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HARMONIC MAPS AND BIHARMONIC MAPS ON

PRINCIPAL BUNDLES AND WARPED PRODUCTS

Hajime Urakawa

Abstract. In this paper, we study harmonic maps and biharmonic maps

on the principal G-bundle in Kobayashi and Nomizu [22] and also the
warped product P = M ×f F for a C∞(M) function f on M studied by

Bishop and O’Neill [4], and Ejiri [11].

1. Introduction

Variational problems play central roles in geometry; Harmonic map is one of
important variational problems which is a critical point of the energy functional
E(ϕ) = 1

2

∫
M
|dϕ|2 vg for smooth maps ϕ of (M, g) into (N,h) (see [7,16,17,20,

32,44,45,47]). The Euler-Lagrange equations are given by the vanishing of the
tension filed τ(ϕ). In 1983, J. Eells and L. Lemaire [10] extended the notion of
harmonic map to biharmonic map, which are, by definition, critical points of
the bienergy functional

(1.1) E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2 vg.

After G. Y. Jiang [19] studied the first and second variation formulas of E2,
extensive studies in this area have been done (for instance, see [6, 14, 15, 18,
25, 31, 40, 41], etc.). Notice that harmonic maps are always biharmonic by
definition. B. Y. Chen raised ([8]) so called B. Y. Chen’s conjecture and later,
R. Caddeo, S. Montaldo, P. Piu and C. Oniciuc raised ([2,3,6]) the generalized
B. Y. Chen’s conjecture.

B. Y. Chen’s conjecture. Every biharmonic submanifold of the Euclidean
space Rn must be harmonic (minimal).
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2 H. URAKAWA

The generalized B. Y. Chen’s conjecture. Every biharmonic subman-
ifold of a Riemannian manifold of non-positive curvature must be harmonic
(minimal).

For the generalized Chen’s conjecture, Ou and Tang gave ([39,40]) a counter
example in a Riemannian manifold of negative curvature. For the Chen’s con-
jecture, affirmative answers were known for the case of surfaces in the three
dimensional Euclidean space ([8]), and the case of hypersurfaces of the four
dimensional Euclidean space ([9, 13]). K. Akutagawa and S. Maeta gave ([1])
showed a supporting evidence to the Chen’s conjecture: Any complete regu-
lar biharmonic submanifold of the Euclidean space Rn is harmonic (minimal).
The affirmative answers to the generalized B. Y. Chen’s conjecture were shown
([34–36]) under the L2-condition and completeness of (M, g).

In this paper, we first treat with a principal G-bundle over a Riemannian
manifold, and show the following two theorems:

Theorem 3.2. Let π : (P, g) → (M,h) be a principal G-bundle over a Rie-
mannian manifold (M,h) with non-positive Ricci curvature. Assume P is com-
pact so that M is also compact. If the projection π is biharmonic, then it is
harmonic.

Theorem 4.1. Let π : (P, g) → (M,h) be a principal G-bundle over a Rie-
mannian manifold with non-positive Ricci curvature. Assume that (P, g) is a
non-compact complete Riemannian manifold, and the projection π has both fi-
nite energy E(π) <∞ and finite bienergy E2(π) <∞. If π is biharmonic, then
it is harmonic.

We give two comments on the above theorems: For the generalized B. Y.
Chen’s conjecture, non-positivity of the sectional curvature of the ambient
space of biharmonic submanifolds is necessary. However, it should be em-
phasized that for the principal G-bundles, we need not the assumption of non-
positivity of the sectional curvature. We only assume non-positivity of the
Ricci curvature of the domain manifolds in the proofs of Theorems 3.2 and
4.1. Second, finiteness of the energy and bienergy is necessary in Theorem 4.1.
Otherwise, one have the counter examples due to Loubeau and Ou (cf. Sect.
Four, Examples 1 and 2 [26]).

Next, we consider the warped products. For two Riemannian manifolds
(M,h), (F, k) and a C∞ function f on M , f ∈ C∞(M), the warping function
on M , let us consider the warped product (P, g) where π : P = M × F 3
(x, y) 7→ x ∈M and g = π∗h+f2 k. Let us consider the following two problems:

Problem 1. When π : (P, g)→ (M,h) is harmonic?

Problem 2. In the case (M,h) = (R, dt2), a line, can one choose f ∈ C∞(R)
such that π : (P, g)→ (M,h) is biharmonic but not harmonic?

In this paper, we answer these two problems as follows.
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BIHARMONIC MAPS ON PRINCIPAL BUNDLES & WARPED PRODUCTS 3

Theorem 5.2. Let π : (P, g) → (M,h) be the warped product with a warping
function f ∈ C∞(M). Then, the tension field τ(π) is given by

(1.2) τ(π) = `
grad f

f
= `
∇ f
f
,

where ` = dimF . Therefore, π is harmonic if and only if f is constant.

Theorem 6.2. For the warped product π : (P, g)→ (M,h), the bitension field
τ2(π) is given by

(1.3) τ2(π) = ∆(τ(π))− ρh(τ(π))− `∇∇ f
f
τ(π),

where ∆ is the rough Laplacian and ∇ is the induced connection from the Levi-
Civita connection ∇h of (M,h). Therefore, π is biharmonic if and only if

(1.4) ∆(τ(π))− ρh(τ(π))− `∇∇ f
f
τ(π) = 0.

Here, ρh is the Ricci transform ρh(u) :=
∑m
i=1R

h(u, e′i)e
′
i, u ∈ TxM for an

locally defined orthonormal field {e′i}mi=1 on (M,h).

Theorem 7.1. (1) In the case (M,h) = (R, dt2), a line, the warped product
π : (P, g) → (R, dt2) is biharmonic if and only if f ∈ C∞(R) satisfies the
following ordinary equation:

(1.5) f ′′′ f2 + (`− 3) f ′′ f ′ f + (−`+ 2) f ′3 = 0.

