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ON GENERAL (a,3)-METRICS WITH ISOTROPIC
E-CURVATURE

MEHRAN GABRANI AND BAHMAN REZAEI

ABSTRACT. General (o, )-metrics form a rich and important class of
Finsler metrics. In this paper, we obtain a differential equation which
characterizes a general («, 8)-metric with isotropic E-curvature, under a
certain condition. We also solve the equation in a particular case.

1. Introduction

Finsler geometry is just Riemannian geometry without the quadratic restric-
tion on its metrics [3]. For a Finsler metric F' = F(z,y), its geodesics curves
are given by the system of differential equations ¢ + 2G%(c,¢) = 0, where the
local functions G* = G'(x,y) are called the spray coefficients. A Finsler metric
is called a Berwald metric if G* are quadratic in y € T, M for any € M. Tak-
ing a trace of Berwald curvature yields E-curvature (mean Berwald curvature).
The E-curvature is one of the most important non-Riemannian quantities in
Finsler geometry [6]. In [1], Chen and Shen studied the relationship between
isotropic E-curvature and relatively isotropic Landsberg curvature on a Dou-
glas manifold. Tayebi, Nankali and Peyghan proved that every m-root Cartan
space of E-curvature reduces to weakly Berwald spaces [7].

The special Finsler metrics we are going to investigate are called general
(c, B)-metrics which first introduced by C. Yu and H. Zhu in [10]. By definition,
a general («, 8)-metric F' can be expressed in the following form:

_ B
F= a¢(b27 a)v

where a = \/a;;y'y’/ is a Riemannian metric, § = by’ is a 1-form, b :=
|B2||a and ¢(b?, s) is a positive smooth function. It is easy to see that (a, 3)-
metrics compose a special class in general (o, 5)-metrics. Another special class
is defined by « being an Euclidean metric |y| and 8 being an inner product
(x,y). In this case, the general («, )-metric F becomes a spherically symmetric
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Finsler metric in the following form

F = lyloer?, 20,
]
which is first introduced by S. F. Rutz who studied the spherically symmetric
Finsler metrics in 4-dimensional time-space and generalized the classic Birkhoff
theorem in general relativity to the Finsler case [5]. Moreover, general (o, 3)-
metrics include part of Bryants metrics [10] and part of fourth root metrics [4].
Randers metrics can be expressed in the following form

(1-b)a2+p5> 7

F= — -
1-02 1—02’

where @ is also a Riemannian metric, 3 is a 1-form and b := ||8]|a. (@&, 5)
is called the navigation data of the Randers metric F. Tayebi and Rafie-rad
showed that if a Randers metric F' = a + 8 is an non trivial isotropic Berwald
metric, then 3 is a conformal 1-form with respect to a [8].

For general («, 8)-metrics, spray coefficients and related geometrical objects
have been studied by C. Yu and H. Zhu [10]. C. Yu gave a local characterization
of locally dually flat general (a, §)-metrics and construct some useful examples
of dually flat general («, 8)-metrics in [9]. Yu and Zhu completely determined
classification of general (v, 8)-metrics with constant flag curvature under some
suitable conditions and construct many new projectively flat Finsler metrics
with flag curvature 1, 0 and —1 in [11]. Then Zhu characterized general (v, 3)-
metrics with isotropic Berwald-curvature in [12]. Recently, M. Zohrehvand and
H. Maleki, have proved that every Landsberg general («, 3)-metric is a Berwald
metric, under a certain condition [13].

The goal of this paper is to study the isotropic E-curvature of general («, 3)-
metrics, where (8 is a closed and conformal 1-form, i.e.,

(1) bij; = caij,

where ¢ = ¢(x) # 0 is a scalar function on M and b;); is the covariant derivation
of B with respect to a. In fact we prove the following:

Theorem 1.1. Let F = ag¢(b?, g) be a general (c, B)-metric on an n-dimen-
stonal manifold M. Suppose that [ satisfies (1). Then F is of isotropic E-
curvature if and only if

(2)  (n+1)(E — sBz) + (b* — s*)(Hz — sHaz) = p(z)(n + 1) (¢ — s¢2),

where p(x) = IZ((;?, E and H are defined in (12) and (13), respectively.

In [2], Y. Chen and W. Song investigated projectively flat spherically sym-
metric Finsler metrics of isotropicE-curvature, which is correct for general
(a, B)-metric as follows:
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Corollary 1.2. Let F = a¢(b?, g) be a projectively flat general (o, §)-metric
with isotropic E-curvature. Suppose that 8 satisfies (1). Then F is a Randers
metric.

