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OPENNESS OF ANOSOV FAMILIES

Jeovanny de Jesus Muentes Acevedo

Abstract. Anosov families were introduced by A. Fisher and P. Arnoux

motivated by generalizing the notion of Anosov diffeomorphism defined

on a compact Riemannian manifold. Roughly, an Anosov family is a two-
sided sequence of diffeomorphisms (or non-stationary dynamical system)

with similar behavior to an Anosov diffeomorphisms. We show that the
set consisting of Anosov families is an open subset of the set consisting

of two-sided sequences of diffeomorphisms, which is equipped with the

strong topology (or Whitney topology).

1. Introduction

Anosov families were introduced by P. Arnoux and A. Fisher in [1], motivated
by generalizing the notion of Anosov diffeomorphisms. Roughly, an Anosov
family is a two-sided sequence of diffeomorphisms f = (fi)i∈Z defined on a two-
sided sequence of compact Riemannian manifolds (Mi)i∈Z, which has a similar
behavior to an Anosov diffeomorphisms, that is, each tangent bundle TMi has
a splitting into two subbundles, called stable and unstable subbundles, where
the elements in the stable subbundle are contracted by D(fi+n−1 ◦ · · · ◦ fi) and
the elements in the unstable subbundle are contracted by D(f−1i−n ◦ · · · ◦ f

−1
i−1),

for n ≥ 1. The study of sequences of maps is know in the literature with
several different names: non-stationary dynamical systems, non-autonomous
dynamical systems, sequences of mappings, among other names (see [1], [2],
[3], [7]).

Other approaches dealing sequences of diffeomorphisms with hyperbolic be-
haviour can be found in [2], [3], [10], among other works. One difference be-
tween the notion considered in this paper and the considered in the works above
mentioned is that the fi’s of the Anosov families do not necessarily are Anosov
diffeomorphisms (see [1], Example 3). Furthermore, the Mi’s, although they
are diffeomorphic, they are not necessarily isometric, thus, the hyperbolicity
could be induced by the Riemannian metrics (see [1], [6] for more detail).
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2 JEOVANNY DE JESUS MUENTES ACEVEDO

Let M be the disjoint union of the Mi’s, for i ∈ Z, and F(M) the set con-
sisting of the families of C1-diffeomorphisms on M endowed with the strong
topology (see Definition 2.3). We denote by A(M) the subset of F(M) consist-
ing of Anosov families. We will prove that A(M) is an open subset of F(M):
for any (fi)i∈Z ∈ A(M), there exists a sequence of positive numbers (εi)i∈Z
such that if (gi)i∈Z ∈ F(M), with d1(fi, gi) < εi for all i ∈ Z, where d1 is the
C1-metric on Diff1(Mi,Mi+1), then (gi)i∈Z ∈ A(M). An important implica-
tion of this result is the great variety of non-trivial examples that it provides
(in [1] and [8] can be found non-trivial examples of Anosov families, thus with
the openness of A(M) we have that, in a certain way, these examples are not
isolated), since we only ask that the family be Anosov and we do not ask for
any additional condition. For that reason, the sequence (εi)i∈Z could no be
taken constant (it can converge to zero as i → ±∞). In [8] we proved that,
if the second derivative of the family is bounded and the angles between the
stable and unstable subspaces induced by the family are bounded away from
zero, then (εi)i∈Z can be taken constant.

Young in [12] proved that families consisting of C1+1 random small per-
turbations of an Anosov diffeomorphism of class C2 are Anosov families (see
Remark 2.7). Our result is a generalization of this fact, since, as we said,
Anosov families are not necessarily sequences of Anosov diffeomorphisms. This
fact will be fundamental to prove the structural stability of certain elements in
A(M), considering the uniform conjugacies to be given in Definition 2.2 (see
[8]), which generalizes the structural stability of random small perturbations
of hyperbolic diffeomorphisms, shown by P. D. Liu in [5].

In the next section we define the class of objects to be studied in this work.
We define the composition law for a two-sided sequence of diffeomorphisms,
the strong topology and a type of conjugations which work for the class of
families of diffeomorphisms. Furthermore, we introduce the notion of Anosov
family and we present some examples of such families. In Section 3 we will
see several properties that satisfy the Anosov families. It is important to keep
fixed the Riemannian metric on each Mi, since the notion of Anosov family
depends on the Riemannian metric (see [1], Example 4). Other examples and
properties of Anosov families can be found in [1], [6] and [8]. In Section 4 we
will prove that each family close to an Anosov family satisfies the property of
the invariant cones (see Lemma 4.7). This fact will be fundamental for showing
the openness of Anosov families, which will be proved in Theorem 5.4.

2. Anosov families: definition, examples and uniform conjugacy

Given a two-sided sequence of Riemannian manifolds Mi with Riemannian
metric 〈·, ·〉i for i ∈ Z, consider the disjoint union

M =
∐
i∈Z

Mi =
⋃
i∈Z

Mi × i.
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OPENNESS OF ANOSOV FAMILIES 3

The set M will be called total space and the Mi will be called components. We
give the total space M the Riemannian metric 〈·, ·〉 induced by 〈·, ·〉i setting

(2.1) 〈·, ·〉|Mi
= 〈·, ·〉i for i ∈ Z,

and we will use the notation (M, 〈·, ·〉) for point out that we are considering
the Riemannian metric given in (2.1). We denote by ‖ · ‖i the induced norm by
〈·, ·〉i on TMi and we will take ‖ · ‖ defined on M as ‖ · ‖|Mi = ‖ · ‖i for i ∈ Z.
If di(·, ·) is the metric on Mi induced by 〈·, ·〉i, the total space is equipped with
the metric

(2.2) d(x, y) =

{
min{1, di(x, y)} if x, y ∈Mi

1 if x ∈Mi, y ∈Mj and i 6= j.

Definition 2.1. A non-stationary dynamical system (or n.s.d.s.) (M, 〈·, ·〉, f )
is a map f : M → M such that, for each i ∈ Z, f |Mi

= fi : Mi → Mi+1 is
a C1-diffeomorphism. Sometimes we use the notation f = (fi)i∈Z. The n-th
composition is defined to be

f ni :=


fi+n−1 ◦ · · · ◦ fi : Mi →Mi+n if n > 0

f−1i−n ◦ · · · ◦ f
−1
i−1 : Mi →Mi−n if n < 0

Ii : Mi →Mi if n = 0,

where Ii : Mi →Mi is the identity on Mi (see Figure 1).