(2) All the solutions f of (1.5) are given by

(1.6) f(t) = c exp

(∫ t

t0

a tanh

[
`

2
a r + b

]
dr

)
,

where a, b, c > 0 are arbitrary constants.
(3) In the case (M,h) = (R, dt2), a line, let f(t) be C∞ function defined by

(1.6) with a 6= 0 and c > 0. Then, the warped product π : (P, g) → (M,h) is
biharmonic but not harmonic.

Acknowledgement. We would like to express our gratitude to the referee
who pointed to improve Theorem 3.2 in this version.

2. Preliminaries

2.1. Harmonic maps and biharmonic maps

We first prepare the materials for the first and second variational formulas
for the bienergy functional and biharmonic maps. Let us recall the definition
of a harmonic map ϕ : (M, g) → (N,h), of a compact Riemannian manifold
(M, g) into another Riemannian manifold (N,h), which is an extremal of the
energy functional defined by

E(ϕ) =

∫
M

e(ϕ) vg,

Ah
ea

d 
of

 P
rin

t



4 H. URAKAWA

where e(ϕ) := 1
2 |dϕ|

2 is called the energy density of ϕ. That is, for any variation
{ϕt} of ϕ with ϕ0 = ϕ,

(2.1)
d

dt

∣∣∣∣
t=0

E(ϕt) = −
∫
M

h(τ(ϕ), V )vg = 0,

where V ∈ Γ(ϕ−1TN) is a variation vector field along ϕ which is given by
V (x) = d

dt

∣∣
t=0

ϕt(x) ∈ Tϕ(x)N , (x ∈ M), and the tension field is given by

τ(ϕ) =
∑m
i=1B(ϕ)(ei, ei) ∈ Γ(ϕ−1TN), where {ei}mi=1 is a locally defined

orthonormal frame field on (M, g), and B(ϕ) is the second fundamental form
of ϕ defined by

B(ϕ)(X,Y ) = (∇̃dϕ)(X,Y )

= (∇̃Xdϕ)(Y )

= ∇X(dϕ(Y ))− dϕ(∇XY )(2.2)

for all vector fields X,Y ∈ X(M). Here, ∇, and∇h, are Levi-Civita connections

on TM , TN of (M, g), (N,h), respectively, and ∇, and ∇̃ are the induced ones
on ϕ−1TN , and T ∗M ⊗ ϕ−1TN , respectively. By (2.1), ϕ is harmonic if and
only if τ(ϕ) = 0.

The second variation formula is given as follows. Assume that ϕ is harmonic.
Then,

(2.3)
d2

dt2

∣∣∣∣
t=0

E(ϕt) =

∫
M

h(J(V ), V )vg,

where J is an elliptic differential operator, called the Jacobi operator acting on
Γ(ϕ−1TN) given by

(2.4) J(V ) = ∆V −R(V ),

where ∆V = ∇∗∇V = −
∑m
i=1{∇ei∇eiV − ∇∇ei

eiV } is the rough Laplacian

and R is a linear operator on Γ(ϕ−1TN) given by

R(V ) =
m∑
i=1

RN (V, dϕ(ei))dϕ(ei),

and RN is the curvature tensor of (N,h) given by Rh(U, V ) = ∇hU∇hV −
∇hV∇hU −∇h[U,V ] for U, V ∈ X(N)(see [22,24,25]).

J. Eells and L. Lemaire [10] proposed polyharmonic (k-harmonic) maps and
Jiang [19] studied the first and second variation formulas of biharmonic maps.
Let us consider the bienergy functional defined by

(2.5) E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2vg,

where |V |2 = h(V, V ), V ∈ Γ(ϕ−1TN).
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BIHARMONIC MAPS ON PRINCIPAL BUNDLES & WARPED PRODUCTS 5

The first variation formula of the bienergy functional is given by

(2.6)
d

dt

∣∣∣∣
t=0

E2(ϕt) = −
∫
M

h(τ2(ϕ), V )vg.

Here,

(2.7) τ2(ϕ) := J(τ(ϕ)) = ∆(τ(ϕ))−R(τ(ϕ)),

which is called the bitension field of ϕ, and J is given in (2.4).
A smooth map ϕ of (M, g) into (N,h) is said to be biharmonic if τ2(ϕ) = 0.

By definition, every harmonic map is biharmonic. We say, for an immersion ϕ :
(M, g)→ (N,h) to be proper biharmonic if it is biharmonic but not harmonic
(minimal)(see [12,23,24,27–30,33,37,38,42,43,48,49]).

2.2. The principal G-bundle

Recall several notions on principal G-bundles ([5, 21, 22]). A manifold P =
P (M,G) is a principal fiber bundle over M with a compact Lie group G, where
p = dimP , m = dimM , and k = dimG. By definition, a Lie group G acts on
P by right hand side denoted by (G,P ) 3 (a, u) 7→ u · a ∈ P , and, for each
point u ∈ P , the tangent space TuP admits a subspace Gu := {A∗u |A ∈ g},
the vertical subspace at u, and each A ∈ g defines the fundamental vector field
A∗ ∈ X(P ) by

A∗u :=
d

dt

∣∣∣∣
t=0

u exp(t A) ∈ TuP.

A Riemannian metric g on P is called adapted if it is invariant under all the
right action of G, i.e., Ra

∗g = g for all a ∈ G. An adapted Riemannian metric
on P always exists because for every Riemannian metric g′ on P , define a new
metric g on P by

gu(Xu, Yu) =

∫
G

g′(Ra∗Xu, Ra∗Yu) dµ(a),

where dµ(a) is a bi-invariant Haar measure on G. Then, Ra
∗g = g for all

a ∈ G. Each tangent space TuP has the orthogonal direct decomposition of
the tangent space TuP ,

(a) TuP = Gu ⊕Hu,

where the subspace Gu of Pu satisfies

(b) Gu = {A∗u |A ∈ g},

and the subspace Hu of Pu satisfies that

(C) Hu·a = Ra∗Hu, a ∈ G, u ∈ P,

where the subspace Hu of Pu is called horizontal subspace at u ∈ P with respect
to g.
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6 H. URAKAWA

In the following, we fix a locally defined orthonormal frame field {ei}pi=1

corresponding (a), (b) in such a way that {ei}mi=1 is a locally defined orthonor-
mal basis of the horizontal subspace Hu (u ∈ P ), and {ei = A∗m+i}ki=1 is a
locally defined orthonormal basis of the vertical subspace Gu (u ∈ P ) for an
orthonormal basis {Am+i}ki=1 of the Lie algebra g of a Lie group G with respect
to the Ad(G) invariant inner product 〈·, ·〉.

