2/| <t/ and 2t'/* < minj<j<, [z — y;|.

Duong et al. [12] proved that if T satisfies Assumption 1.4, Assumption 1.5
and Assumption 1.6, and is bounded from L7 (R™) x- - - x L% (R™) to LT *°(R")
for some ¢, ..., gm € (1, 00) and ¢ € (0, c0) with 1/¢ = 1/q1 + -+ + 1/qm,
then for p1, ..., pm € [1, 00) and p € (0, o0) with 1/p = 1/p1 + -+ + 1/pm,
and w € Amin,<;-,, p; (R™), both T and T* are bounded from LP'(R"™, w) X

- x LP(R™, w) to L”*°(R™, w), and when mini<;j<,, p; > 1, T is bounded
from LP*(R™, w) x --- x LPm(R"™, w) to LP(R™, w). Grafakos, Liu and Yang



6 J. CHEN AND G. HU

[16] proved that if T satisfies Assumption 1.4, Assumption 1.5 and Assumption
1.6, and is bounded from L% (R™) x --- x L% (R™) to L®>°(R") for some
q1, -5 gm € (1, 00) and q € (0, 00) with 1/¢ = 1/q1 + -+ + 1/qm, then T
enjoy the same weighted estimates with A 5(R"™") as the multilinear Calderén-
Zygmund operators.

The first purpose of this paper is to give an extension of Theorem 1.2 to the
operators satisfying Assumption 1.4. We further assume the kernel K satisfies

the following regularity condition: for x, ', 41, ..., ¥m € R™ with
(1.11) (K (2591, -0 ym) — K (@5 y1, - ym)|
|z — ']

. / .
SN N R T R It
We remark that the regularity condition (1.11) was introduced in [20] in order
to established certain weighted estimates for the Calderén commutators. The
condition (1.11) is different from, and weaker than the condition (1.8). As
in the proof of Theorem 1.1 in [20], we can proved that if K satisfies the
Assumption 1.5 and Assumption 1.6, it then also satisfies (1.11). On the other
hand, it is obvious that if T is an m-linear Calderén-Zygmund operator, then
T also satisfies (1.11). Thus, the operators we consider here contain multilinear
Calderon-Zygmund operators and multilinear singular integral operators with
non-smooth kernels. To state our results, we first recall some notations.

Let p, r € (0, oo] and w be a weight. As usual, for a sequence of numbers
{ar}2,, we denote |[{ar}ir = (X |ak|r)1/r. The space LP(I"; R, w) is
defined as

LP(I; R™, w) = {{fe}e2y : et lieqrmn, wy < 00},

where .
p
[z = ([ W@t az) "

When w = 1, we denote |[{fiHlzeqr: g, wy by [{fiHlpeqr:me) for simplicity,
Our first result can be stated as follows.

Theorem 1.7. Let m > 2, T be an m-linear operator with kernel K in the
sense of (1.6), r1, ... mm € (1, 00), r € (1/m, 00) such that 1/r =1/ri +---+
1/rm. Suppose that
(i) T is bounded from L™ (R™) x -+ x L™ (R"™) to L"(R");
(ii) The kernel K satisfies size condition (1.7) and regular condition (1.11);
(iii) T satisfies the Assumption 1.4.

LEtp17"'7pmv Qi -, qm € (17 OO): D, q€ (%700) such that 1/p = 1/P1+—|—
Vpm, 1/a=1/qu + -+ 1/qm, W = (w1, ..., wy) € Ag(R™). Then
(1.12)

(1,2 By T
HTCE, s £ Ml oo vy S T LTI -
j=1
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Remark 1.8. As we pointed out, operators in Theorem 1.7 contain multilinear
Calderon-Zygmund operators as examples. This, together with the examples
in [29], shows that the estimate (1.12) is sharp. On the other hand, Theorem
1.7 gives an vector-valued analogy of the weighted bounds for the multilinear
Calderén-Zygmund operators obtained in [8,25,29].

Now let b be a locally integrable function. For 1 < j < m, define the
commutator [b, T']; by

b, T);(f1, - fm) (@) = b(2)T(f1, ..., fm) (@)
_T(f1> R fjflabfjﬁ fj+1a o) fm)(x)

Let by, ..., by, be locally integrable functions and b= (b1, .., by). The mul-
tilinear commutator of 7" and b is defined by

m

(1.13) Ty(frseo s f) (@) =D [0, T)i(frs - ) (2).

j=1

As it was showed in [5,10,23], by the conclusion (1.12), we can prove that, for

p17 ey pm; p S (1’ OO) and ru_]’ c Aﬁ(Rmn),
_,max{Lﬁ ,,,,, P/ﬂ} m
IT5(frse s f)lir@n vy S Tl 7777 ([valaw + ) _lojlas)

m
X H ||fjHLPj(R",wj)7

j=1

where and in the following, for P = (p,...
1
Pj—1

,Pm) and W € As(R™"), 0; =

w,; .
J
However, the argument in [5,10, 23] does not apply to the case p € (0, 1).
Our result concerning the weighted bound of 7% can be stated as follows.