. . .

Mi−1

fi−1−−−→

Mi

fi−−−→

Mi+1

. . .

Figure 1. A non-stationary dynamical system on a sequence
of 2-torus endowed with different Riemannian metrics.

One type of conjugacy that works for the class of non-stationary dynamical
systems is the uniform conjugacy :

Definition 2.2. A uniform conjugacy between two n.s.d.s. f = (fi)i∈Z and
g = (gi)i∈Z on M is a map h : M → M, such that h |Mi = hi : Mi →
Mi is a homeomorphism, (hi : Mi → Mi)i∈Z and (h−1i : Mi → Mi)i∈Z are
equicontinuous families and h is a topological conjucacy between the systems,
i.e., hi+1 ◦ fi = gi ◦ hi : Mi → Mi+1 for every i ∈ Z. This fact means that the
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4 JEOVANNY DE JESUS MUENTES ACEVEDO

following diagram commutes:

M−1
f−1−−−−→ M0

f0−−−−→ M1
f1−−−−→ M2

···
yh−1

yh0

yh1

yh2···

M−1
g−1−−−−→ M0

g0−−−−→ M1
g1−−−−→ M2

In that case, we will say the families are uniformly conjugate.

The reason for considering uniform conjugacy instead of the topological con-
jugacy is that every n.s.d.s. is topologically conjugate to the n.s.d.s. whose
maps are all the identity (see [1], Proposition 2.1). Uniform conjugacies are
also considered to characterize random dynamical systems (see [5]). In [7] we
showed that the topological entropy for non-autonomous dynamical systems is
a continuous map. The invariance of that entropy by uniform conjugacies is
a fundamental tool to classify non-stationary dynamical systems by uniform
conjugacies.

Consider F(M) = {f = (fi)i∈Z : fi : Mi → Mi+1 is a C1-diffeomorphism}.
We endow F(M) with the strong topology :

Definition 2.3. Let ε = (εi)i∈Z be a sequence of positive numbers and f ∈
F(M). The set

B(f , ε) = {g ∈ F(M) : dDi(fi, gi) < εi for all i}
is called a strong basic neighborhood of f , where dDi

(·, ·) is the C1-metric
on Di = Diff1(Mi,Mi+1), the set consisting of C1-diffeomorphisms on Mi to
Mi+1. The strong topology (or Whitney topology) is generated by the strong
basic neighborhoods of each f ∈ F(M).

Definition 2.4. A subset A of F(M) is open if for each f ∈ A there exists
ε = (εi)i∈Z such that B(f , ε) ⊆ A. An element f ∈ F(M) is called struc-
turally stable if there exists ε = (εi)i∈Z such that any g ∈ B(f , ε) is uniformly
conjugate to f . If each element in A is structurally stable, we say that A is
structurally stable.

Definition 2.5. A n.s.d.s f on M is called an Anosov family if:

i. the tangent bundle TM has a continuous splitting Es ⊕ Eu which is Df -
invariant, i.e., for each p ∈ M, TpM = Esp ⊕ Eup with Dpf (Esp) = Esf (p)
and Dpf (Eup ) = Euf (p), where TpM is the tangent space at p;

ii. there exist constants λ ∈ (0, 1) and c > 0 such that for each i ∈ Z, n ≥ 1,
and p ∈Mi, we have:

‖Dp(f
n
i )(v)‖ ≤ cλn‖v‖ if v ∈ Esp and ‖Dp(f

−n
i )(v)‖ ≤ cλn‖v‖ if v ∈ Eup .

The subspaces Esp and Eup are called stable and unstable subspaces, respectively.

The set consisting of Anosov family on (M, 〈·, ·〉) will be denoted by A(M).
If we can take c = 1 we say the family is strictly Anosov.
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OPENNESS OF ANOSOV FAMILIES 5

A clear example of an Anosov family is the constant family associated to
an Anosov diffeomorphism (see [1], Definition 2.2). Is well-known the notion
of Anosov diffeomorphism does not depend on the Riemannian metric on the
manifold (see [9]). However, Example 4 in [1] shows that suitably changing the
metric on each Mi the notion of Anosov family could not be satisfied.

Example 2.6. Let F be a hyperbolic linear cocycle defined by A : X →
SL(Z, d) over a homeomorphism φ : X → X on a compact metric space X (see
[11]). For each x ∈ X, the family (A(fn(x)))n∈Z defined on Mi = Rd/Zd, the
torus d-dimensional equipped with the Riemannian metric inherited from Rd,
determines an Anosov family.

Remark 2.7. Let φ : M → M be an Anosov diffeomorphism of class C2 on
a compact Riemannian manifold M and β > 0 such that L(Dφ) < β, where
L(Dφ) is a Lipchitz constant of the derivative application x 7→ Dxφ. For α > 0,
take

Ωα,β(φ) = {ψ ∈ C1(M) : d(φ, ψ) ≤ α and L(Dψ) ≤ β},
where d(·, ·) is the C1-metric on Diff1(M). If α is small enough, any sequence
(ψi)i∈Z in Ωα,β(φ) defines an Anosov family in M =

∐
i∈ZM (see [12], Propo-

sition 2.2). Consequently, the set consisting of the constant families associated
to Anosov diffeomorphisms of class C2 is open in F(M).

Using the above fact we have:

Example 2.8. Given α ∈ R, consider φα : T2 → T2 defined by

φα(x, y) = (2x+ y − (1 + α) sinx mod 2π, x+ y − (1 + α) sinx mod 2π).

For all α ∈ [−1, 0), φα is an Anosov diffeomorphism (see [4]). We have that
given α? ∈ [−1, 0) there exists ε > 0 such that, if (αi)i∈Z is a sequence in
[−1, 0) with |αi−α?| < ε, then (fi)i∈Z is an Anosov family, where fi = φαi for
i ∈ Z.

The existence of Anosov diffeomorphisms φ : M → M imposes strong re-
strictions on the manifold M . All known examples of Anosov diffeomorphisms
are defined on infranilmanifolds (see [4], [9], [11]). The circle S1 = {x ∈ R2 :
‖x‖ = 1} does not admit any Anosov diffeomorphism. In [6] we show that S1

does not admit Anosov families in the following sense: let M =
⋃
i∈ZMi where

Mi = S1 × {i} equipped with the Riemannian metric inherited from R2 for
each i. Thus, there is not any Anosov family on M. As mentioned above, the
Anosov families are not necessarily formed by Anosov diffeomorphisms. Then,
a natural question that arises from the notion of Anosov families is: which
compact Riemannian manifolds admit Anosov families?

