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AN ARTINIAN POINT-CONFIGURATION QUOTIENT AND

THE STRONG LEFSCHETZ PROPERTY

Young Rock Kim† and Yong-Su Shin‡

Abstract. In this paper, we study an Artinian point-configuration quo-

tient having the SLP. We show that an Artinian quotient of points in Pn

has the SLP when the union of two sets of points has a specific Hilbert

function. As an application, we prove that an Artinian linear star con-
figuration quotient R/(IX + IY) has the SLP if X and Y are linear star-

configurations in P2 of type s and t for s ≥
(t
2

)
− 1 and t ≥ 3. We also

show that an Artinian k-configuration quotient R/(IX + IY) has the SLP

if X is a k-configuration of type (1, 2) or (1, 2, 3) in P2, and X ∪ Y is a

basic configuration in P2.

1. Introduction

Ideals of sets of finite points in Pn have been studied for a long time ([8,9,11]),
and in particular we consider an ideal of a special configuration in Pn, so called
a star-configuration and a k-configuration in Pn ([1–3, 6, 7, 9–11, 15]). In 2006,
Geramita, Migliore, and Sabourin introduced the notion of a star-configuration
set of points in P2 (see [10]), the name having been inspired by the fact that
10-points in P2, defined by 5 general linear forms in k[x0, x1, x2] resembles a
star. In this paper, we refer to this as a “linear star-configuration”, as more
general definition of star-configurations has evolved through the subsequent
literature (see [1,6,7,19]). Indeed, a star-configuration in Pn has been studied
to find the dimension of secant varieties to the variety of reducible forms in
R = k[x0, x1, . . . , xn], where k is a field of characteristic 0 (see [4, 5, 20]).

If R/I is a standard graded Artinian algebra and ` is a general linear form,
we recall that R/I is said to have the weak Lefschetz property (WLP) if the
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2 Y. R. KIM AND Y. S. SHIN

multiplication map by `

[R/I]d
×`→ [R/I]d+1

has maximal rank for every d ≥ 0. Over the years, there have been several
papers which have devoted to a classification of possible Artinian quotients
having the WLP (see [1,8,9,13,14,16–18,21,22]). The strong Lefschetz property
(SLP) says that for every i ≥ 1 the multiplication map by `i

[R/I]d
×`i→ [R/I]d+i

has maximal rank for every d ≥ 0 ([13, 14, 17]). In [14] the authors proved
that a complete intersection ideal in k[x0, x1] has the SLP. Moreover, in [13],
the authors give a nice description for a graded Artinian ring having the SLP
by using the so-called Jordan type (see Lemma 2.2). The Jordan type is the
partition of n specifying the lengths of blocks in the Jordan block matrix de-
termined by the multiplication map by ` in a suitable k-basis for R/I. Here,
we apply this result often to show that some Artinian quotients of the ideals
of points in Pn have the SLP.

We use Hilbert functions for many our arguments. Given a homogeneous
ideal I ⊂ R, the Hilbert function of R/I, denoted HR/I , is the numerical

function HR/I : Z+ ∪ {0} → Z+ ∪ {0} defined by

HR/I(i) := dimk[R/I]i = dimk[R]i − dimk[I]i,

where [R]i and [I]i denote the i-th graded component of R and I, respectively.
If I := IX is the defining ideal of a subscheme X in Pn, then we denote

HR/IX(i) := HX(i) for i ≥ 0,

and call it the Hilbert function of X.
Let R = k[x0, x1, . . . , xn] be a polynomial ring over a field k of characteristic

0. For positive integers r and s with 1 ≤ r ≤ min{n, s}, suppose F1, . . . , Fs
are general forms in R of degrees d1, . . . , ds, respectively. Here s general forms
F1, . . . , Fs in R means that all subsets of size 1 ≤ r ≤ min{n + 1, s} are
regular sequences in R, and if H = {F1, . . . ,Fs} is a collection of distinct
hypersurfaces in Pn corresponding to general F1, . . . , Fs respectively, then the
hypersurfaces meet properly, by which we mean that the intersection of any r
of these hypersurfaces with 1 ≤ r ≤ min{n, s} has codimesion r. We call the
variety X defined by the ideal ⋂