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M. Every Finsler
metric F induces a spray G = y* aii —2G" a?ﬁ' The spray coeflicients G* are
defined by

1
G' = Zgll{[Fz]mkylyk - [FQ]JU"}’

where g;;(z,y) = [$F?] and (¢“) = (gi;)~*. For a Riemannian metric,

yiyd ,
the spray coefficients are determined by its Christoffel symbols as G*(z,y) =
T @)yl yk |

For a Finsler metric F' with spray coefficients G*, the Berwald curvature
B = Bjikldxj ® dz* ® do' @ 821. of F' is defined by

; 3Gt

3 By = ——.
( ) J Kkl ay]aykayl
F is called a Berwald metric if B = 0. A Finsler metric F' on a manifold M is

said to be of isotropic Berwald curvature if its Berwald curvature B ji i Satisfies

(4) Bjikl = T(x)(ijyk(Sil + ijyléik =+ Fyzyk(sil + ijykylyi),

where 7(z) is a scalar function on M. The E-curvature E = E;;jdz' @ da? of F
is defined by

1 9% 0G™

2 OyioyI (aTm)'

A Finsler metric F' is said to have isotropic E-curvature if there is a scalar
function k = k(x) on M such that

1
(6) E = §(H+I)KF71h,
where h is a family of bilinear forms h, = h;jdz’ @ dz?, which are defined by
hij = FFyiyj.

In this paper, we use the indices 1 and 2 as the derivation with respect to
b? and s, respectively.

Lemma 2.1 ([10]). Let F = a¢(b2,g) be a general (o, B)-metric on an n-
dimensional manifold M. Then the function F is a regular Finsler metric for
any Riemannian metric o and any 1-form 3 if and only if ¢(b%,s) is a positive
smooth function defined on the domain |s| < b < by for some positive number
(maybe infinity) by satisfying

(7) ¢ — s >0, ¢ —spy+ (b* — 5722 >0,
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when n > 3 or

(8) ¢ — sp + (52 - 52)¢22 > 0,

when n = 2.

Let a = y/a;;(z)y’y? and B = b;(x)y". Denote the coefficients of the covari-

ant derivative of 3 with respect to a by b;);, and let
1 1
Tij = i(bﬂj +bji), sij = §(bi|j = bji),

roo = Ti;y'y’, s'o=asjpy",ri =Wrj, s =0 s,
To = Tiyi, S0 = Siyi, ’I"i = aijrj7 Si = aiij, = biTi,
where (a/) = (a;;)~! and b* := a'b;.
Clearly, 8 is a closed one-form if and only if s;; = 0, and it is a conformal
1-form with respect to «, if and only if b;; + bj;; = ca;;, where ¢ = c(z) is a
nonzero scalar function on M. Thus, we say that 8 is closed and conformal

with respect to a, if b;); = ca;;, where ¢ = ¢(x) is a nonzero scalar function on
M.

Lemma 2.2 ([10]). The spray coefficients G* of a general (o, )-metric F =
ad(b?, =) are related to the spray coefficients “G' of o and given by

Gt = Gfx + aQsio + {©(-2aQso + 00 + 20 Rr) + aQ)(rg + 50)}%

9) +{¥(—2aQs0 + ro0 + 202 Rr) + oIl(rg + s0) }b° — > R(r" + s%),
where
_ 92 . ;
Q_cﬁ—s%7 R_¢—5¢2’
o— (¢ — s¢2)2 — spa U P22
20(¢ — s¢2 + (b% — s?)a2)’ 2(¢ — 52 + (0% — 5)d22)’
= (¢ — s¢2)¢12 — $P1¢22 q_ 201 _so+ (0* - 82)¢2H
(¢ — 5h2) (¢ — 52 + (b? — 52)22)’ ¢ ¢ .
By (1), we have
(10) roo = ca’, ro =B, = cb?, ' =cb’, s'y =0, s =0, s°=0.

Substituting (10) into (9) yields
G' =Gl + ca{O(1 + 2RV?) + s}y’ + ca®{ (1 + 2Rb?) + sIT — R}V,
(11) =G + caEy' + ca*HY',

where

_ $2t+251  sh+ (0° — s*)¢

(12) E: % . ,
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¢22 — 2(¢1 - S¢12)
2[p — 52 + (b? — 52)haa]

3. E-curvature of general («, 3)-metrics

(13) H:=

In this section, we will compute the E-curvature of a general («, /3)-metric.

Proposition 3.1. Let F = a¢(b2,§) be a general (a,B)-metric on an n-
dimensional manifold M. Suppose that B satisfies (1). Then the E-curvature
of F is given by

c 1
E;; = 5{5[(7’1 + 1)E22 + 2(H2 — 8H22) + (b2 — 82)H222]bibj

S
- g[(n + 1)E22 + 2(H2 — SHQQ) + (b2 - 82)H222}(biyj == bjyi)

1
+ @[(n + 1)82E22 — (n + 1)(E — SEQ) + 82(b2 = SQ)HQQQ
+ (35 = 0%)(Ha — sHa)lyiy;
1
(14) + =[(n+ 1)(E = sE) + (b — 5°) (Ha — sHp)]ais},
where ¢ = c(x) # 0 is a scalar function on M.