3. Some properties of the Anosov families

We now show some properties that the Anosov families satisfy and that will
be used in the rest of the work. In this section, if we do not say otherwise,
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6 JEOVANNY DE JESUS MUENTES ACEVEDO

(M, 〈·, ·〉, f ) will represent an Anosov family with constants λ ∈ (0, 1) and
c ≥ 1. Sometimes we will omit the index i of fi if it is clear that we are
considering the i-th diffeomorphism of f .

In [1], Proposition 2.12, is shown for an Anosov family the splitting TpM =
Esp ⊕ Eup is unique. Actually, we have:

Lemma 3.1. For each p ∈Mi we have

i. Esp = {v ∈ TpMi : ‖Dp(f
n)(v)‖ is bounded, for n ≥ 1}.

ii. Eup = {v ∈ TpMi : ‖Dp(f
−n)(v)‖ is bounded, for n ≥ 1}.

Proof. We will prove i. Set Bsp = {v ∈ TpMi : supn≥1 ‖Dp(f
n)(v)‖ < +∞}.

It is clear that Esp ⊆ Bsp. Suppose there exists v ∈ TpMi such that v /∈ Esp.
Thus v = vs + vu for some vs ∈ Esp and vu ∈ Eup with vu 6= 0. Therefore, we

have ‖Dp(f
n)(v)‖ ≥ c−1λ−n‖vu‖ − cλn‖vs‖, where ‖Dp(f

n)(v)‖ → +∞, that
is, v /∈ Bsp. Thus Bsp ⊆ Esp. �

Definition 3.2. For p ∈M and α > 0, set

Ks
α,f ,p = {(vs, vu) ∈ Esp ⊕ Eup : ‖vu‖ < α‖vs‖} ∪ {(0, 0)}

:= stable α-cone of f atp,

Ku
α,f ,p = {(vs, vu) ∈ Esp ⊕ Eup : ‖vs‖ < α‖vu‖} ∪ {(0, 0)}

:= unstable α-cone of f atp.

(see Figure 2).

Eup

Esp

TpM

Ku
α,f ,p

Ks
α,f ,p

Figure 2. Stable and unstable α-cones at p.

Taking a suitable α, the following lemma shows that the cones are invariant
by the derivative of the family and, in addition, the derivative of the family
restricted Ku

α,f ,p is an expansion and restricted to Ks
α,f ,p is a contraction:

Lemma 3.3. Suppose that f is a strictly Anosov family. Fix α ∈ (0, 1−λ1+λ ) and

take λ′ = λ 1+α
1−α < 1. Thus:
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OPENNESS OF ANOSOV FAMILIES 7

i. Dpf(K
u
α,f,p) ⊆ Ku

α,f,f(p). Furthermore, ‖Dpf(v)‖ ≥ 1
λ′ ‖v‖ for v ∈ Ku

α,f,p.

ii. Df(p)f
−1(Ks

α,f,f(p)) ⊆ Ks
α,f,p. Furthermore, ‖Df(p)f

−1(v)‖ ≥ 1
λ′ ‖v‖ for v ∈

Ks
α,f,f(p).

Proof. For (vs, vu) ∈ Ku
α,f ,p we have

‖Dpf (vs)‖ ≤ λ‖vs‖ ≤ λα‖vu‖ ≤ λ2α‖Dpf (vu)‖ ≤ α‖Dpf (vu)‖.
Therefore Dpf (Ku

α,f ,p) ⊆ Ku
α,f ,f (p). On the other hand, we have

‖Dpf (vs, vu)‖ ≥ ‖Dpf (vu)‖ − ‖Dpf (vs)‖ ≥
1− α

λ(1 + α)
‖(vs, vu)‖,

and this fact proves i. The part ii. can be proved analogously. �

Next proposition proves the continuity of the splitting Es ⊕ Eu can be ob-
tained from both the condition ii. in Definition 2.5 and the Df -invariance of
the splitting. We adapt the ideas of the proof of Proposition 2.2.9 in [4] (which
is done for diffeomorphisms defined on compact Riemannian manifolds) to show
the following result.

Proposition 3.4. Let f ∈ F(M). Suppose that TM has a splitting Es ⊕ Eu
which is Df-invariant and satisfies the property ii. from Definition 2.5. Thus,
Esp and Eup depend continuously on p.

Proof. First we prove that the dimensions of Eu and Es are locally constants.
Let p ∈ M and k = dimEsp. Suppose by contradiction that there exists a
sequence (pm)m∈N ⊆M converging to p such that dimEspm ≥ k + 1 for all m.
Take a sequence of orthonormal vectors

v1(pm), . . . , vk(pm), vk+1(pm) in Espm , for each m.

Choosing a suitable subsequence, we can suppose that

v1(pm)→ v1 ∈ TpM, . . . , vk+1(pm)→ vk+1 ∈ TpM as m→∞.
Therefore, by continuity of the Riemannian metric, it follows from condition ii.
in Definition 2.5 that, for all n ≥ 1, we have

(3.1) ‖Dp(f
n
i )(vs)‖ ≤ cλn‖vs‖ for each s = 1, . . . , k + 1.

By Lemma 3.1 we obtain v1, . . . , vk+1 ∈ Esp. Since v1(pm), . . . , vk(pm), and
vk+1(pm) are orthonormal for all m ≥ 1, we have that v1, . . . , vk+1 are or-
thonormal, which contradicts that dimEsp = k. Similarly we can prove that
there is not any sequence (pm)m∈N converging to p with dimEspm < k for all m.
Therefore, the dimension of Esp is locally constant.

Analogously we obtain that the dimension of Eup is locally constant.
Now, let (pm)m∈N be a sequence in M such that pm → p ∈M as m → ∞.