For each decomposition (a), one can define a g-valued 1-form ω on P by

ω(Xu) = A, Xu = Xu
V +Xu

H,

where
Xu

V ∈ Gu, Xu
H ∈ Hu, Xu

V = Au
∗

for u ∈ P and a unique A ∈ g. This 1-form ω on P is called a connection form
of P .

Then, there exist a unique Riemannian metric h on M and an Ad(G)-
invariant inner product 〈·, ·〉 on g such that

g(Xu, Yu) = h(π∗Xu, π∗Yu) + 〈ω(Xu), ω(Yu)〉, Xu, Yu ∈ TuP, u ∈ P,
namely,

g = π∗h+ 〈ω(·), ω(·)〉.
We call this Riemannian metric g on P , an adapted Riemannian metric on P .

Then, let us recall the following definitions for our question:

Definition 2.1. (1) The projection π : (P, g) → (M,h) is to be harmonic if
the tension field vanishes, τ(π) = 0, and

(2) the projection π : (P, g) → (M,h) is to be biharmonic if, the bitension
field vanishes, τ2(π) = J(τ(π)) = 0.

Here, J is the Jacobi operator for the projection π given by

J(V ) := ∆V −R(V ), V ∈ Γ(π−1TM),

where

∆V := −
p∑
i=1

{
∇ei(∇eiV )−∇∇ei

eiV
}

= −
m∑
i=1

{
∇ei(∇eiV )−∇∇ei

eiV
}

−
k∑
i=1

{
∇A∗m+i

(∇A∗m+i
V )−∇∇A∗

m+i
A∗m+i

V
}

for V ∈ Γ(π−1TM), i.e., V (x) ∈ Tπ(x)M (x ∈ P ). Here, {ei}pi=1 is a local
orthonormal frame field on (P, g) which is given by that: {ei}mi=1 is an or-
thonormal horizontal field on the principal G-bundle π : (P, g) → (M,h) and
{em+i, u = A∗m+i, u}ki=1 (u ∈ P ) is an orthonormal frame field on the verti-
cal space Gu = {A∗u|A ∈ g} (u ∈ P ) corresponding to an orthonormal basis
{Am+i}ki=1 of (g, 〈, 〉).
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BIHARMONIC MAPS ON PRINCIPAL BUNDLES & WARPED PRODUCTS 7

2.3. The warped products

On the product manifold P = M ×F for two Riemannian manifolds (M,h)
and (F, k), and a C∞ function, f ∈ C∞(M) on M , let us consider the Rie-
mannian metric

(2.8) g = π∗h+ f2 k,

where the projection π : P = M × F 3 (x, y) 7→ x ∈ M . The Riemannian
submersion π : (P, g)→ (M,h) is called the warped product of (M,h) and (F, k)
with a warping function f ∈ C∞(M) ([4, 11, 46]). In this section, we prepare
several notions in order to calculate the tension field and bitension field.

We first construct a locally defined orthonormal frame field {ei}m+`
i=1 on (P, g)

where m = dimM and ` = dimF as follows: For i = 1, . . . ,m,

ei(x,y) := (e′i x, 0y) ∈ T(x,y)P = TxM × TyF,

and for i = m+ 1, . . . , p,

ei(x,y) :=
1

f(x)
(0x, e

′′
i, y) ∈ T(x,y)P = TxM × TyF,

where p = m+ `.
Recall the O’Neill’s formulas on the warped product (cf. [4, 11]). For a C∞

vector field X ∈ X(M) on M , X∗ ∈ X(P ), the horizontal lift of X which
satisfies for z ∈ P ,

(2.9) X∗z ∈ Hz, and π∗ (X∗z) = Xπ(z),

where recall the vertical subspace Vz and horizontal subspace Hz of the tangent
space TzP :

Vz = Ker(π∗ (x,y)),(2.10)

TzP = Vz ⊕Hz, g(Vz,Hz) = 0,(2.11)

where π∗ (x,y) : T(x,y)P → TxM is the differential of the projection π : P →M
at (x, y) ∈ P .

Let q : P = M × F 3 (x, y) 7→ y ∈ F be the projection of P onto F . For a

vector field V on F , there exists a unique vector field Ṽ on P satisfying that

Ṽ ∈ V and q∗(Ṽ ) = V . We identify V ∈ X(F ) with Ṽ ∈ V denoting by the
same letter V in the following.

Lemma 2.1. Let X, Y ∈ X(M) be vector fields on M , and V, W ∈ X(F ),
vector fields on F , and ∇g, ∇h, ∇k, the Levi-Civita connections of (P, g),
(M,h), and (F, k), respectively. Then,

(1) grad (f ◦ π) = grad f.
(2) π∗ (∇gX∗Y ∗) = ∇hXY, where X∗ and Y ∗ are the horizontal lifts of X

and Y , respectively.
(3) ∇gX∗V = ∇gVX∗ = Xf

f V.
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8 H. URAKAWA

(4) H (∇gVW ) = −f k(V,W )G = − 1
f g(V,W )G, where G is the gradient

of f and f ◦ π.
(5) V (∇gVW ) = ∇kVW, where HA, and VA are the horizontal part, and

the vertical part of A, respectively.

Lemma 2.2 (O’Neill’s formulas).