Theorem 1.9. Let T be an m-linear operator in Theorem 1.7, by, ..., by, €
BMO(R™), and Ty the commutator defined by (1.13). Then for pi,...,pm,
q1,---sqm € (1, 00), p, ¢ € (1/m, 00) with 1/p=1/p1 + -+ 1/pm and 1/q =
g+ +1/gm, and & € Ag(R™"),

(1.14)  [{T(F - - ) Hle o re )

m ’ ’ m
_ max{l,T,m ,p,Tm}
S (Walaw + Y loilas ) @40 LTI s 5 -
i=1 j=1
Our argument in the proof of Theorems 1.7 and 1.9 also leads to the following

weighted weak type endpoint estimate of 7.

Theorem 1.10. Let T be an m-linear operator in Theorem 1.7, by, ..., by, €
BMO(R"™) and Ty be the commutator defined by (1.13). Then for qu, ..., ¢m €
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(1, 00), ¢ € (1/m, 00) with 1/qg = 1/q1 + -+ + 1/qm, W € A1, 1(R™) and
A>0,

(1.15) va({zx € R" : [{T5(fF, ., fa) (@)}l > A})

fl ([ MMy SOy, 1%

m m

Remark 1.11. For the case that T is multilinear Calderén-Zygmund operator
and by, ..., by, € BMO(R™), (1.15) (the case {fjk} = {f;}) was proved in [26].
As far as we know, there has been no result about the endpoint estimate of the
commutators of multilinear singular integral operators with nonsmooth kernels,
namely, even for the unweighted case and { ff} = {f;}, the endpoint estimate
(1.15) is new.

In what follows, C' always denotes a positive constant that is independent of
the main parameters involved but whose value may differ from line to line. We
use the symbol A < B to denote that there exists a positive constant C' such
that A < C'B. Constant with subscript such as C1, does not change in different
occurrences. For any set £ C R", xyg denotes its characteristic function. For a
cube @ C R™ and A € (0, 00), we use £(Q) (diam@Q) to denote the side length
(diamter) of @, and AQ to denote the cube with the same center as Q) and
whose side length is A times that of Q. For x € R™ and r > 0, B(z, r) denotes
the ball centered at x and having radius 7.

2. Estimates for sparse operators

This section is devoted to some weighted estimates for multilinear sparse op-
erators, which will be used in the proof of our theorems and are of independent
interest.

Recall that the standard dyadic grid in R™ consists of all cubes of the form

2770, )" +4), k€ Z, jZ".

Denote the standard dyadic grid by D. For a fixed cube @, denote by D(Q)
the set of dyadic cubes with respect to @, that is, the cubes from D(Q) are
formed by repeating subdivision of ) and each of descendants into 2" congruent
subcubes.

As usual, by a general dyadic grid &, we mean a collection of cube with the
following properties: (i) for any cube Q € 2, its side length £(Q) is of the form
2% for some k € Z; (ii) for any cubes Q1, Q2 € 2, Q1 N Q2 € {Q1, Q2, B}; (iii)
for each k € 7Z, the cubes of side length 2 form a partition of R™.

Let S be a family of cubes and n € (0, 1). We say that S is n-sparse, if,
for each fixed @) € S, there exists a measurable subset Fg C @, such that
|Eg| > n|Q| and {Eqg} are pairwise disjoint. A family is called simply sparse
if n=1/2.
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For constants 1, ..., Bm € [0, 00), let B = (81, ..., Bm). Associated with
the sparse family S and 3, we define the sparse operator .Am. S.L(log L)7 by

(2~1) Am S, L(log L)# (fla"'afm Z H HfJ”L(bgL)ﬁJ QXQ( )

QeS j=1
with
, £l /)l
||f]||L(logL)BJ,Q 1Hf{)\>0 |Q‘ 0 A 1 (1+ A )d 1}
For locally integrable functions b € BMO(R™) and a sparse family S, let
(2.2) Am;s,o(f1s ooy fm)(2) = Z ( H filaxalz

QeS

For the case of 3 = (0,...,0), we denote A _ L(log 1) by A, s for simplic-
ity. Also, we denote Ay, s raogr)s (A1;5) by As, riogr)s (As). For a weight
u, let

W) = g5 /Q h(y)u(y)dy,
and
(2.3) Amis (s s f) (@) = Ames (F101, -+ -, fnOm) ().