Without loss of generality, we can suppose that (pm)m∈N ⊆ Mi and p ∈ Mi

for some i ∈ Z. This fact follows from the definition of the metric on M
given in (2.2). Furthermore, we can assume that dimEspm = dimEsp = k for
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8 JEOVANNY DE JESUS MUENTES ACEVEDO

every m ≥ 1. Let {v1(pm), . . . , vk(pm)} be an orthonormal basis of Espm , for
each m ≥ 1, such that v1(pm) → v1 ∈ TpMi, . . . , vk(pm) → vk ∈ TpMi as
m → ∞. By the continuity of the Riemannian metric we have that v1, . . . , vk
are orthonormal and

‖Dp(f
n
i )(vs)‖ ≤ cλn‖vs‖ for each s = 1, . . . , k,

that is, v1, . . . , vk belong to Esp. This fact proves that Esp depends continuously
on p. Analogously we can prove that Eup depends continuously on p. �

The notion of Anosov diffeomorphism does not depend of the Riemannian
metric on the manifold (see [9]). In contrast, the notion of Anosov family
depends on the Riemannian metric taken on each Mi (see [1, Example 4]).
However, the next proposition proves that the notion of Anosov family does
not depend on the Riemannian metric chosen uniformly equivalent on M.1

Proposition 3.5. Let 〈·, ·〉 and 〈·, ·〉? be Riemannian metrics uniformly equiv-
alent on M. We have that (M, 〈·, ·〉, f) is an Anosov family if, and only if,
(M, 〈·, ·〉?, f) is an Anosov family.

Proof. Let ‖ · ‖ and ‖ · ‖? be the norms induced by 〈·, ·〉 and 〈·, ·〉?, respectively.
Since 〈·, ·〉 and 〈·, ·〉? are uniformly equivalent on M, there exist k > 0 and K >
0 such that k‖v‖? ≤ ‖v‖ ≤ K‖v‖? for all v ∈ TM. Suppose that (M, 〈·, ·〉, f ) is
an Anosov family with constant λ ∈ (0, 1) and c ≥ 1. Thus, for v ∈ TpM, n ≥ 1,

‖Dp(f
n
i )(v)‖? ≤ (1/k)‖Dp(f

n
i )(v)‖ ≤ (c/k)λn‖v‖ ≤ (Kc/k)λn‖v‖?.

Analogously we have ‖Dp(f
−n
i )(v)‖? ≤ (Kc/k)λn‖v‖?, for v ∈ TpM, n ≥ 1.

Therefore, (M, 〈·, ·〉?, f ) is an Anosov family with constant λ and c̃ = Kc/k.
Similarly we can prove if (M, 〈·, ·〉?, f ) is an Anosov family then (M, 〈·, ·〉, f )

is an Anosov family. �

In Proposition 3.7 we will show there exists a Riemannian metric 〈·, ·〉?,
equivalent to 〈·, ·〉 on each Mi (〈·, ·〉? is not necessarily uniformly equivalent
to 〈·, ·〉 on the total space M), with which, (M, 〈·, ·〉?, f ) is a strictly Anosov
family. That is a version for families of a well-known Lemma of Mather for
Anosov diffeomorphisms (see [9]). In order to prove this fact, we introduce the
following notion: Fix i ∈ Z. Since for each p ∈ Mi, the subspaces Esp and Eup
are transversal, that is, Esp ⊕Eup = TpMi, then, by the compactness of Mi and
the continuity of both the Riemannian metric and the subspaces Esp and Eup ,
we obtain that there exists µi ∈ (0, 1) such that, if vs and vu are unit vectors
in Esp and Eup , respectively, then

(3.2) cos(v̂svu) ∈ [µi − 1, 1− µi],

1Two Riemannian metrics 〈·, ·〉 and 〈·, ·〉∗ defined on a manifold M are uniformly equiv-
alent if there exist positive numbers k and K such that k〈v, v〉 ≤ 〈v, v〉∗ ≤ K〈v, v〉 for any

v ∈ TM .
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OPENNESS OF ANOSOV FAMILIES 9

where v̂svu is the angle between vs and vu. In the case of Anosov diffeomor-
phisms defined on compact manifolds those angles are uniformly bounded away
from 0. In [6] we gave an example where the angles between the unstable and
stable subspaces along the orbit of a point of M0 converge to zero.

Definition 3.6. We say that an Anosov family satisfies the property of the
angles (or s. p. a.) if there exists µ ∈ (0, 1) such that, for all p ∈M, if vs ∈ Esp
and vu ∈ Eup , then cos(v̂svu) ∈ [µ− 1, 1− µ], that is, µ does not depend on i.

Proposition 3.7. There exists a C∞ Riemannian metric 〈·, ·〉? on M, which
is uniformly equivalent to 〈·, ·〉 on each Mi, such that (M, 〈·, ·〉?, f ) is a strictly
Anosov family. Furthermore, (M, 〈·, ·〉?, f ) satisfies the property of the angles.

Proof. Let ε ∈ (0, 1− λ). For p ∈M, if (vs, vu) ∈ Esp ⊕ Eup , take

(3.3) ‖(vs, vu)‖1 =

√
‖vs‖12 + ‖vu‖12,

where

‖vs‖1 =

∞∑
n=0

(λ+ ε)−n‖Dp(f
n)vs‖ and ‖vu‖1 =

∞∑
n=0

(λ+ ε)−n‖Dp(f
−n)vu‖.

Note that if vs ∈ Esp we have

(3.4) ‖vs‖1 =

∞∑
n=0

(λ+ε)−n‖Dp(f
n)vs‖ ≤

∞∑
n=0

(λ+ε)−ncλn‖vs‖ =
λ+ ε

ε
c‖vs‖.

Analogously, ‖vu‖1 ≤ λ+ε
ε c‖vu‖ for vu ∈ Eup . Consequently the series ‖vs‖1

and ‖vu‖1 converge uniformly. That is, ‖ · ‖1 is well defined.
We prove that ‖ · ‖1 is uniformly equivalent to ‖ · ‖ on each Mi. It is clear

that ‖vs‖ ≤ ‖vs‖1 and ‖vu‖ ≤ ‖vu‖1. Thus,

‖(vs, vu)‖ ≤ ‖vs‖+ ‖vu‖ ≤ 2(‖vs‖2 + ‖vu‖2)1/2

≤ 2(‖vs‖21 + ‖vu‖21)1/2 = 2‖(vs, vu)‖1.
This fact implies

(3.5) ‖v‖ ≤ 2‖v‖1 for all v ∈ TM.