1≤i1<···<ir≤s

(Fi1 , . . . , Fir )

a star-configuration in Pn of type (r, s). In particular, if X is a star-configuration
in Pn of type (n, s), then we simply call a point star-configuration in Pn of type
s for short.
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AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 3

Notice that each n-forms Fi1 , . . . , Fin of s-general forms F1, . . . , Fs in R
define di1 · · · din points in Pn for each 1 ≤ i1 < · · · < in ≤ s. Thus the ideal⋂

1≤i1<···<in≤s

(Fi1 , . . . , Fin)

defines a finite set X of points in Pn with

deg(X) =
∑

1≤i1<i2<···<in≤s

di1di2 · · · din .

Furthermore, if F1, . . . , Fs are general linear (quadratic, cubic, quartic, quin-
tic, etc) forms in R, then we call X a linear (quadratic, cubic, quartic, quintic,
etc) star-configuration in Pn of type s, respectively.

To provide some additional focus to this paper, we consider the following
questions.

Question 1.1. Let X and Y be finite sets of points in Pn and R = k[x0, x1, . . . ,
xn].

(a) Does an Artinian ring R/(IX + IY) have the WLP?
(b) Does an Artinian ring R/(IX + IY) have the SLP?

Question 1.2. More precisely, let X and Y be finite point star configurations
in Pn, or X be a k-configuration in Pn such that X∪Y is a basic configuration
in Pn.

(a) Does an Artinian ring R/(IX + IY) have the WLP?
(b) Does an Artinian ring R/(IX + IY) have the SLP?

In [1], the authors proved that an Artinian linear star-configuration quotient
in P2 has the WLP, which is a partial answer to Question 1.2 (a). Indeed, it is
still true that any finite number of an Artinian linear point star-configuration
quotient in Pn has the WLP. In [8,9], the authors show that Question 1.2(a) is
true in general if X is a k-configuration in Pn and X∪Y is a basic configuration
in Pn with the condition 2σ(X) ≤ σ(X ∪ Y), where

σ(X) = min{i | HX(i− 1) = HX(i)}.
In this paper, we focus on Questions 1.1(b) and 1.2(b). More precisely, we

first find a condition in which an Artinian quotient of two sets of points in
Pn has the SLP (see Lemma 2.4 and Proposition 2.5). Next we find some
Artinian linear star configuration quotient in P2 that has the SLP (see Corol-
lary 2.9). Then, we find an Artinian k-configuration quotient having the SLP
(see Proposition 3.4 and Theorem 3.6). Unfortunately, we do not have any
counter example of an Artinian quotient R/(IX + IY) of two point sets in Pn,
which does not have the SLP, and thus we expect Question 1.1(a) and (b) are
true in general, especially when X and Y are sets of general points in Pn.
Acknowledgement. We took inspiration for this subject from Professor An-
thony Iarrobino during the Research Station on Commutative Algebra, June
13-18, 2016, which was supported by the Korea Institute of Advanced Study.
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4 Y. R. KIM AND Y. S. SHIN

2. Artinian linear star-configuration quotients in P2

In this section, we shall show that an Artinian ring R/(IX +IY) has the SLP
if X and Y are linear star-configurations in P2 of type s and t with s ≥

(
t
2

)
− 1

and t ≥ 3, respectively.
We first introduce the following two results of a star-configuration in Pn in

[13,22].

Remark 2.1. Let k be a field of characteristic zero and let F ∈ k[x0, x1, . . . , xn]
= R =

⊕
i≥0Ri (n ≥ 1) be a homogeneous polynomial (form) of degree d, i.e.,

F ∈ Rd. It is well known that in this case each Ri has a basis consisting of i-th
powers of linear forms. Thus we may write

F =

r∑
i=1

αiL
d
i , αi ∈ k, Li ∈ R1.

If k is algebraically closed (which we now assume for the rest of the paper),
then each αi = βdi for some βi ∈ k and so we can write

(2.1) F =
r∑
i=1

(βiLi)
d =

r∑
i=1

Md
i , Mi ∈ R1.