(1) g(x,y)(X
∗
(x,y), Y

∗
(x,y)) = hx(Xx, Yx), x ∈M .

(2) π∗ ([X∗, Y ∗]) = [X,Y ].
(3) π∗ (∇gX∗Y ∗) = ∇hXY .

Lemma 2.3. For a vector field X ∈ X(M) whose h(X,X) is constant, ∇gX∗X∗
is the horizontal lift of ∇hXX.

Proof. By (3) of Lemma 2.2, we only have to see ∇gX∗X∗ is a horizontal vector
field. Due to Lemma 2.3(1), for every vertical vector field X ∈ X(M), we have

2g(∇gX∗X∗, V ) = X∗(g(X∗, V )) +X∗(g(V,X∗))− V (g(X∗, X∗)

+ g(V, [X∗, X∗]) + g(X∗, [V,X∗])− g(X∗, [X∗, V ])

= 2g(X∗, [X∗, V ])

= 0.(2.12)

Here, the last equality of (2.12) follows as:

[X∗, V ] = ∇gX∗V −∇gVX∗

=
Xf

f
V − Xf

f
V

= 0(2.13)

by using Lemma 2.1(3). �

Then, we can choose a locally defined orthonormal vector field

{e1, . . . , em, em+1, . . . , em+`}

on (P, g) in such a way that {e1, . . . , em} are orthonormal vector fields which are
horizontal lifts of the orthonormal vector fields e′1, . . . , e

′
m on (M,h) and em+1 =

1
f e
′′
m+1, . . . , em+` = 1

f e
′′
m+`. Then, by Lemma 2.3, ∇geiei, i = 1, . . . ,m, are

the horizontal lifts of ∇he′ie
′
i.

For i = m+ 1, . . . ,m+ `, we have the following decomposition:

(2.14) ∇geiei =
1

f2

{
−(e′′i f) ei +∇ke′′i e

′′
i − f ∇(f ◦ π)

}
.

We first note that ∇(f ◦ π) is a horizontal vector field on P . Because,

g(∇(f ◦ π), V ) = V f = 0

for every V ∈ X(F ). And the first two terms of (2.14) are vertical since ∇ke′′i e
′′
i ,

i = m+ 1, . . . ,m+ `, are vertical.
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BIHARMONIC MAPS ON PRINCIPAL BUNDLES & WARPED PRODUCTS 9

To prove (2.14), for i = m+ 1, . . . ,m+ `, we have

∇geiei = ∇g 1
f e
′′
i

1

f
e′′i

=
1

f

{
e′′i

(
1

f

)
e′′i +

1

f
∇ge′′i e

′′
i

}
=

1

f2

{
−e
′′
i f

f
e′′i +∇ge′′i e

′′
i

}
.(2.15)

We decompose ∇ge′′i e
′′
i into the vertical and horizontal components:

(2.16) ∇ge′′i e
′′
i = V

(
∇ge′′i e

′′
i

)
+H

(
∇ge′′i e

′′
i

)
.

Here, by Lemma 2.1(5), we have

(2.17) V
(
∇ge′′i e

′′
i

)
= ∇ke′′i e

′′
i .

By Lemma 2.1(4) and k(e′′i , e
′′
j ) = δij , we have

H
(
∇ge′′i e

′′
i

)
= −f k(e′′i , e

′′
i )G

= −f G
= −f ∇ f
= −f ∇ (f ◦ π)(2.18)

by Lemma 2.1(1). We obtain (2.14).

3. Proof of Theorem 3.2

If the principal G-bundle π : (P, g)→ (M,h) is harmonic, then it is clearly
biharmonic. Our main interest is to ask the reverse holds under what condi-
tions:

Problem 3.1. If the projection π of a principal G-bundle π : (P, g)→ (M,h)
is biharmonic, is π harmonic or not.

In this paper, we show that this problem is affirmative when the Ricci cur-
vature of the base manifold (M,h) is negative definite. Indeed, we show that:

Theorem 3.2. Let π : (P, g) → (M,h) be a principal G-bundle over a Rie-
mannian manifold (M,h) with non-positive Ricci curvature. Assume P is com-
pact so that M is also compact. If the projection π is biharmonic, then it is
harmonic.

In this section, we give a proof of Theorem 3.2 in case of a compact Riemann-
ian manifold (M,h) and the Ricci tensor of (M,h) is negative definite. We will
give the proof of Theorem 4.1 in case of a non-compact complete Riemannian
manifold (M,h) in Section 4.

Let us first consider a principal G-bundle π : (P, g) → (M,h) whose the
total space P is compact. Assume that the projection π : (P, g) → (M,h) is
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10 H. URAKAWA

biharmonic, which is by definition, J(τ(π)) ≡ 0, where τ(π) is the tension field
of π which is defined by

(3.1) τ(π) :=

p∑
i=1

{∇heiπ∗ei − π∗(∇eiei)},

the Jacobi operator J is defined by

(3.2) JV := ∆V −R(V ) (V ∈ Γ(π−1TM)),

∆ is the rough Laplacian defined by

(3.3) ∆V := −
p∑
i=1

{∇ei(∇eiV )−∇∇ei
eiV },

and

(3.4) R(V ) := Rh(V, π∗ei)π∗ei,

where {ei}pi=1 is a locally defined orthonormal frame field on (P, g).
The tangent space Pu (u ∈ P ) is canonically decomposed into the orthogonal

direct sum of the vertical subspace Gu = {Au∗ |A ∈ g} and the horizontal
subspace Hu: Pu = Gu ⊕Hu. Then, we have

τ2(π) = ∆τ(π)−
p∑
i=1

Rh(τ(π), π∗ei)π∗ei

= ∆τ(π)−
m∑
i=1

Rh(τ(π), π∗ei)π∗ei

−
k∑
i=1

Rh(τ(π), π∗A
∗
m+i)π∗A

∗
m+i

= ∆τ(π)−
m∑
i=1

Rh(τ(π), π∗ei)π∗ei,

where p = dimP, m = dimM, k = dimG, respectively. Then, we obtain

0 =

∫
M

〈J(τ(π)), τ(π)〉 vg

=

∫
M

〈∇∗∇ τ(π), τ(π)〉 vg −
∫
M

m∑
i=1

〈Rh(τ(π), π∗ei)π∗ei, τ(π)〉 vg

=

∫
M

〈∇ τ(π),∇ τ(π)〉 vg −
∫
M

m∑
i=1

〈Rh(τ(π), π∗ei)π∗ei, τ(π)〉 vg.