Fix p ∈Mi. Let θp be the angle between two vectors vs ∈ Esp and vu ∈ Eup ,

for p ∈ Mi. Take µi as in (3.2). Since (1 − µi)(‖vs‖2 + ‖vu‖2) ≥ 2(1 −
µi)‖vs‖‖vu‖, we have

‖vs‖2 + ‖vu‖2 + 2(µi − 1)‖vs‖‖vu‖ ≥ µi(‖vs‖2 + ‖vu‖2).

Therefore

‖(vs, vu)‖2 = ‖vs‖2 + ‖vu‖2 − 2cosθp‖vs‖‖vu‖
≥ ‖vs‖2 + ‖vu‖2 + 2(µi − 1)‖vs‖‖vu‖
≥ µi(‖vs‖2 + ‖vu‖2).
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10 JEOVANNY DE JESUS MUENTES ACEVEDO

Consequently,

‖(vs, vu)‖21 = ‖vs‖21 + ‖vu‖21 ≤ (
λ+ ε

ε
c)2(‖vs‖2 + ‖vu‖2)

≤ 1

µi
(
λ+ ε

ε
c)2‖(vs, vu)‖2.

Thus,

(3.6) ‖v‖1 ≤
1

µi
(
λ+ ε

ε
c)2‖v‖ for all v ∈ TMi.

It follows from (3.5) and (3.6) that

(3.7)
1

2
‖v‖ ≤ ‖v‖1 ≤

1

µi
(
λ+ ε

ε
c)2‖v‖ for all v ∈ TMi.

Hence, the norm ‖ · ‖1 is uniformly equivalent to the norm ‖ · ‖ on each Mi.
We have also that

‖Dpf vs‖1 ≤ (λ+ ε)‖vs‖1 if vs ∈ Esp and

‖Dp(f
−1)vu‖1 ≤ (λ+ ε)‖vu‖1 if vu ∈ Eup .

Note that the norm ‖ · ‖1 comes from an inner product 〈·, ·〉1, which defines a
continuous Riemannian metric on M. Consequently, for each i, we can choose
a C∞-Riemannian metric 〈·, ·〉?i such that |〈v, v〉?i − 〈v, v〉1| < ε for each v ∈
TMi. We take 〈·, ·〉? on M, defined on each Mi as 〈·, ·〉?|Mi

= 〈·, ·〉?i . Hence
(M, 〈·, ·〉?, f ) is a strictly Anosov family with constant λ′ = λ+ ε, which s.p.a..

�

By (3.7) we have that 〈·, ·〉 and 〈·, ·〉? are uniformly equivalent on each Mi.
However, this fact does not imply that they are uniformly equivalent on M,
because µi could converge to 0 as i→ ±∞ (notice that M is not compact). If
the angles between the stable and unstable subspaces converge to zero along an
orbit, then µi converges to zero. In that case the two metrics are not uniformly
equivalent on the total space. On the other hand:

Corollary 3.8. If (M, 〈·, ·〉, f) s.p.a., then there exists a C∞-Riemannian met-
ric 〈·, ·〉?, uniformly equivalent to 〈·, ·〉 on M, such that (M, 〈·, ·〉?, f) is a strictly
Anosov family that s.p.a..

Proof. Since f satisfies the property of the angles, we can take a µ as in Defi-
nition 3.6. From (3.7) we have for all v ∈ TM,

1

2
‖v‖ ≤ ‖v‖1 ≤

1

µ
(
λ+ ε

ε
c)2‖v‖,

where ‖ · ‖1 is the metric defined in (3.3). Thus, ‖ · ‖ and ‖ · ‖1 are uniformly
equivalent on the total space. The corollary follows from the proof of Proposi-
tion 3.7. �
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OPENNESS OF ANOSOV FAMILIES 11

A Riemannian metric is adapted to an hyperbolic set of a diffeomorphism if,
in this metric, the expansion (contraction) of the unstable (stable) subspaces is
seen after only one iteration. The metric obtained in Proposition 3.7 is adapted
to M for the family f . This metric is not always uniformly equivalent to 〈·, ·〉,
because there exist Anosov families which do not s.p.a..

4. Invariant cones

In order to prove the openness of A(M), we use the method of the invariant
cones (see [4]). We will prove that there exists a strong basic neighborhood
B(f , (εi)i∈Z) of f such that each family in B(f , (εi)i∈Z) satisfies Lemma 3.3.

We will use the exponential application to work on a Euclidian ambient
space. For each i ∈ Z, there exists δi > 0 such that, if p ∈ Mi, then the
exponencial application at p, expp : Bp(0, δi) → B(p, δi), is a diffeomorphism,
and ‖v‖ = d(expp(v), p), for all v ∈ Bp(0, δi), where Bp(0, δi) is the ball in TpMi

with radius δi and center 0 ∈ TpMi and B(p, δi) is the ball in Mi with radius
δi and center p, i.e., δi is the injectivity radius of the exponential application
at each p ∈Mi. The injectivity radius could decrease as |i| increases, since the
Mi’s are different. We need a radius small enough such that the inequality in
(4.2) be valid. This inequality depends also on the behavior of each fi.

By simplicity, in this section we will suppose that f ∈ F(M) is an Anosov
family that satisfies the property of the angles.

Remark 4.1. We can choose βi > 0, with βi < min{δi−1, δi, δi+1}/2, such
that, if p ∈ Mi, f(B(p, 2βi)) ⊆ B(f(p), δi+1/2) and f−1(B(f(p), 2βi+1)) ⊆
B(p, δi/2). Thus, if g = (gi)i∈Z ∈ F(M) with dDi

(fi, gi) < βi for all i, we have

(4.1) g(B(p, βi)) ⊆ B(f(p), δi+1) and g−1(B(f(p), βi+1)) ⊆ B(p, δi).

Consider a linear isomorphism τp : TpM → Rd, depending continuously on
p, which maps an orthonormal basis of Esp to an orthonormal basis of Rk and

maps an orthonormal basis of Eup to an orthonormal basis of Rd−k, where d
is the dimension of each Mi and k the dimension of Esp. Since f satisfies the
property of the angles, the norm ‖ · ‖1 defined in (3.3) is uniformly equivalent
to the norm ‖ · ‖ (Corollary 3.8). Hence, without loss of generality, we can
suppose that ‖ · ‖ = ‖ · ‖1, because a family of diffeomorphisms in any strong
basic neighborhood of f is Anosov with ‖ · ‖ if and only if is Anosov with ‖ · ‖1
(see Proposition 3.5). Therefore, we can suppose that f is strictly Anosov.
Note that ‖τp(v)‖ = ‖v‖ for all v ∈ TpM.