For a dyadic grid 2 and sparse family & C 2, it was proved in [29] that
for p1, ..., pm € (1, 0), p € (0, c0) such that 1/p = 1/p1 + -+ 4+ 1/pm,
W= (w1, ..., wy) € As(R™),

~ ~ 7”’17_”7%}7‘“
24) | Ams(froe o fdlloo@nvey S [y, 7777 T llees @, o)

and so

— 7&7”_,%}7”
(25) [Amis(fr o ) lor@n, vy S W, 7777 Tl @n, wy)-

j=1

Theorem 2.1. Let p1, ..., pm € (1, 00), p € (0,00) such that 1/p = 1/p1 +
o+ 1/pm, and W = (wi, ..., wy) € Ag(R™). Let S be a sparse family.
Then fOT 617 SRR /BWL € [Oa 00)7

(26) ||-Am~5 ,L(log L)E( ceey fm)HLP(]R",uu-,)
(12,
S [Wa, . H Hfj||LPj(Rn,w,-)-

Proof. We employ the ideas used in the proof of Theorem 3.2 in [29], in which
Theorem 2.1 was proved for the case of 8y = --- = 3, = 0, see also the proof
of Theorem B in [2]. By the well known one-third trick (see [22, Lemma 2.5]),
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we know that if S is a sparse family, then there exist general dyadic grids

D1, ..., PD3n, and sparse families S; C &; with ¢ =1, ..., 3", such that
3’71
Apnss, Litog 13 (1 -5 Fn) (@) S DA, paog 1ya (s -5 fn) (@)
1=1

Thus, it suffices to assume that S C 2 with 2 a dyadic grid. As it is well
_
known, w € Az(R™") implies 0; = w; P e A (R™) (see [26]). Also, it

j
was pointed out in [23] that for the constant 7, = 1—&—# with 7, = 2117,
(2.7) / < 27 / o;(z)dx
|Q| QJo ™’
Let o; = (14 p;)/2. We can verify that
1 a

o
HO'],QJ ||L J(]ogL)Q 5] ,Q ~ || JHL(] L)Q;ﬁij.

Recall that
1 1 3
< )
28)  IMlsosrre.@ S max {1 5=} (1 /Q hy)Pdy)”.

It then follows that

QJ'Uj

o G
Ho-] HLQIJ(IogL)Q/jﬂj,Q 5 (TU] - |Q| / dy

0,15, (@ [ -(y)dy)fﬁ'.

Applying the generalization of Holder’s inequality (see [35]), we deduce that

N

1 v % o
(2.9) ||fj0j||L(1ogL)ﬁj,Q S @/|fj|gjaj ]HU]'JHLe; (log L)%%1 0

i IQI/WQ ) IQI/UJ K

=l (g L W) 7 22

< [oj]f; <M0J,ijj> (o),

here and in the following, M 09;

AN

Lo, I8 the maximal operator defined by

ljo’. . f xr) = sup / f ( U) Q].
2 ]( ) I5x,I€D 0] | J
We then deduce that

m

HHf]U]HL]OgL 55.Q NHUz /37 Z H Uj,g]fj (o5)q-

QeSS j=1
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This, via the estimate (2.4) and the fact that MUQ; o, 18 bounded on LP7 (R", ;)
with bounds independent of o, yields

| 5= T Wilon .0

Qes j=1 Lr(R™, vg)
< H[Uz ’ Z H o5, Q]f] (05) QXQ‘ Lo (R, o)
i=1 Qes j=1 Ve
max{1 LY p/ —m} o i
SJ [w]Ap ! H H O'J7ng]HLP7 (R™,05)
=1 j=1
and then completes the proof of Theorem 2.1. O
Theorem 2.2. Let p1, ..., pm € (1, 00), p € (0, ) such that 1/p = 1/p1 +
“+ 1/ppm, and @& = (wy, ..., wy) € As(R™). Let S be a sparse family,
(2.10) [Amis b (f1s -+ fn) | Lo @n )

max{1,2L

/ / m
Rl
S [w}A,, P (V] a. H £l 275 () -
j=1

Proof. Again we assume that S C 2 with Z a dyadic grid. We first consider
the case of p € (0, 1]. Write

| saf@)’s e < 3 TL05D? 5 [ @) - Bl vala)ds

QeS j=1

<> H(Ifj|>%|QIIIVwHL(logL)P,Q

Qes j=1
<lvalh. > TT0HDGva(@
Qes j=1

where in the last inequality, we have invoked the estimates (2.8) and (2.7) for
vg. It was proved in [29, pp. 757-758] that

m

m
S TS va(@) S Wla P TT A1 g -

Qes j=1 j=1
The inequality (2.10) then follows in this case.
To consider the case of p € (1, 00), let o = 1+Tp/. Observe that by (2.8),