Therefore, we obtain∫
M

〈∇ τ(π),∇ τ(π)〉 vg =

∫
M

m∑
i=1

〈Rh(τ(π), π∗ei)π∗ei, τ(π)〉 vg
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BIHARMONIC MAPS ON PRINCIPAL BUNDLES & WARPED PRODUCTS 11

=

∫
M

m∑
i=1

〈Rh(τ(π), e′i)e
′
i, τ(π)〉 vg

=

∫
M

Rich(τ(π)) vg,(3.5)

where {e′i}mi=1 is a locally defined orthonormal frame field on (M,h) satisfying
π∗ei = e′i, and Ric(X) is the Ricci curvature of (M,h) along X ∈ TxM . The
left hand side of (3.5) is non-negative, and then, the both hand sides of (3.5)
must vanish if the Ricci curvature of (M,h) is non-positive. Therefore, we
obtain

(3.6)

{
∇Xτ(π) = 0 (∀X ∈ X(P )), i.e., τ(π) is parallel, and

Rich(τ(π)) = 0.

Let us define a 1-form α ∈ A1(P ) on P by α(X) = 〈dπ(X), τ(π)〉, X ∈ X(P ).
Then, we have

(3.7) −δα =

p∑
i=1

(∇eiα)(ei) = 〈τ(π), τ(π)〉+ 〈dπ,∇τ(π)〉.

Integrate the above (3.7) over P since P is compact without boundary. By
(3.6), ∇Xτ(π) = 0, X ∈ X(P ), we have

(3.8) 0 = −
∫
P

δα vg =

∫
P

〈τ(π), τ(π)〉 vg

which implies that τ(π) = 0, i.e., π : (P, g)→ (M,h) is harmonic.

4. Proof of Theorem 4.1

In this section, we will show:

Theorem 4.1. Let π : (P, g) → (M,h) be a principal G-bundle over a Rie-
mannian manifold with non-positive Ricci curvature. Assume that (P, g) is a
non-compact complete Riemannian manifold, and the projection π has both fi-
nite energy E(π) <∞ and finite bienergy E2(π) <∞. If π is biharmonic, then
it is harmonic.

Here, we first recall the following examples:

Example 1 (cf. [26], p. 62). The inversion in the unit sphere φ : Rn\{o} 3
x 7→ x

|x|2 ∈ Rn is a biharmonic morphism if n = 4. It is not harmonic since

τ(φ) = − 4x
|x|4 .

Here, a C∞ map φ : (M, g)→ (N,h) is called to be a biharmonic morphism
if, for every biharmonic function f : U ⊂ N → R with φ−1(U) 6= ∅, the
composition f ◦ φ : φ−1(U) ⊂M → R is biharmonic.
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12 H. URAKAWA

Example 2 (cf. [26], p. 70). Let (M2, h) be a Riemannian surface, and let
β : M2 × R → R∗ and λ : R → R∗ be two positive C∞ functions. Consider
the projection π : (M2 × R∗, g = λ−2 h + β2 dt2) 3 (p, t) 7→ p ∈ (M2, h).

Here, we take β = c2 e
∫
f(x) dx, f(x) = −c1 (1+ec1x)

1−ec1x with c1, c2 ∈ R∗, and

(M2, h) = (R2, dx2 + dy2). Then,

π : (R2 × R∗, dx2 + dy2 + β2(x) dt2) 3 (x, y, t) 7→ (x, y) ∈ (R2, dx2 + dy2)

gives a family of proper biharmonic (i.e., biharmonic but not harmonic) Rie-
mannian submersions.

For a non-compact and complete Riemannian manifold (N,h) with non-
positive Ricci curvature, we will give a proof of Theorem 4.1.

(The first step) We first take a cut off function η on (P, g) for a fixed point
p0 ∈ P as follows:

(4.1)



0 ≤ η ≤ 1 (on P ),

η = 1 (on Br(p0)),

η = 0 (outside B2r(p0)),

|∇η| ≤ 2

r
(on P ),

where Br(p0) is the ball in (P, g) of radius r around p0.
Now assume that the projection π : (P, g)→ (N,h) is biharmonic. Namely,

we have, by definition,

0 = J2(π) = Jπ(τ(π))

= ∆ τ(π)−
p∑
i=1

Rh(τ(π), π∗ei)π∗ei,(4.2)

where {ei}pi=1 is a local orthonormal frame field on (P, g) and ∆ is the rough
Laplacian which is defined by

∆V := ∇∗∇V = −
p∑
i=1

{
∇ei(∇eiV )−∇∇ei

eiV
}

(4.3)

for V ∈ Γ(π−1TM).
(The second step) By (4.2), we have∫

P

〈∇∗∇ τ(π), η2 τ(π)〉 vg =

∫
P

η2

〈
p∑
i=1

Rh(τ(π), π∗ei)π∗ei, τ(π)

〉
vg

=

∫
P

η2
p∑
i=1

〈
Rh(τ(π), π∗ei)π∗ei, τ(π)

〉
vg

=

∫
P

η2
m∑
i=1

〈
Rh(τ(π), e′i)e

′
i, τ(π)

〉
vg
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=

∫
P

η2 Rich(τ(π)) vg,(4.4)

where {e′i}mi=1 is a local orthonormal frame field on (M,h), and Rich(u) u ∈
TyM , (y ∈ M) is the Ricci curvature of (M,h) which is non-positive by our
assumption.