For g ∈ Di, with dDi
(fi, g) < βi, we set

g̃p = τf(p) ◦ exp−1f(p) ◦ gi ◦ expp ◦ τ−1p : Bp(0, βi)→ Bf(p)(0, δi+1)

and g̃−1p = τp ◦ exp−1p ◦ g−1i ◦ expf(p) ◦ τ−1f(p) : Bf(p)(0, βi+1)→ Bp(0, δi),

which are well-defined as a consequence of (4.1).
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12 JEOVANNY DE JESUS MUENTES ACEVEDO

Definition 4.2. Let Bk(0, βi) ⊆ Rk and Bd−k(0, βi) ⊆ Rd−k be the open
balls with center at 0 and radius βi. For x ∈ Rd, we denote by (x)1 and
(x)2 the orthogonal projections of x on Es and Eu, respectively. If (v, w) ∈
Bk(0, βi)×Bd−k(0, βi), then

f̃p(v, w) = ((f̃p)1(v, w), (f̃p)2(v, w)) = (ãp(v, w) + F̃p(v), b̃p(v, w) + F̃p(w)),

where ãp(v, w) = (f̃p)1(v, w) − F̃p(v), b̃p(v, w) = (f̃p)2(v, w) − F̃p(w), and

F̃p = D0(f̃p). Analogously we have that, for each (v, w) ∈ Bk(0, βi+1) ×
Bd−k(0, βi+1),

f̃−1p (v, w) = (c̃p(v, w) + G̃p(v), d̃p(v, w) + G̃p(w)),

with c̃p(v, w) = (f̃−1p )1(v, w) − G̃p(v); d̃p(v, w) = (f̃−1p )2(v, w) − G̃p(w); G̃p =

D0(f̃−1p ).

Consider

σ1,p = sup{‖D(v,w)(ãp, b̃p)‖ : (v, w) ∈ Bk(0, βi)×Bd−k(0, βi)}

and σ2,p = sup{‖D(v,w)(c̃p, d̃p)‖ : (v, w) ∈ Bk(0, βi+1)×Bd−k(0, βi+1)}.

Note that σ1,p and σ2,p depend on βi. Take σp = max{σ1,p, σ2,p}.

Lemma 4.3. Fix α ∈ (0, 1−λ1+λ ). For each i ∈ Z there exists βi such that

(4.2) σi := max
p∈Mi

σp ≤ min

{
(λ−1 − λ)α

2(1 + α)2
,
λ−1(1− α)− (1 + α)α

2(1 + α)

}
.

Proof. Note that D0(f̃p) = τf(p)Dpfτ
−1
p . Hence, if (v, w) ∈ Rk ⊕ Rd−k, we

have

(F̃pv, F̃pw) = (τf(p)Dpfτ
−1
p (v), τf(p)Dpfτ

−1
p (w)) = τf(p)Dpfτ

−1
p (v, w)

= D0(f̃p)(v, w) = (D0(f̃p)1(v, w), D0(f̃p)2(v, w)).

Consequently, D0(ãp) = 0 and D0(b̃p) = 0. Analogously, we can prove that

D0(c̃p) = 0 and D0(d̃p) = 0. Thus, since f is of class C1 and Mi is compact,
it follows that for each i we can choose βi small enough such that (4.2) is
valid. �

We chose α ∈ (0, 1−λ1+λ ) for the minimum in (4.2) be positive. Set

Ks
α = {(v, w) ∈ Rk ⊕ Rd−k : ‖w‖ < α‖v‖};

Ku
α = {(v, w) ∈ Rk ⊕ Rd−k : ‖v‖ < α‖w‖}.

Lemma 4.4. Let α ∈ (0, 1−λ1+λ ) and βi be as in Lemma (4.3). Thus, there exists

a εi > 0 such that, if g ∈ Di with dDi(fi, g) < εi, for all p ∈Mi we have:

i. D(v,w)g̃p(Ku
α) ⊆ Ku

α for all (v, w) ∈ Bk(0, βi)×Bd−k(0, βi), and

ii. D(v,w)g̃
−1
p (Ks

α) ⊆ Ks
α for all (v, w) ∈ Bk(0, βi+1)×Bd−k(0, βi+1).
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OPENNESS OF ANOSOV FAMILIES 13

Proof. We will prove i. Take εi < min{βi, βi+1, σi}. Fix (v, w) ∈ Bk(0, βi) ×
Bd−k(0, βi). If (x, y) ∈ Ku

α \ {(0, 0)}, then

‖(D(v,w)g̃p(x, y))1‖

≤ ‖(D(v,w)g̃p(x, y))1 − (D(v,w)f̃p(x, y))1‖+ ‖(D(v,w)f̃p(x, y))1‖
≤ σi(α‖y‖+ ‖y‖) + σi‖(x, y)‖+ λ‖x‖ ≤ ((α+ 1)2σi + λα)‖y‖.

Analogously, we have ‖(D(v,w)g̃p(x, y))2‖ ≥ (λ−1 − 2σi(α+ 1))‖y‖. Since σi <
α(λ−1−λ)
2(1+α)2 , then (α+1)2σi+λα

λ−1−2σi(α+1) < α, and hence,

‖(D(v,w)g̃p(x, y))1‖ < α‖(D(v,w)g̃p(x, y))2‖.

Therefore, D(v,w)g̃p(x, y) ∈ Ku
α. Consequently, D(v,w)g̃p(Ku

α) ⊆ Ku
α. �

Lemma 4.5. If εi < min{βi, βi+1, σi}, there exists η < 1 such that, if g ∈ Di

is such that dDi(fi, g) < εi, then, for p ∈Mi,

i. ‖D(v,w)g̃p(x, y)‖ ≥ η−1‖(x, y)‖ if (x, y) ∈ Ku
α;

ii. ‖D(v,w)g̃
−1
p (x, y)‖ ≥ η−1‖(x, y)‖ if (x, y) ∈ Ks

α.