1 Gy
lgvallLaog 1), @ < (“Q|]g|g(zﬂng(x)dI) V5 e tog 1)o@

1 1
< (—/ g(x)|°vg(x)d ) Vg
a1 L @) 1l 10
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<tk (5igy /L loatear) 2

Therefore, by the generalization of Holder’s inequality (see [35]),

Am,S,b(fl, e fm)(x)g(x)l/w(x)dx

RTI
= S Il5be [ 160) - Olalsteata)is
QesSj=1
<> H(Ifjl)QIQIIIQVwIILlogL,Q
QES j=1
< [vala. Y H fihe inf M7, 9(@)va(Q)
QesSj=1
< alaclAs(fr, - Fm)llee @, v 1M, o9l Lot (n oy
Our desired conclusion then follows from (2.5) and the fact that Ml,gﬂ o
bounded on L? (R™, vz) with bound independent of v. O

For 31, ..., Bm € [0, 00), let ML (log L) be the maximal operator defined by

ML(logL)E(flv s fm)(@) ZUPH ||fJHL(1OgL)ﬂJ Q

j=1
For the case of 3 = (0,...,0), we denote M,

[32], we can prove the following lemma.

Lemma 2.3. Let By, ..., Bm €0, 00), [Bl=61+ -+ Bm and & = (wy, ...,
1(R™™). Then for each X >0,

uj({.IER ML(logL B(f17afm)(x)>>\})
m | 1

H (/ |f] og!”! <1+|f§\%)wj(ﬂf)dx)m.

The following conclusion was established by Lerner et al. in [27].

Log1)? DY M. As in [26] and

,,,,

Lemma 2.4. Let 5 € [0, 00) and S be a sparse family of cubes. Then for each
fixed A > 0,

|{.’17 cR" . AS,L(IOgL)Bf(m) > )\}| S /n &)iv)lIOgﬁ (1 + &/\x)l)da?,
and for b € BMO(R"),

{z eR": As v f(z) > A} < AL /n | f(z)|dz.
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Lemma 2.5. Let g € [0, 00) and 6 € (0, 1), T be a sublinear operator which
satisfies the weak type estimate that
log® (1 + |f(x)|)d3:

we R @)= M5 [ X

Then for any cube I and appropriate function f with supp f C I,

1 1
(7 [T @dz)” < 1los e 1

/()]
A

For the proof of Lemma 2.5, see [18].
Lemma 2.6. Let 7 € (0, 1) and M, be the maximal operator defined by
M f(x) = (M(f]")(x))
Then for any p € (1, 00) and u € A,/ (R™),
u({z € R™ : [{M7 fr(2)}H|ie > A})

Sup A7 sup Pu({z € R" ¢ [[{fu@)} i > 1}).
t>CA

1
-

Proof. For each fixed A > 0, decompose f} as
Fe@) = F@X e e <y @) + Fe@X 0w a2 ©) = fi () + f2 ().
It then follows that
u({e € R": [{Mrfi(@)} i > 27A})
<u({z eR™: [{M( ) (@)} ,2 > A"}
Recall that u € A,/ (R") implies that u € Ap—c (R™) for some € € (0, p —7),
and that M is bounded on L*= (19; R", u) (see [14]). Therefore,
u({z € R™ : [{M(|fZ7)(@)}],2 > A"})
x| AR )
Su({z e R": [{fitlle > A})
+>ﬁ”+5/ u({z € R |{f2(@)} e > 1)~ 1dt
A
S A PsuptPu({z € R™ : ||{frx(@)}Hlie > t}).

>\
This yields our desired conclusion. O

Let 2 be a dyadic grid. Associated with &, define the sharp maximal
function Mﬁ@ as

MY f(z) = sup inf ﬁ /Q F@) — cldy.

Qoz ceC
Qe
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For ¢ € (0, 1), let Mu%éf(x) = [Mﬁg(|f|‘s)(x)]1/6. Repeating the argument in
[36, p. 153], we can verify that if u € A (R™) and ® is a increasing function
on [0, co) which satisfies that

B(2t) < CD(1), t € [0, 00),

then
(2.11) ili%q)(/\)U({m e R"™ : |h(z)] > A})
< it;%@()\)u({x €R™: MY, sh(z) > A}),

provided that supy.o ®(A)u({z € R™ : Msh(z) > A}) < oo, here and in the

. 5
following, M;f(z) = (M(|f]°)(x))""°.
Theorem 2.7. Let m > 2 be an integer, B1, ..., Bm € [0, 00), S be a finite
sparse family. Then for @ = (wy, ..., wy,) € A1, m(R™),
(212) V@({.’E € R"™: Am S,L(log L)# (f17 - > fm>($) > A})