We call a description of F as in equation (2.1), a Waring Decomposition of F .
The least integer r such that F has a Waring Decomposition with exactly r
summands is called the Waring Rank (or simply the rank) of F .

Lemma 2.2 ([13]). Assume A is graded and HA is unimodal. Then

(a) A has the WLP if and only if the number of parts of the Jordan type
J` = max{HA(i)}. (The Sperner number of A);

(b) ` is a strong Lefschetz element of A if and only if J` = H∨A.

Proposition 2.3 ([22, Proposition 2.5]). Let X and Y be linear star-configura-
tions in P2 of type s and t, respectively, with 3 ≤ t and s ≥ b 12

(
t
2

)
c. Then X∪Y

has generic Hilbert function.

Recall that

HA : h0 h1 · · · · · · hc

is said to be unimodal if there exists j such that{
hi ≤ hi+1 (i < j),

hi ≥ hi+1 (j ≤ i).

Lemma 2.4. Let X be a finite set of points in Pn and let A be an Artinian
quotient of the coordinate ring of X. Assume that HA(i) = HX(i) for every
0 ≤ i ≤ s− 1 and As = 0. Then an Artinian ring A has the SLP.

Proof. First, we assume that the Hilbert function of A is of the form

HA : h0 h1 · · · hσ−1 hσ · · · hs−1 0,
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AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 5

where hσ−2 < hσ−1 = hσ = · · · = hs−1.
Let ` be a general linear form in A1. Since ` is not a zero divisor of A, we

see that the multiplication map by `s−1

[R/IX]0 = [A]0
×`s−1

−→ [A]s−1 = [R/IX]s−1

is injective. Hence we have a string of length s

1, `, . . . , `s−1,

and so the Jordan type J` for HA is of the form

J` = (s, . . . ).

(i) Let i = 1. Then the multiplication map by `s−2

[R/IX]1 = [A]1
×`s−2

−→ [A]s−1 = [R/IX]s−1

is injective. Hence there are g1 := (h1 − h0) = (h1 − 1) linear forms
F1,1, F1,2, . . . , F1,g1 ∈ [A]1 such that the h1 linear forms

`, F1,1, F1,2, . . . , F1,g1

are linearly independent. Hence there are g1-strings of length (s− 1)

F1,1, F1,1`, . . . , F1,1`
s−2, and

F1,2, F1,2`, . . . , F1,2`
s−2,

...
F1,g1 , F1,g1`, . . . , F1,g1`

s−2.

(ii) For 1 ≤ i < σ − 1 and 1 ≤ j ≤ i, define

gj := hj − hj−1
for such j. Assume that there are gj-forms Fj,1, . . . , Fj,gj ∈ [A]j and there
are gj-strings of length (s− j)

Fj,1, Fj,1`, . . . , Fj,1`
s−j−1,

Fj,2, Fj,2`, . . . , Fj,2`
s−j−1,

...
Fj,gj , Fj,gj `, . . . , Fj,gj `

s−j

such that the
(
1 +

∑j
k=1 gk

)
-forms

`j , F1,1`
j−1, . . . , F1,g1`

j−1︸ ︷︷ ︸
g1-forms

, . . . , Fj−1,1`, . . . , Fj−1,gj−1
`︸ ︷︷ ︸

gj−1-forms

, Fj,1, . . . , Fj,gj︸ ︷︷ ︸
gj-forms

are linearly independent for such j.
Since the multiplication map by `(s−1)−(i+1)

[R/IX]i+1 = [A]i+1
×`(s−1)−(i+1)

−→ [A]s−1 = [R/IX]s−1
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6 Y. R. KIM AND Y. S. SHIN

is injective, there are linearly independent gi+1 := (hi+1 − hi)-forms

Fi+1,1, . . . , Fi+1,gi+1
∈ [A]i+1. Then the following

(
1 +

∑i+1
k=1 gk

)
-forms

`i+1, F1,1`
i, . . . , F1,g1`

i︸ ︷︷ ︸
g1-forms

, . . . , Fi−1,1`
2, . . . , Fi−1,gi−1

`2︸ ︷︷ ︸
gi−1-forms

, Fi,1`, . . . , Fi,gi`︸ ︷︷ ︸
gi-forms

, Fi+1,1, . . . , Fi+1,gi+1︸ ︷︷ ︸
gi+1-forms

are linearly independent as well. Hence we have gi+1-strings of length
(s− i− 1)

Fi+1,1, Fi+1,1`, . . . , Fi+1,1`
s−i−2,

Fi+1,2, Fi+1,2`, . . . , Fi+1,2`
s−i−2,

...
Fi+1,gi+1 , Fi+1,gi+1`, . . . , Fi+1,gi+12`

s−i−2.