(The third step) Therefore, we obtain

0 ≥
∫
P

〈∇∗∇ τ(π), η2 τ(π)〉 vg

=

∫
P

〈∇ τ(π),∇(η2 τ(π))〉 vg

=

∫
P

p∑
i=1

〈∇ei τ(π),∇ei(η2 τ(π))〉 vg

=

∫
P

p∑
i=1

{
η2 〈∇eiτ(π),∇eiτ(π)〉+ ei(η

2) 〈∇eiτ(π), τ(π)〉
}
vg

=

∫
P

η2
p∑
i=1

|∇eiτ(π)|2 vg + 2

∫
P

p∑
i=1

〈η∇eiτ(π), ei(η) τ(π)〉 vg.(4.5)

Therefore, we obtain by (4.5),
(The fourth step) Then, we have∫

P

η2
p∑
i=1

∣∣∇eiτ(π)
∣∣2 vg ≤ −2

∫
P

p∑
i=1

〈η∇eiτ(π), ei(η) τ(π)〉 vg

= −2

∫
P

p∑
i=1

〈Vi,Wi〉 vg,(4.6)

where Vi := η∇eiτ(π), and Wi := ei(η) τ(π) (i = 1, . . . , p). Then, the right
hand side of (4.6) is estimated by the Cauchy-Schwarz inequality,

± 2 〈Vi,Wi〉 ≤ ε |Vi|2 +
1

ε
|Wi|2(4.7)

since

0 ≤ |
√
ε Vi ±

1√
ε
Wi|2 = ε |Vi|2 ± 2 〈Vi,Wi〉+

1

ε
|Wi|2,

so that

∓ 2 〈Vi,Wi〉 ≤ ε |Vi|2 +
1

ε
|Wi|2.

Therefore, the right hand side of (4.6) is estimated as follows:

RHS of (4.6) := −
∫
P

p∑
i=1

〈Vi,Wi〉 vg

≤ ε
∫
P

p∑
i=1

|Vi|2 vg +
1

ε

∫
P

p∑
i=1

|Wi|2 vg.(4.8)
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14 H. URAKAWA

(The fifth step) By putting ε = 1
2 , we have∫

P

η2
p∑
i=1

|∇eiτ(π)|2vg≤
1

2

∫
P

p∑
i=1

η2|∇eiτ(π)|2vg+2

∫
P

p∑
i=1

ei(η)2|τ(π)|2vg.(4.9)

Therefore, we obtain

1

2

∫
P

η2
p∑
i=1

|∇eiτ(π)|2 vg ≤ 2

∫
P

|∇η|2 |τ(π)|2 vg.(4.10)

Substituting (4.1) into (4.10), we obtain∫
P

η2
p∑
i=1

|∇eiτ(π)|2 vg ≤ 4

∫
P

|∇η|2 |τ(π)|2 vg ≤
16

r2

∫
P

|τ(π)|2 vg.(4.11)

(The sixth step) Tending r →∞ by the completeness of (P, g) and E2(π) =
1
2

∫
P
|τ(π)|2 vg <∞, we obtain that∫

P

p∑
i=1

|∇eiτ(π)|2 vg = 0,(4.12)

which implies that

∇Xτ(π) = 0 (∀X ∈ X(P )).(4.13)

(The seventh step) Therefore, we obtain

|τ(π)| is constant, say c(4.14)

because

X |τ(π)|2 = 2 〈∇Xτ(π), τ(π)〉 = 0 (∀ X ∈ X(M))

by (4.13).
(The eighth step) In the case that Vol(P, g) =∞ and E2(π) <∞, c must be

zero. Because, if c 6= 0,

E2(π) =
1

2

∫
P

|τ(π)|2 vg =
c

2
Vol(P, g) =∞

which is a contradiction.
Thus, if Vol(P, g) =∞, then c = 0, i.e., π : (P, g)→ (M,h) is harmonic.
(The ninth step) In the case E(π) < ∞ and E2(π) < ∞, let us define a

1-form α ∈ A1(P ) on P by

α(X) := 〈dπ(X), τ(π)〉, (X ∈ X(P )).(4.15)

Then, we obtain∫
P

|α| vg =

∫
P

( p∑
i=1

|α(ei)|2
)1/2

≤
∫
P

|dπ| |τ(π)| vg

≤
(∫

P

|dπ|2 vg
)1/2 (∫

P

|τ(π)|2 vg
)1/2
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= 2
√
E(π)E2(π) <∞.(4.16)

For the function δα := −
∑p
i=1(∇eiα)(ei) ∈ C∞(P ), we have

−δα =

p∑
i=1

(∇eiα)(ei) =

p∑
i=1

{
ei(α(ei))− α(∇eiei)

}
=

p∑
i=1

{
ei 〈dπ(ei), τ(π)〉 − 〈dπ(∇eiei), τ(π)〉

}
=

p∑
i=1

{〈
∇eidπ(ei), τ(π)

〉
+
〈
dπ(ei),∇eiτ(π)

〉
−
〈
dπ(∇eiei, τ(π)

〉}
=
〈 p∑
i=1

{
∇eidπ(ei)− dπ(∇eiei)

}
, τ(π)

〉
+

p∑
i=1

〈
dπ(ei),∇eiτ(π)

〉
= 〈τ(π), τ(π)〉+ 〈dπ,∇τ(π)〉
= |τ(π)|2(4.17)

since ∇τ(π) = 0. By (4.17), we obtain∫
P

|δα| vg =

∫
P

|τ(π)|2 vg = 2E2(π) <∞.(4.18)

By (4.16), (4.18) and the completeness of (P, g), we can apply Gaffney’s theo-
rem which implies that

0 =

∫
P

(−δ α) vg =

∫
P

|τ(π)|2 vg.(4.19)

Thus, we obtain

τ(π) = 0,(4.20)

that is, π : (P, g)→ (M,h) is harmonic. We obtain Theorem 4.1.