Fis)l )18 fi(y5)! "
S H (/ )l 1o (1+ | ]A(#] )wj(yj)dyj) ,
and for b € BMO(R"),
(213)  vg({z €R™: Apisp(fis -y f)(@) > 1}) H V7] [Farrenme

Proof. Again by the one-third trick (see [22, Lemma 2.5]), we assume that
S C Z with 2 a dyadic grid, and the family is finite. Without loss of generality,

we may assume that the functions fi, ..., f,, are nonnegative, bounded and
have compact support. We claim that for ¢ € (0, %),
(2.14) Mu@,5(Am;5,L(1OgL)§i (f1y ooy fm))(x) S M L(log L) a(f1, ooy fm)(@).

To see this, for fixed I € Z, let co = Y5, H;nzl ||fjHL(1ogL)ﬁj o- Asin [9], it
follows that

/' m; S, L(log L)B (f17~-'7fm)(y)_00|6dy
S| 2 1ilagusirn.0xe®)] a

I qges, ocr
§
S /; ‘Am;S,L(logL)g('flxl’ ) fWLXI)(y)‘ dy

On the other hand, by Lemma 2.4 and Lemma 2.5, we know that

1 mé ﬁ
(71 [ Mo G| )™ S 18y 1
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This, together with Holder’s inequality, leads to that

(% /1 ‘AmQS,L(log L)ﬁ(leIa ce meI)(y)‘édy)%

A

li[l <% /f ’A‘S’L“Og 1o (ixn)(y )‘ dy)n%

A

m
H HfjHL(logL)BJ',I’
i=1

and then establishes (2.14).

We can now prove (2.12). Let ¢(t) = tw log~1?l(1 + t=#). By a standard
limit argument, it suffices to consider the case that the sparse family S is

finite. Then for bounded functions f, ..., fm with compact supports, and
W= (wl, ceey ’LUm) (S Al,m,l(Rn),
||Am;S,L(logL)g(f1’""fm H (R™,v3) < 0.

This, together with the fact that M; is bounded from L (R™) to L (R™),
implies that

sup (N vg({x € R* : M (Am S.L(log L) i(f1o ooy fm)) (@) > A})

A>0

< ili%w )\ B HAm S,L(logL)Ei (fl’ N ’f’m)H (R™,vg) < o0.

Therefore, by Lemma 2.3, inequalities (2.11) and (2.14), we deduced that
I/Uj({x S Rn . Am S, L(logL)E(f17 .. 7fm)(x) > ]‘})
< sup (€ B s M5 (A, g g iy (oo ) (2) > 1)

S ﬁ ([ 15008 (1 150 ) ™

We turn our attention to the estimate (2.13). We claim that for § € (0, 1/m)
and v € (6, 1/m),

(2.15) M (A s,6(f1s -5 ) (@) S My (Amss (frs - fn)) (@)
+M(fr, o fm) (@)

To prove this, we first observe that, for each constant ¢ € C and a cube I C 2,

’Am;87b(fla---afm) —C‘ < ‘b ) < >I|Am'3(f17 T fm)( )

32 (10 = wal) [Tt exol

QES
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Let ¢1 = Y ges.0or [(0)1 — (0)@| TTjZ1 (fi)q, we thus have that

it (7 [ 1wl ) ) = o)’

ceC
(ﬁ/{“b(y) (B[ A s (fr, - fm)(y)";dy)%
+<|11|/1‘q;5|<b>1 I;Ifj oxey) —a

It follows from Holder’s inequality that

(i1 [0 = @) anst. .. f)w)|dn)’
S ;Iét;M’Y(‘Am;S(fL o fm))(y)

S5 1
dy)é.

On the other hand, we deduce from Holder’s inequality, Lemma 2.4 and Lemma
2.5, that

( /1 |(b) f[ (fixnaxoly ‘ dy)%
(

QES,QCI
< (1 [ Gus st @) an)’”
1 5 3
+ (77 [ () = 01)” (s Ui ) ) )
< TL0sbs

Combining the estimates above leads to (2.15).