It is from (i) ∼ (ii) that the Jordan type

J` = (s, s− 1, . . . , s− 1︸ ︷︷ ︸
g1-times

, . . . , s− i, . . . , s− i︸ ︷︷ ︸
gi-times

, . . . , s− σ + 1, . . . , s− σ + 1︸ ︷︷ ︸
gσ−1-times

) = H∨A,

as we wished. Therefore, by Lemma 2.2, an Artinian ring has the SLP, which
completes the proof. �

The following proposition is immediate from Lemma 2.4.

Proposition 2.5. Let X and Y be linear star-configurations in P2 of type t
and s with t ≥ 2 and s ≥

(
t
2

)
. Then an Artinian ring R/(IX + IY) has the SLP.

Proof. First, note that the Hilbert functions of R/IX, R/IY, and R/(IX ∩ IY)
(see Proposition 2.3) are

HR/IX : 1 3 · · ·
(t−2)-nd(

t
2

) (
t
2

)
→,

HR/IY : 1 3 · · ·
(t−2)-nd(

t
2

) (
t+1
2

)
· · ·

(s−2)-nd(
s
2

) (
s
2

)
→,

HR/(IX∩IY) : 1 3 · · ·
(t−2)-nd(

t
2

) (
t+1
2

)
· · ·

(s−2)-nd(
s
2

) (s−1)-st(
s+1
2

)
=
(
s
2

)
+
(
t
2

)
→,

respectively. Using the exact sequence

0→ R/(IX ∩ IY)→ R/IX ⊕R/IY → R/(IX + IY)→ 0,

the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 · · ·
(t−2)-nd(

t
2

)
· · ·

(s−2)-nd(
t
2

)
0 →,

and so by Lemma 2.4, an Artinian linear star configuration quotient R/(IX+IY)
has the SLP, which completes the proof. �

Example 2.6. Let X and Y be linear star-configurations in P2 of type 5 and
9, respectively. Note that 9 =

(
5
2

)
− 1. By Proposition 2.3 the Hilbert function

of an Artinian ring A := R/(IX + IY) is

(1, 3, 6, 10, 10, 10, 10, 10,
8-th
1 ).
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AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 7

(a) By Waring decomposition, there is a general linear form ` ∈ [A]1 such that

`8 ∈ [A]8,

i.e., we have a string of length 9

1, `, . . . , `8.

Hence the Jordan type J` is of the form

J` = (9, . . . ).

(b) Note that the multiplication map by `6

[A]1
×`6→ [A]7.

is injective, and the multiplication map by `7

[A]1
×`7→ [A]8

is surjective. Then we can choose a basis {`, F1,1, F1,2} for [A]1 such that

F1,1`
6, F1,2`

6 6= 0, and F1,1`
7, F1,2`

7 = 0.

Moreover, since {F1,1`
6, F1,2`

6} is linearly independent, we have 2-strings
of length 7

F1,1, F1,1`, . . . , F1,1`
6, and

F1,2, F1,2`, . . . , F1,2`
6.

(c) Note that the multiplication map by `5

[A]2
×`5→ [A]7

is injective, and the multiplication map by `6

[A]2
×`6→ [A]8

is surjective. Then we can choose a basis {`2, F1,1`, F1,2`, F2,1, F2,2, F2,3}
for [A]2 such that

F2,1`
5, F2,2`

5, F2,3`
5 6= 0, and F2,1`

6, F2,2`
6, F2,3`

6 = 0.

Moreover, since {F2,1`
5, F2,2`

5, F2,3`
5} is linearly independent, we have 3-

strings of length 6

F2,1, F2,1`, . . . , F2,1`
5,

F2,2, F2,2`, . . . , F2,2`
5, and

F2,3, F2,3`, . . . , F2,3`
5.