Proof. We will prove i. Let g ∈ Di be such that dDi(fi, g) < εi. Fix p ∈
Mi and take (x, y) ∈ Ku

α. By Lemma 4.4 we have ‖(D(v,w)f̃p(x, y))1‖ ≤
α‖(D(v,w)f̃p(x, y))2‖ for (v, w) ∈ Bk(0, βi)×Bd−k(0, βi). Thus,

‖D(v,w)g̃p(x, y)‖ ≥ ‖D(v,w)f̃p(x, y)‖ − ‖D(v,w)f̃p(x, y)−D(v,w)g̃p(x, y)‖

≥ ‖(D(v,w)f̃p(x, y))2‖ − ‖(D(v,w)f̃p(x, y))1‖ − εi‖(x, y)‖

≥ (1− α)(‖F̃p(y)‖ − ‖D(v,w)b̃p(x, y)‖)− σi‖(x, y)‖

≥ (1− α)(
λ−1

1 + α
‖(x, y)‖ − σi‖(x, y)‖)− σi‖(x, y)‖.

Consequently, ‖D(v,w)g̃p(x, y)‖ ≥ 1
η‖(x, y)‖, where 1

η := (1−α)( λ
−1

1+α −σi)−σi.
Since σi <

(1−α)λ−1−(1+α)
2(1+α) , η < 1. �

Fix g = (gi)i∈Z ∈ B(f , (εi)i∈Z). For each i ∈ Z, let mi ∈ N be such that
Mi = ∪mjj=1B(pj,i, βi), where pj,i ∈Mi for j = 1, . . . ,mi. Take the set of charts

φj,i : Bk(0, βi)×Bd−k(0, βi)→ B(pj,i, βi) where φj,i = exppj,i ◦ τ
−1
pj,i .

It follows from Lemmas 4.4 and 4.5 that:

Lemma 4.6. For all i ∈ Z and j = 1, . . . ,mi:

i. Mi =
⋃mi
j=1 φj,i(B

k(0, βi)×Bd−k(0, βi)),

ii. φ−1j,i+1gφj,i(B
k(0, βi)×Bd−k(0, βi)) ⊆ Bk(0, δi+1)×Bd−k(0, δi+1).

iii. φ−1j,i g
−1φj,i+1(Bk(0, βi+1)×Bd−k(0, βi+1)) ⊆ Bk(0, δi)×Bd−k(0, δi).

iv. For all v ∈ Bk(0, βi)×Bd−k(0, βi), if x ∈ Ku
α, we have

Dv(φ
−1
j,i+1gφj,i)(K

u
α) ⊆ Ku

α and ‖Dv(φ
−1
j,i+1gφj,i)(x)‖ ≥ η−1‖x‖.
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14 JEOVANNY DE JESUS MUENTES ACEVEDO

v. For all v ∈ Bk(0, βi+1)×Bd−k(0, βi+1), if x ∈ Ks
α, we have

Dv(φ
−1
j,i g

−1φj,i+1)(Ks
α) ⊆ Ks

α and ‖Dv(φ
−1
j,i g

−1φj,i+1)(x)‖ ≥ η−1‖x‖.

Hence, since D0expp = IdTpM , g̃p = τf(p) ◦ exp−1f(p) ◦ gi ◦ expp ◦ τ−1p and τp
is an isometry, by choosing βi even small, if necessary, we have:

Lemma 4.7. There exists η ∈ (0, 1) such that, if g ∈ B(f, (εi)i∈Z), for each
p ∈M we have:

i. Dpg(Ku
α,f,p) ⊆ Ku

α,f,g(p). Furthermore, ‖Dpg(v)‖ ≥ η−1‖v‖ if v ∈ Ku
α,f,p.

ii. Dg(p)g
−1(Ks

α,f,g(p)) ⊆ Ks
α,f,p. Furthermore, ‖Dg(p)f

−1(v)‖ ≥ η−1‖v‖ if

v ∈ Ks
α,f,g(p).

5. Openness of the Anosov families

A well-known fact is that the set consisting of Anosov diffeomorphisms on a
compact Riemannian manifold is open (see, for example, [9]). The purpose of
this section is to show the result analogous to Anosov families, that is, we prove
that A(M) is an open subset of F(M). As we have seen in Section 3, the set
consisting of constant families associated to Anosov diffeomorphisms of class
C2 is open in F(M). On the other hand, let X be a compact metric space,
φ : X → X a homeomorphism and A : X → SL(Z, d) a continuous map such
that the linear cocycle F defined by A over φ is hyperbolic. Thus, there exists
ε > 0 such that, if B : X → SL(Z, d) is continuous and ‖A(x) − B(x)‖ < ε
for all x ∈ X, then the linear cocycle G defined by B over φ is hyperbolic (see
[11]). This fact shows the openness of the set consisting of Anosov families that
are obtained by hyperbolic cocycles. These are particular cases of our result.

First we prove the set consisting of Anosov families satisfying the property
of the angles is open and in the end of this work we will show the general case.
We will consider (εi)i∈Z as in Lemma 4.7 and fix g ∈ B(f , (εi)i∈Z).

Lemma 5.1. For each p ∈M, take
(5.1)

F sp =

∞⋂
n=0

Dgn(p)g
−n(Ks

α,f,gn(p)) and Fup =

∞⋂
n=0

Dg−n(p)g
n(Ku

α,f,g−n(p)).

Thus, the families F sp and Fup are Dg-invariant (see Figure 3).

Proof. By Lemma 4.4 we have for all p ∈M, Dg(p)g
−1(Ks

α,f ,g(p)) ⊆ K
s
α,f ,p and

Dpg(Ku
α,f ,p) ⊆ Ku

α,f ,g(p). Thus

Dg(p)g
−1(F sg(p)) ⊆

∞⋂
n=0

Dgn(p)g
−n(Ks

α,f ,gn(p)) = F sp .

On the other hand,

Dpg(F sp ) = Dpg(Ks
α,f ,p) ∩

∞⋂
n=1

Dpg(Dgn(p)g
−n(Ks

α,f ,gn(p)))
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Eu
p

Es
p

TpM

Fup,3Fup,2Fup,1

F sp,3

F sp,2

F sp,1

Ku
α,f,p

Ks
α,f,p

Figure 3. F rp,n =
⋂n
k=1Dg±k

g±k(p)
(Ks

α,f ,g±k(p)
) for r = s, u

and n = 1, 2, 3.

⊆
∞⋂
n=0

Dgn+1(p)g
−n(Ks

α,f ,gn+1(p)) = F sg(p).

Consequently, Dpg(F sp ) = F sg(p). Analogously we can prove Dpg(Fup ) = Fug(p).