Recalling that vz € A (R™™), we can choose ¢ and v in (2.15) small enough
such that vz € A1 (R™"). It then follows from Lemma 2.6, the inequality
(2.12) and Lemma 2.3 that

A vg({z € R™ My (A s(fi, -0 fm))(2) > A})

< iggt%mg({m eR": Ap.s(f1, ..., fm)(x) > t})
S, il;%)t'"l/w({x S R™: Mﬁ@ 5(~Am;5(f17 AR} fm))(:r) > t})
3

1
H ||fj||£L1(Rn,wj)~
j=1
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Note that if the sparse family S is finite, and fi, ..., fi, are bounded with
compact supports, then for @ = (w1, ..., wy) € 41, 1(R™),
L n
iup/\m va({z € R™ : Ms(Apm;sp(f1s -y fmn))(2) > A}) < 0.
>0

This, together with inequalities (2.11) and (2.15), leads to that
vg({x € R" : Ap.so(f1y -, fm)(x) > 1})

S iugt#yw({x eR™: Mﬁ@’é(Am;&b(fl, ooy fm)) (@) > t})
>
" 1
S H Hfj”inl(mn,wj)v
j=1
and then establishes the inequality (2.13). (]

3. Proof of theorems

Let T be an m-sublinear operator. Associated with 7', let

Mr(fr,- fm) (@) = ng |T(f1s-- s f)(©) =T (f1x3Q:- - - me3Q)(£)HL<X>(Q)'

Following the argument in [24], we have

Lemma 3.1. Let ¢1, ..., ¢m € (1, 00), ¢ € (1/m, o) such that 1/q =1/q1 +
oo+ 1/qm, T be an m-sublinear operator which is bounded from L'(19; R™) x
coox LY(19m; R™) to L#’Oo(lq; R™). Then for any cube Qo and a. e. x € Q,
we have that

HT(fExaqos -+ flxaqo)@)lie < Co TTIHAF (@)} s
j=1

+ H{MT(ffX3Q07 cees rIiLX3Q0)(x)}qu7
provided that |[{fF i -+, |45 Hliam € Lo (R™).
Proof. We follow the line in [27]. Let & € intQo be a point of approximation
continuity of |[{T(f1Xx3Q0s - - -+ SmX30Q,) H1a- For r, € > 0, the set

Eo(@) = {y € B(e, 1)+ |HT(Fxsos - Flxsao) @)}
— HT(F£X3Q0s - > frnx30) W)}l < €}
|Er ()|

satisfies that lim, _.q Bl ) = 1. Denote by Q(x, r) the smallest cube centered

at z and containing B(z, r). Let r > 0 small enough such that Q(z, r) C Q.
Then for y € E,(z),

”{T(f{c)@@m CEE) f’l{:;LXBQO)(x)}”lq
< ||{T(ffX3Q(m,r)a ceey 7I1€1X3Q(z,r))(y)}qu
+ H{MT(ffX3Q07 R frI:LX3Q0)(x)}qu +e.
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Thus, for ¢ € (0, 1/m),

||{T(f{€X3Qo’ R r]sz?)Qo)(x)}qu
1 1
<\l = T k’ T, )yttt 'r]iz x,r qu )
< (1 L o, X000, - fhxsan) )} i)
+ H{MT(fIkXSQoa LR ﬁv,X?)QO)(m)}qu te
< CTTULEE s Y3, vy + [HM(FEX3Q0s - -+ Fhixs00) (@)}H],0 + €
j=1

since T is bounded from L'(19; R™) x --- x L*(1%; R™) to Lu >(19; R™).
Taking » — 0 then leads to the desired conclusion. ([

Theorem 3.2. Let q1, ...,qm € (1, 00) and g € (1/m, 00) with 1/qg=1/q1 +
o4+ 1/Gm. Suppose that both the operators T and Mt are bounded from
LY(19%; R™) x- - -x L} (19; R™) to L'/™ >°(19; R™). Then for N € N and bounded
functions {ff}1<k<ns -, {fF}i<k<n with compact supports, there exists a
%%-sparse of family S such that for a.e. © € R™,

(B1) T s f) @Yl S Amg s o - 1l ) (@).

Proof. Again, we only consider the case m = 2. We follow the argument
used in [27]. As it was pointed out in [27], it suffices to prove that for each
cube Qo C R™, there exist pairwise disjoint cubes {P;} C D(Qp), such that
> Pl < 11Qo| and for a.e. = € Qq,

(3.2) I{T(FE X300 F3X300) (@) } |4 X0 (%)

2
< CTTUEA s s@o + D0 IHT (Fixsr,s fixsr,) (@) Hlaxp, ().
i=1 J

To prove (3.2), let Co > 0 which will be chosen later and

E={z€Qo: I{ff @}l {3 @)}Hw= > Co TN}

19)3Q0 |
=1
2
U{z € Qo I{M1(fFx3q0r f3x300) @) > ColJ TUK A Ha)aq0 }-
i=1

If we choose C5 large enough, our assumption then says that |E| < 52|Qo.
Now applying the Calderén-Zygmund decomposition to x g on Qg at level Q,L%,
we then obtain a family of pairwise disjoint cubes {P;} such that