5. The tension fields of the warped products

In this section, we calculate the tension field τ(π). Let us recall the definition
of the tension field:

Definition 5.1.

τ(π) =

m+∑̀
i=1

{
∇eiπ∗ei − π∗ (∇geiei)

}
=

m+∑̀
i=1

{
∇hπ∗eiπ∗ei − π∗ (∇geiei)

}
.(5.1)
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16 H. URAKAWA

Since ∇geiei are the horizontal lifts of ∇he′ie
′
i for i = 1, . . . ,m, and (2.14),

we have

τ(π) =

m∑
i=1

{
∇hπ∗eiπ∗ei − π∗ (∇geiei)

}
+

m+∑̀
i=m+1

{
∇hπ∗eiπ∗ei − π∗ (∇geiei)

}
=

m∑
i=1

{
∇he′ie

′
i −∇he′ie

′
i

}
+

m+∑̀
i=m+1

{
0−

(
− 1

f
∇ (f ◦ π)

)}
=

`

f
∇ (f ◦ π).(5.2)

Indeed, we obtain the second equality of (5.2) as follows: The first sum van-
ishes since π∗ei = e′i and π∗∇geiei = ∇he′ie

′
i, (i = 1, . . . ,m). The second sum

coincides with `
f ∇ (f ◦ π) since π∗ei = 0 and also π∗∇geiei = − 1

f ∇ (f ◦ π)

(i = m+ 1, . . . ,m+ `). Therefore, we obtain:

Theorem 5.1. Let π : (P, g)→ (M,h) be the warped product. Then, we have

(5.3) τ(π) =
`

f
∇ (f ◦ π).

Then, π is harmonic if and only if f is constant.

6. The bitension fields of the warped products

Let us recall the definition of the bitension field for a C∞ mapping ϕ :
(P, g)→ (M,h) which is given by

τ2(ϕ) := ∆ τ(ϕ)−Rh(τ(ϕ)).(6.1)

Here, recall, for V ∈ Γ(ϕ−1TM),

∆V := −
p∑
i=1

{
∇ei(∇eiV )−∇∇g

ei
eiV
}
,(6.2)

RhV :=

p∑
i=1

Rh(V, ϕ∗ei)ϕ∗ei,(6.3)

where {ei}pi=1 is a locally defined orthonormal frame field on (P, g), p = dimP ,

∇ is the induced connection on the induced bundle ϕ−1TM , and the curvature
tensor of (N,h) is given by Rh(U, V )W := ∇hU (∇hVW ) − ∇hV (∇hUW ) −
∇h[U,V ]W for U, V,W ∈ X(M) (cf.[5, 21,22]).

Definition 6.1. π : (P, g)→ (M,h) is biharmonic if τ2(π) = 0.
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Let us π : (P, g)→ (M,h) be the warped product whose Riemannian metric
g is given by (2.8). For V = τ(π), then,

RhV =

p∑
i=1

Rh(τ(π), π∗ei)π∗ei

=

m∑
i=1

Rh(τ(π), e′i)e
′
i

= ρh(τ(π)),(6.4)

where m = dimM and ρh is Ricci transform of (M,h) given by ρh(u) :=∑m
i=1R

h(u, e′i)e
′
i, u ∈ TxM , and {e′i}mi=1 is a locally defined orthonormal field

on (M,h).
In the following, we calculate the rough Laplacian ∆ for V = τ(π).
(The first step) We calculate ∇eiτ(π) and ∇ei(∇eiτ(π)) as follows:

(6.5) ∇eiτ(π) = ∇hπ∗eiτ(π) =

{
∇he′iτ(π) (i = 1, . . . ,m = dimM),

0 (i = m+ 1, . . . ,m+ `),

where p := dimP = m+ `, m = dimM , and ` = dimF . Furthermore,

(6.6) ∇ei(∇eiτ(π)) =

{
∇he′i(∇

h
e′i
τ(π)) (i = 1, . . . ,m),

0 (i = m+ 1, . . . ,m+ ` = p).

(The second step) We calculate ∇∇g
ei
eiτ(π) by the similar way as the first

step:
For i = 1, . . . ,m,

(6.7) ∇∇g
ei
eiτ(π) = ∇hπ∗(∇g

ei
ei)
τ(π) = ∇h∇h

e′
i
e′i
τ(π),

and for i = m+ 1, . . . ,m+ `, by (5.1),

(6.8) ∇∇g
ei
eiτ(π) = ∇hπ∗(∇g

ei
ei)
τ(π) = ∇h− 1

f ∇(f ◦π)τ(π).

(The third step) Therefore, we calculate (6.2) for V = τ(π) as follows.

∆τ(π) := −
p∑
i=1

{
∇ei(∇eiτ(π))−∇∇g

ei
eiτ(π)

}
= −

m∑
i=1

{
∇ei(∇eiτ(π))−∇∇g

ei
eiτ(π)

}
−

m+∑̀
i=m+1

{
∇ei(∇eiτ(π))−∇∇g

ei
eiτ(π)

}
= −

m∑
i=1

{
∇he′i(∇

h
e′i
τ(π))−∇h∇h

e′
i
e′i
τ(π)

}
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18 H. URAKAWA

−
m+∑̀
i=m+1

{
0−∇h− 1

f∇(f ◦π)τ(π)
}

= −
m∑
i=1

{
∇he′i

(
∇he′iτ(π)

)
−∇h∇h

e′
i
e′i
τ(π)

}
− `∇h 1

f∇(f ◦π)τ(π).(6.9)

(The fourth step) Therefore, by (6.1), (6.4) and (6.9), we obtain

τ2(π) = −
m∑
i=1

{
∇e′i

(
∇e′iτ(π)

)
−∇∇h

e′
i
e′i
τ(π)

}
− `∇h 1

f∇f
τ(π)− ρh(τ(π))