(d) Note that the multiplication map by `4

[A]3
×`4→ [A]7

is injective, and the multiplication map by `6

[A]3
×`5→ [A]8
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8 Y. R. KIM AND Y. S. SHIN

is surjective. Then we can choose a basis {`3, F1,1`
2, F1,2`

2, F2,1`, F2,2`,
F2,3`, F3,1, . . . , F3,4} for [A]3 such that

F3,1`
4, . . . , F3,4`

4 6= 0, and F3,1`
5, . . . , F3,4`

5 = 0.

Moreover, since {F3,1`
4, . . . , F3,4`

4} is linearly independent, we have 4-
strings of length 5

F3,1, F3,1`, . . . , F3,1`
4,

F3,2, F3,2`, . . . , F3,2`
4,

F3,3, F3,3`, . . . , F3,3`
4, and

F3,4, F3,4`, . . . , F3,4`
4.

This shows that the Jordan type of HR/(IX+IY) is

J` = (9, 7, 7, 6, 6, 6, 5, 5, 5, 5) = H∨R/(IX+IY).

Thus, by Lemma 2.2, an Artinian quotient of two linear star-configurations in
P2 of type 5 and 9 has the SLP, as we wished.

Example 2.6 motivates the following proposition.

Proposition 2.7. Let X be a finite set of points in Pn and let A be an Artinian
quotient of the coordinate ring of X. Assume that HA(i) = HX(i) for every
0 ≤ i ≤ s− 2 with As = 0, and the Hilbert function of A is of the form

HA : h0 h1 · · · hσ−1 hσ · · ·
(s−2)-nd
hσ hs−1 0

where hσ−2 < hσ−1 = hσ and hs−1 = 1. Then an Artinian ring A has the
SLP.

Proof. We first define

gi := hi − hi−1 for i = 1, . . . , σ − 1.

(a) By Waring decomposition, there is a linear form ` ∈ [A]1 such that

`s−1 ∈ [A]s−1.

In other words, there is a string of length s as

1, `, . . . , `s−1.

Hence Jordan type of HR/(IX+IY) is of the form

J` = (s, . . . ).

(b) Note that the multiplication map by `s−3

[R/IX]1 = [A]1
×`s−3

→ [A]s−2 = [R/IX]s−2

is injective, and the multiplication map by `s−2

[A]1
×`s−2

→ [A]s−1

Ah
ea

d 
of

 P
rin

t



AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 9

is surjective. Then we can choose a basis {`, F1,1, F1,2, . . . , F1,g1} for [A]1
such that

F1,1`
s−3, F1,2`

s−3, . . . , F1,g1`
s−3 6= 0, and F1,1`

s−2, F1,2`
s−2, . . . , F1,g1`

s−2 =0.

Moreover, since {F1,1`
s−3, F1,2`

s−3, . . . , F1,g1`
s−3} is linearly independent,

we have g1-strings of length (s− 2)

F1,1, F1,1`, . . . , F1,1`
s−3,

F1,2, F1,2`, . . . , F1,2`
s−3,

...
F1,g1−1, F1,g1−1`, . . . , F1,g1−1`

s−3, and
F1,g1 , F1,g1`, . . . , F1,g1`

s−3.

This means that Jordan type of HR/(IX+IY) is of the form

J` = (s, s− 2, . . . , s− 2︸ ︷︷ ︸
g1-times

, . . . ).

(c) Let 1 ≤ i ≤ σ − 1. Note that the multiplication map by `s−i−2

[R/IX]i = [A]i
×`s−i−2

→ [A]s−2 = [R/IX]s−2

is injective, and the multiplication map by `s−i−1

[R/IX]i = [A]i
×`s−i−1

→ [A]s−1

is surjective. Then we can choose a basis Bi
Bi =

{
`i, F1,1`

i−1, . . . , F1,g1`
i−1︸ ︷︷ ︸

g1-times

, F2,1`
i−2, . . . , F2,g2`

i−2︸ ︷︷ ︸
g2-times

, . . . ,

Fi−1,1`, . . . , Fi−1,gi−1`︸ ︷︷ ︸
gi−1-times

, Fi,1, . . . , Fi,gi︸ ︷︷ ︸
gi-times

}
for [A]i such that

Fi,1`
s−i−2, . . . , Fi,gi`

s−i−2 6= 0, and Fi,1`
s−i−1, . . . , Fi,gi`

s−i−1 = 0.