1 1
W|Pj| <|PNEl< §|Pj|7
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and |E\ U; P;| = 0. It then follows that 3, [P;| < 1|E|, and P; N E® # 0.
Therefore, for some & € P; N E°,

(3.3) H{HT(flkx‘?Qov f2kX3Qo) _T(f{cX3Pj7 f2kX3Pj)||loo(Pj)}

la

2
< {Mz (£ X300 F5x300)(E0) I < Co T LKA Hlra: )aco-
i=1
Note that
(34)  I{T(f'x3Q0, f3X300) (@) }iaxqo ()
< T (f1 X305 f5 x300) (@) HlisX@o\u, P, (7)

+ 2 T (fixar, s f3xap,) (@) Hlinxe, (2)

J
+ 3 [{Ttrsan Hxsen) @) —T(Hxen, Hxar) @} xe @).
J

(3.2) now follows from (3.3), (3.4) and Lemma 3.1. O

Similar to the proof of Theorem 3.2, by mimicking the proof of Theorem 1.1
in [27], we can prove the following theorem.

Theorem 3.3. Let q1, ..., qm € (1, 00) and q € (1/m, o0) with 1/q =1/q1 +
o+ 1/gm, b € L (R™). Suppose that both the operators T and My are
bounded from L*(19; R™) x - - - x L*(19; R™) to L*/™ >°(19; R™). Then for N €
N and bounded functions {ff}1<k<n,.--, {fX i<k<n with compact supports,
there exists a %%—sparse of family S such that for a.e. x € R™,

||{[b7 T]t(flkv BN fi)(x)}qu
< D o) = Oel [T e )oxe (@)

Qes j=1
+ 3 (1o = Ooll{fF His o TTULA ) axa ).
Qes j#i

Lemma 3.4. Let g1, ...,qm € (1, 00), ¢ € (1/m, 00) such that 1/qg =1/q1 +
-+« +1/qm. Under the hypothesis of Theorem 1.7, the operator My is bounded
from LY(1%; R™) x -+ x L1(1%; R™) to L#‘X’(lq; R™).

Proof. For simplicity, we only consider the case m = 2. For € > 0, let

Te(f1, f2)(x) = / . K(z; y1, y2) f1(y1) f2(y2)dy1dya.
min; |[z—y;|>e€

We claim that for each 7 € (0, 1/2),
(3.5) Sup [Te(fr, f2)(2)| S M-(T(f1, f2))(@) + M fr(@)M fo(w).
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To prove this, let

1) = HxX8e0 W), 1= fi@)xen 5o ():
For each z € B(x, ¢/12), it follows from the regularity condition (1.11) that
Te(fr, f2)(@)] = T2 f3°) () = T f22) (@) + T, £27)(2)]
S M fi(z)M fo(x) + |T(f1, f2)(2)] + |IT(f7, f3)(2)]
HIT(f f52) () +IT (2, f3)(2)].
Again by the size condition (1.7), we can verify that
IT(fY, £V + T, £3)(2)] S M fr(z)M fa().
Therefore, for any z € B(z, {35),
IT(fr, )@ < (T, f2) )]+ T, 7))+ My (@) M fo(w).

This, together with the fact that T is bounded from L!(R") x --- x L(R") to
LY/m:2(R™), leads to (3.5).

Let @ C R™ be a cube and z, £ € Q. Denote by B, the ball centered at x
and having diameter 12ndiam Q). Then 3Q C B,. As in [27], we write

T (fixrm\30, f2xrRm30) ()]
< T (fixre\B.» f2Xr\B,)(€) — T(fixem B, foXrm\B, ) (7)]
+ Sl>118 |Te(f1, f2)(z)] + |T(f1XR"\BT,f2XBT\3Q)(f)‘

+ | T(fixB,\30: foxrRm\30)(£)]-
It follows from the regularity condition (1.11) that

|T(fixrn\B,» faxrm\B,)(&) = T(fixem B, faXz\B,) ()| S M f1(z)M fo(z).
On the other hand, by the size condition (1.7), we have

IT(Fixsonan foxamag) ©)] < /B o))y /R

S Mfi(x)M fo(x).

| f2(y2)]

————dys
m3Q |7 — Yol

Similarly,
IT(fixem B, f2XB,\3Q) ()| £ M fi(z)M fa(z),

and

IT(fixrm\30: f2X30)(€) + T(fixsqs faxzm3Q)(©)| S M fi(z)M fr(x).

Combining the estimates above leads to that

(3.6) Mur(fr, f2)(x) S M-(T(f1, f2))(x) + M fr(z) M fo(z).