= ` Jid

(
1

f
∇f
)
− `2∇h 1

f∇f

{
∇f
f

}
(6.10)

= ` Jid

(
1

f
∇f
)

+
`2

f3
h(∇f,∇f)∇f − `2

f2
∇h∇f∇f.(6.11)

Therefore, we can summarize the above by recalling the following definitions:

Jid := ∆
h − ρh,(6.12)

is the Jacobi operator of the identity of (M,h), id : (M,h)→ (M,h) acting on

the space X(M) of C∞ vector fields on M , and the operator ∆
h

is defined by

∆
h
(X) := −

m∑
i=1

(
∇he′i ∇

h
e′i
−∇h∇h

e′
i
e′i

)
X (X ∈ X(M)),(6.13)

and ρh is the Ricci operator of (M,h) given by

(6.14) ρh(X) = Rh(X, e′i)e
′
i (X ∈ X(M)).

Therefore, due to (6.1) and (6.2), we have:

Theorem 6.1. For the warped product π : (P, g)→ (M,h), the bitension field
τ2(π) is given by

(6.15) τ2(π) = ∆(τ(π))− ρh(τ(π))− `∇∇ f
f
τ(π),

where ∆ is the rough Laplacian and ∇ is the induced connection from the Levi-
Civita connection ∇h of (M,h). Therefore, the warped product π : (P, g) →
(M,h) is biharmonic, i.e., τ2(π) = 0, if and only if the following hold:

(6.16) Jid

(
∇f
f

)
= `∇h1

f ∇f

{
∇f
f

}
= − `

f3
h(∇f,∇f)∇ f +

`

f2
∇h∇ f∇f.

Corollary 6.2. For a positive C∞ function f on M , let π : (P, g) = (M ×f
F, g) → (M,h) be the warped product with g = π∗h+ f2 k over a Riemannian
manifold (M,h) whose Ricci curvature is non-positive. If π is biharmonic, then

(6.17)

∫
M

(∇f)

(
h(
∇f
f
,
∇f
f

)

)
vh = 2

∫
M

h

(
∇h∇f

f

∇f
f
,
∇f
f

)
vh ≥ 0.
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Proof of Corollary 6.3. If π : (P, g)→ (M,h) is biharmonic, by (6.15), it holds
that

(6.18) 0 = τ2(π) = Jid

(
`
∇f
f

)
− `2∇h∇f

f

∇f
f
.

which implies that

(6.19) 0 ≤
∫
M

h

(
Jid

(
∇f
f

)
,
∇f
f

)
vh = `

∫
M

h

(
∇h∇f

f

∇f
f
,
∇f
f

)
vh.

Because all the eigenvalues of Jid are non-negative since Jid = ∆
h−ρh and the

Ricci transform ρh are non-positive (cf. [4], [6, p. 161]). �

7. The solutions of the ordinary differential equation

Assume that (M,h) = (R, dt2), a line, and (P, g) = F ×f R, the warped
product of a Riemannian manifold (F, k) and the line (R, dt2), that is,

(7.1) g = π∗(dt2) + f2 k

for a C∞ function f ∈ C∞(R).
In this case, it holds that

(7.2)



Jid(π) = Jid

(
`
∇f
f

)
= −`

(
f ′

f

)′′
∂

∂t
,

`2∇h∇f
f

∇f
f

= `2
f ′

f
∇h∂

∂t

(
f ′

f

∂

∂t

)
= `2

f ′

f

∂

∂t

(
f ′

f

)
∂

∂t

= `2
(
f ′ f ′′

f2
− f ′3

f3

)
∂

∂t
.

Therefore, π : (F ×f R, g)→ (R, dt2) is biharmonic, i.e.,

(7.3) τ2(π) = Jid

(
`
∇f
f

)
− `2∇h∇f

f

∇f
f

= 0

if and only if

0 = −`
(
f ′

f

)′′
− `2

(
f ′ f ′′

f2
− f ′3

f3

)
= −`

(
f ′′f − f ′2

f2

)′
− `2

(
f ′ f ′′

f2
− f ′3

f3

)
= −` f

′′′ f2 − 3 f ′′ f ′ f + 2 f ′3

f3
− `2

(
f ′ f ′′

f2
− f ′3

f3

)
= − `

f3
{
f ′′′ f2 + (`− 3) f ′′ f ′ f + (−`+ 2) f ′3

}
(7.4)

if and only if

(7.5) f ′′′ f2 + (`− 3) f ′′ f ′ f + (−`+ 2) f ′3 = 0.

Therefore, we have:
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Theorem 7.1. Let (F, k) be a Riemannian manifold.
(1) the warped product π : (F ×f R, g)→ (R, dt2) is biharmonic if and only

if (7.5) holds.
(2) All the positive C∞ solution f of (7.5) on R are given by

(7.6) f(t) = c exp

(∫ t

t0

a tanh

[
a
`

2
r + b

]
dr

)
,

where a 6= 0, b, c > 0 are arbitrary constants.
(3) In the case (M,h) = (R, dt2), let f(t) be a C∞ function defined by

(7.6) with a 6= 0, b any real number and c > 0. Then, the warped product
π : (R×f F, g)→ (R, dt2) with the Riemannian metric

(7.7) g = π∗dt2 + f2 k

is biharmonic but not harmonic.

In order to solve (7.5), we put u := (log f)′ = f ′

f . Then (7.5) turns into the

ordinary differential equation on u:

(7.8) u′′ +
`

2
(u2)′ = 0.

A general solution u of (5.6) is given by

(7.9) u(t) = a tanh

[
a
`

2
t+ b

]
,

where a and b are arbitrary constants. Thus, every positive solution f(t) is
given by

(7.10) f(t) = c exp

(∫ t

t0

a tanh

[
a
`

2
r + b

]
dr

)
,

where a, b, c > 0 are arbitrary constants.
Therefore, we obtain Theorem 7.1 together with Theorem 6.2, �
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