Proof. By (11), we can rewrite the spray coefficients of a general (a, 8)-metric
as

(15) G'=G" + W,
where
(16) W= aEy' + o®Hb'.
Then, from (16), we have
ow! i i i 2 i 2 i

(17) oy =y, By' + aFasyy' + aBd'; + (7], Hb' + a”Hasy,b',
By taking ¢ = j in (17), we have

owm m m m 2 m 2 m

o aym BEy™ + aFEssymy™ + aE§", + [a®]ym HV™ + a® Hysymb™,
(18) =a[(n+1)E +2sH + (b* — s*)Hy),
where we have used

n ab; — sy

By simple calculations, we have
1 Yi Yj
(20) Qlyiyi = E(aij - Ezgj)a
1

1
(21) Syiyl = _ﬁ[saij +

3s
a(biyj +bjy;) — ;yiyj]-
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By using (18), we obtain

8zi (88%) = (n+ 1), E+ (n+ 1)aEys,i + 20isH 4 2as,i H 4 2as Ha s,
(22) + i (b* — $*)Hy — 2assyi Hy + (b — s*) Hoosyyi.
It follows from (22) that

o o0 ,owm

@@(W) = a[(n+ 1)Ea + 2(Hy — sHao) + (b* — %) Haoos,i 8,5
+[(n+ 1) B + 2H + (b% — 8%) Hao(vyi i + Qs Syi)
+al(n+1)Es + 2H + (b* — s°)Hao]$yiys

(23) +[(n+ 1)E + 2sH + (b* — %) Ha] vy iy

Plugging (19), (20) and (21) into (23) and using Maple program, we obtain

o 0 ,owm 1

999 By (ay—m) = a[(n + 1) Eg + 2(Hy — sHas) + (b* — 5%) Haao]bib;
— 5[0+ 1)Bay + 2(H — sHa)
+ (0% = s%)Haza) (biy; + bjys)
+ %[(n +1)s%Ey — (n+ 1)(E — sE3) + s2(b* — 52) Hyao
+ (35 = b%)(Ha — sHa)lyiy;
(24) 2+ 1)(B — 5Ba) + (8 — 52)(Hy — sHza)lasy
It follows from G, (x,y) = $T%,47y* that
(25) s o () =0
By (5), (15), (16), (24) and (25), we obtain (14). O

3.1. Proof of Theorem 1.1

For a general (a, 8)-metric F' = ag(b?, g), where (3 is a closed and conformal
1-form, a direct computation yields

(26) Fyi = Ozyi¢ Sty Oé(bgsyi,
(27) Fyiyi = uyiyi @ + (i sy 4 Qi 5yi )2 + Qo syi 5yi + QaSyiyi .
Plugging (19), (20) and (21) into (27), we obtain
1 S22 P22
Fyiyj = a((b - 8(}52)0,2‘]‘ — ?(bjyi + bzyj) + ?bibj

(28) — 36— 62— Pom)yis
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From (6), we have

(29) % a(zi (%) — (n+ D)kEy,.
Suppose F' be of isotropic E-curvature. By (14) and (28), (29), we obtain
(30) %(Aijo? + Bya+Cy) =0,
where
Aij = {(n+1)(E22 — p(x)pa2) + 2(Ha — sHaz) + (b* — s*) Hago }bsb;

+{(n+1)[(E — sE3) — p(x)(¢ — s¢2)]
+ (b* — s%)(Ha — sHx)}aij,
Bij = —s{(n +1)(Ea2 — p(x)da2) + 2(Hz — sHa)
+ (b* = 5*) Hazo }(biy; + bjyi),
{(n+1)[(s*Eaz — E + 5E2) + p(x)(¢ — 52 — 5°¢o2)]
+ 52(b? — s?)Hazg + (35% — b?)(Ha — sHaz) }yiy;-
From (30), we conclude that
Ajjo® + Cy; =0,
By; = 0.
For s # 0, from (A;;02 + Cy;)y'y’ = 0, we have
{(n+1)(Ba — p(x)p22) + 2(Hz — sHaz) + (b* — 5°) Hazo }a's
F{(n 4+ DI(E — 5B) — pla)(6— s62)] + (1 — 5)(Ha — sHan)}a
+{(n+1)[(s*Ea2 — E + 5E2) + p(x) (¢ — s¢2 — 5°ha2)]
+ 52(b% — s%)Haao + (35% — b?)(Hy — 5H22)}@4 = 0.
Simplifying this, yields
(31)  2[(n+ 1)(Baz — p(x)p2a) + 2(Hz — sHaz) + (b* — s%)Hozala*s* = 0.
Thus
(32) (n +1)(Fay — p(x)¢a2) + 2(Ha — sHap) 4 (b* — 5%) Hagp = 0.
On the other hand, from (A;;a? + C;;)b'b’ = 0, we have
{(n+1)(Ea — p(x)¢22) + 2(Hz — sHao) + (b* — 5°) Hapr }o*b*
{0+ DB = $Ey) — pla)(6 — s62)] + (17 — )(H — s Hza) pat?
+{(n+1)[(s* B2 — E + 5E2) + p(a) (¢ — 52 — 5°h2)]
+ 8%(b% — 8% Haop + (357 — b?)(Hy — sHap)} 32 = 0.
By considering (32), one can see that