Recall that T is bounded from L'(19; R™) x L*(1%2; R™) to L2 °°(19; R™)
(see [19]), and M is bounded from L!(1%; R™) to L':°°(1%; R™). Now we choose
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7 € (0, 1/2) in (3.6), our desired conclusion now follows from (3.6) and Lemma
2.6 immediately. t

We are now ready to prove our theorems.

Proof of Theorem 1.7. Obviously, it suffices to prove (1.12) for the case that

{FFy, .. {fE} are finite sequences. But this follows from Theorem 3.2, Lemma
3.4 and the estimate (2.5) directly. O
Proof of Theorem 1.9. Let by, ..., b,, € BMO(R"™). By the generalization of

Holder’s inequality (see [35]), we know that
(bi(z) = )l I{fE e ) < NILFFY

As in the proof of Theorem 1.7, Theorem 1.9 now follows from Theorem 3.3,
Lemma 3.4 and Theorem 2.1 and Theorem 2.2. ([l

19

LlogL,Q"

Proof of Theorem 1.10. Theorem 1.10 now follows from Theorem 3.3, Lemma
3.4 and Theorem 2.7 immediately. t

4. Applications to the commutators of Calderén

Let us consider the m-th commutator of Calderén, which is defined by

IT5%, (A4;(2) — A;(y))
R™ (z —y)mtt
where a; = A;-. This operator first appeared in the study of the Cauchy
integrals along Lipschitz curves and, in fact, led to the first proof of the L?
boundedness of the latter.

When m = 1, it is well known that Cs is bounded from LP'(R) x LP2(R) to
LP(R) when 1 < p1, pa < 0o and % < p < oo satisfying 1/p = 1/p1 + 1/p2; and
moreover, it is bounded from LP'(R) x LP2(R) to LP*°(R) if min{p;, p2} =1
and in particular it is bounded from L!(R) x L!(R) to Lz:>°(R); see [3,4]. The
corresponding result that Cs maps L*(R) x LY(R) x L*(R) to L3 *(R) was
proved by Coifman and Meyer; see [7], while the analogous result for Cp,11,
m > 3, was established by Duong, Grafakos, and Yan [13]. As it was proved
in [13], Cppy1 can be rewritten as the following multilinear singular integral
operator

(41) Cm+1(a17 ceey Amy, f)(ZC)

Cmii1(a, ..., am, f)(x) =p.v. f(y)dy,

m
_ / K@y ) [T @0 f @) - g,
R’NL .
j=1

with
(—1)melymir—2) D

K(x;yla"'aym-‘rl) = (

W X(mi“{w’ymﬂ}ymax{w,ywl})(Z/j)7

j=1
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and e is the characteristic function of [0, co). It was pointed out in [20] that
Cin1 satisfies Assumption 1.4 and (1.11). Thus by Theorems 1.7, 1.9 and 1.10,
we have the following conclusions.

Corollary 4.1. Let m > 1, p1,...,pms1 € (1, 00), q1,---,qmy1 € (1, 00),
D, q € (m+1’ o0) with 1/p = 1/p1+ -+ 1/pmt1, 1/g=1/q1 + - + 1/qm+1,

W= (w1,...,wnys1) € Ag(R™1). Then
||{Cm+1(alfa'~'7 fnv fk)}HLp(lq‘R" V)
< max{l 1} " 3
S [0la, TT M@}z s gy I Hl o a1, 2 )
j=1

Corollary 4.2. Let m > 1, p1,...,pm+1 € (1, 00), q1, -+, Gm+1 € (1, 00),
P, q € (i, 00) with 1/p=1/p1 4 -+ + 1/pmi1, /g =1/q1 + - + 1/gmy1,
w = (’U)l, .. .,wm_,_l) S Aﬁ(Rm+l). Let by, ..., by, € BMO(R) Then Cm-l—l,E’
the commutator of Cp,11 defined as in (1.13), satisfies the weighted estimate
that

k k k
‘|{Cm+1 E(ala vy f )}”Lp(lq;Rn,Vm)
’
max{1,20,..., Dmly
Sloly, 7 !

x (valaw + D loila ) TT IG5 Lm0, IS Hlmmss oo )
i=1 j=1

Moreover, if @ = (w1, ..., Wyt1) € A1, 1(R™T), then for each A > 0,
vo({e € R Gy 5k abs Y@ > A)

. ﬁ( [ M WDy

AT AT
([ MG oy (1 MWy, )

Added in Proof. After this paper was prepared, we learned that Dr. Kang-
wel Li [28] also observed that, Lerner’s idea in [24] applies to the multilinear
singular integral operators. We remark that our argument in the proof of The-
orem 3.2 also based on this observation. Li [28] proved that the multilinear
singular integral operators whose kernels satisfy L"- Hormander condition can
be dominated by multilinear sparse operators. The main results in [28] are
different from the results in this paper and are of independent interest.
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