�

Inductively we have Dpg
n(F sp ) = F sgn(p) and Dpg

n(Fup ) = Fugn(p), for all

n ≥ 1. Since F rp ⊆ Kr
α,f ,p for r = s, u, it follows from Lemma 4.7 that, for all

n ≥ 1,

‖Dpg
nv‖ ≥ 1

ηn
‖v‖ for v ∈ Fup and ‖Dpg

−nv‖ ≥ 1

ηn
‖v‖ for v ∈ F sp .

Lemma 5.2. F sp and Fup given in (5.1) are vectorial subspaces and furthermore
TpM = F sp ⊕ Fup , for each p ∈M.

Proof. See Proposition 7.3.3 in [4]. �

Proposition 5.3. g is an Anosov family and satisfies the property of the an-
gles.

Proof. From Lemmas 4.7, 5.1 and 5.2 we have that, considering the splitting
TpM = F sp ⊕ Fup , for each p ∈M, g has hyperbolic behaviour. We can prove
that this splitting is unique (see Lemma 3.1) and depends continuously on p
(see Proposition 3.4). Consequently, g is an Anosov family. Finally, since
F sp ⊆ Ks

α,f ,p and Fup ⊆ Ku
α,f ,p for all p and α < 1−λ

1+λ < 1, we have that g
s.p.a. �

From Proposition 5.3 we obtain the set consisting of Anosov families that
s.p.a. is open in F(M). Finally will show that the set consisting of all the
Anosov families is open in F(M). In order to prove this result, let’s see the
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16 JEOVANNY DE JESUS MUENTES ACEVEDO

following facts: suppose that (M, 〈·, ·〉, f ) does not s.p.a. with the Riemannian
metric 〈·, ·〉. Thus (M, 〈·, ·〉?, f ) is a strictly Anosov family that s. p. a. with
the Riemannian metric 〈·, ·〉? obtained in Proposition 3.7. Fix ε > 0 and take
∆i = 1

µi
(λ+εε c)2 (see (3.7)). Thus,

∆−1i ‖v‖
? ≤ ‖v‖ ≤ 2‖v‖? for all v ∈ TMi, i ∈ Z,

where ‖·‖ and ‖·‖? are the norms induced by 〈·, ·〉 and 〈·, ·〉? on M, respectively.
From Proposition 5.3 it follows that there exists a sequence (εi)i∈Z such that,
if g = (gi)i∈Z is a non-stationary dynamical system with d?Di

(fi, gi) < εi, then
(M, 〈·, ·〉?, g) is an Anosov family, where d?Di

is the metric on Di induced by
the metric 〈·, ·〉? on M. We want to show that each family in some strong basic
neighborhood of f is an Anosov family with the metric 〈·, ·〉. This fact is not
immediate, since 〈·, ·〉 and 〈·, ·〉? are not necessarily uniformly equivalent on M
and the notion of Anosov family depends on the metric on the total space.

Theorem 5.4. A(M) is open in F(M).

Proof. If f satisfies the property of the angles, by Proposition 5.3 there exists
a strong basic neighborhood B(f , (εi)i∈Z) of f such that, if g ∈ B(f , (εi)i∈Z)
then g is an Anosov family. Suppose that f does not satisfy the property of
the angles. From Proposition 5.3 we have there exists a sequence of positive
numbers (εi)i∈Z such that, if g = (gi)i∈Z ∈ F(M) and d?Di

(fi, gi) < εi, then

(M, 〈·, ·〉?, g) is a strictly Anosov family with constant λ̃ = η ∈ (0, 1). For each
i, take ε̃i = εi/∆i. Notice that if dDi(fi, gi) < ε̃i then dD?

i
(fi, gi) < εi, for all

i. Consequently, if g ∈ B(f , (ε̃i)i∈Z), then (M, 〈·, ·〉?, g) is an Anosov family.
Consider the stable subspace Esg ,p of g at p (with respect to the metric 〈·, ·〉?).
If v ∈ Esg ,p, then v = vs + vu, where vs ∈ Esf ,p and vu ∈ Euf ,p. Take α ∈ (0, N),

where N = min{ ε
c(λ+ε) ,

1−λ
1+λ}. Since the stable subspaces of g are contained in

the stable α-cones of f and ‖vs‖ ≤ ‖vs‖?, it follows from (3.4) that

‖vs‖ ≤ ‖vs + vu‖+ ‖vu‖ ≤ ‖vs + vu‖+ α‖vs‖? ≤ ‖v‖+ α
λ+ ε

ε
c‖vs‖.

Thus (1 − αλ+εε c)‖vs‖ ≤ ‖v‖ (note that 1 − αλ+εε c > 0 because α < ε
c(λ+ε) ).

Hence

‖Dpg
n(v)‖ ≤ 2‖Dpg

n(v)‖? ≤ 2ηn(‖vs‖? + ‖vu‖?) ≤ 2ηn(1 + α)‖vs‖?

≤ 2ηn(1 + α)
λ+ ε

ε
c(1− αλ+ ε

ε
c)−1‖v‖ = c′ηn‖v‖,

where c′ = 2(1 + α)λ+εε c(1 − αλ+εε c)−1. Analogously we have ‖Dpg
−n(v)‖ ≤

c′ηn‖v‖ for v ∈ Eug ,p. Hence, (M, 〈·, ·〉, g) is an Anosov family with constants
η and c′. �

Note that for the basic strong neighborhoods B(f , (εi)i∈Z) of a system
(fi)i∈Z the εi can be arbitrarily small for |i| large. When there exists ε > 0
such that εi = ε for all i ∈ Z, the neighborhood is called uniform. As noted
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OPENNESS OF ANOSOV FAMILIES 17

above, when f is the constant family associated to an Anosov diffeomorphism,
it is possible to find a uniform neighborhood of f whose elements are Anosov
families. In general it is not possible to find a uniform neighborhood of an
Anosov family such that each family in that neighborhood is Anosov. For ex-
ample, if the angles between the stable and unstable subspace decay, or if we
can not get the inequality (4.2) with a uniform βi, etc., it is necessary to take
the εi’s ever smaller. In [8] we will give conditions on the families for obtain
uniform neighborhoods.

Acknowledgements. The present work was carried out with the support
of the Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico - Brasil
(CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
(CAPES). The author would like to thank the institutions Universidade de São
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