(33)  [(n+4 1)(E—sEs)—p(x)(p—s¢o)+(b*—52)(Hy—sHo)] (b2 — 32) =0.

Cij :
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Thus
(34) (n+ 1)(E — sE2) — p(x)(¢ — 5¢2) + (b* — s*)(Hz — sHaz) = 0.
From B;;y'y’ = 0, we have
(35)  2s{(n+1)(Ba — p(x)¢22) + 2(Hz — sHaz) + (b° — 5°) Hazp }a*f = 0.
Hence, it is easy to see from (35) that
(36)  (n+1)(Ea — p(x)daz) + 2(Hz — sHag) + (b> — 5°) Hay = 0.
Note that
[(n+1)(E = sE2) — p(x)(¢ — s¢2) + (b° — 5*)(Hz2 — sHao)]2
= (n+1)(By — p(x)da) + 2(Hy — sHao) + (b* — 52) Haoo.

Therefore, (34) implies that (32) and (36) hold. Thus, if a general («, 8)-metric
F = ap(b?, g) is of isotropic E-curvature, then (34) holds. Conversely, if F
satisfies (34), then (29) holds, namely F' is of isotropic E-curvature.

Corollary 3.2. Let F = a¢(b?, g) be a general («, 8)-metric on an n-dimen-
sional manifold M. Suppose that B satisfies (1). Then F is of vanishing E-
curvature if and only if

(37) (n+1)(E — sEy) + (b* — %) (Hy — sHay) = 0.
3.2. Proof of Corollary 1.2

Suppose that a projectively flat general («, 3)-metric F = ag¢(b?, g) has
isotropic E-curvature and § satisfies (1), then H = 0, (2) can be written as:

(38) E —sEy = p(x)(¢ — 5¢2).

By solving (38), we get

(39) E =0s+ p(x)o,

where § = 0(b?) is a scalar function on M. From (12), we know
1

(40) E= %(052 + 25¢1).

Thus if the projectively flat general (a, 3)-metric F' = ap(b?, g) has isotropic
FE-curvature, ¢ satisfies

(41) 55 (02 2501) = b5+ pla)o,

(42) ¢22 - 2(¢51 - 8¢12) =0.
Differentiating (41) with respect to s, we get

(43) 201 + 25P12 + P22 = 200 + 2205 + 4dpap(z).

Plugging (42) into (43), we know
(44) 201 = @0 + $20s + 2¢pap(z).
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Multiplying (44) by s and subtract with (41), we have

(45) (05% 4+ 2¢p(x)s + 1)da = ¢pls + 2¢%p(x).
For a fixed b?, (45) is equivalent to the following equation
(46) Xd¢+ Yds =0,
where X = 0s2+2¢p(r)s+1and Y = —pfs—2¢>p(x). By a direct computation,
0X oYy

4 92— 205+ 2 T~ s — 4op().
(47) o= 205+ 20pla), o= 05— 40p(z)
Thus

1,0X oY 3
18 lox ory,_ 3
(48) Y( ds  0¢ 0]

By (48), the integrating factor u(¢) of (46) can be easily obtained,

1
(49) u(¢) = pel

Multiplying (46) by u(¢), yields

(50) %(952 + 2¢p(z)s + 1)dg — %(gf)ﬂs + 2¢2p(x))ds = 0.

50 1 4 1

d(ﬁﬁs2 + Ep(x)s + ﬁ) =0,
suppose that X (b%) = #032 + %p(m)s + ﬁ, we obtain
(51) P2 X (b?) — dpp(x)s — (As> + %) =0.
Thus

2p(z)s £ 1/ (4p2(x) + X (b2)0)s2 + 1 X(b2)
(52) p(b%,5) = ’ \/ ’ X% :
Due to F' > 0, we have

2p(w)s + 1/ (4p2(x) + X (B2)0)s2 + LX(b?)
s) = X0 )

(53) $(b?,

It follows that

2p()B + 1/ (492 () + X (02)9)52 + S X (b2)a?
B X (b?)
This means F' is a Randers metric. Conversely, if F' satisfies (54), then (29)

holds, namely F = ag¢(b?, g) has isotropic E-curvature. The proof of corollary
is completed.

(54) F
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