Moreover, since {Fi,1`s−i−2, . . . , Fi,gi`s−i−2} is linearly independent, we
have gi-strings of length (s− i− 1)

Fi,1, Fi,1`, . . . , F s−i−2i,1 ,

Fi,2, Fi,2`, . . . , F s−i−2i,2 ,
...

Fi,g1−1, Fi,g1−1`, . . . , F s−i−2i,g1−1 , and

Fi,gi , Fi,gi`, . . . , Fi,gi`
s−i−2.

Hence Jordan type of HR/(IX+IY) is of the form

J` =
(
s, s− 2, s− 2, . . . , s− 2︸ ︷︷ ︸

g1-times

, . . . , s− i− 1, s− i− 1, . . . , s− i− 1︸ ︷︷ ︸
gi-times

, . . . )
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10 Y. R. KIM AND Y. S. SHIN

for such i.

It is from (a) ∼ (c) that the Jordan type J` of HR/(IX+IY) is

J` = HR/(IX+IY)∨
=
(
s, s− 2, s− 2, . . . , s− 2︸ ︷︷ ︸

g1-times

, . . . , s− i− 1, s− i− 1, . . . , s− i− 1︸ ︷︷ ︸
gi-times

, . . . ,

s− σ, s− σ, . . . , s− σ︸ ︷︷ ︸
gσ−1-times

)
.

Therefore, by Lemma 2.2, an Artinian ring R/(IX + IY) has the SLP, as we
wished. �

The following two corollaries are immediate from Proposition 2.7.

Corollary 2.8. Let X and Y be finite sets of general points in Pn with n ≥ 2
and s ≥ t ≥ n. Assume that(

s

n

)
≤ deg(X) <

(
s+ 1

n

)
,

(
t

n

)
≤ deg(Y) <

(
t+ 1

n

)
,

and

deg(X) + deg(Y) =

(
s+ 1

n

)
+ 1.

Then an Artinian ring R/(IX + IY) has the SLP.

Proof. Since X and Y are finite sets of general points in Pn, we get that the
Hilbert functions of R/IX, R/IY, and R/(IX ∩ IY) are

HR/IX : 1
(
1+n
n

)
· · ·

(t−n)-th(
t
n

) (
t+1
n

)
· · ·

(s−n)-th(
s
n

)
deg(X) →,

HR/IY : 1
(
1+n
n

)
· · ·

(t−n)-th(
t
n

)
deg(Y) · · · deg(Y) deg(Y) →,

HR/(IX∩IY) : 1
(
1+n
n

)
· · ·

(t−n)-th(
t
n

) (
t+1
n

)
· · ·

(s−n)-th(
s
n

) (
s+1
n

)
=
[

deg(X) + deg(Y)
]
− 1 →,

respectively. Using the exact sequence

0→ R/(IX ∩ IY)→ R/IX ⊕R/IY → R/(IX + IY)→ 0,

the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 · · ·
(t−n)-th(

t
n

)
deg(Y) · · ·

(s−n)-th
deg(Y) 1 →,

and so by Proposition 2.7, an Artinian ring R/(IX + IY) has the SLP, which
completes the proof. �

Corollary 2.9. Let X and Y be linear star-configurations in P2 of type s and t
with s ≥

(
t
2

)
−1 and t ≥ 3. Then an Artinian linear star-configuration quotient

R/(IX + IY) has the SLP.
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AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 11

Proof. By Proposition 2.5, it holds for s ≥
(
t
2

)
. So we assume that s =

(
t
2

)
− 1.

First note that[
deg(X) + deg(Y)

]
−
(
s+ 1

2

)
=

[(
s

2

)
+

(
t

2

)]
−
(
s+ 1

2

)
=

[(
s

2

)
+ s+ 1

]
−
(
s+ 1

2

)
= 1.

Hence the Hilbert functions of R/IX, R/IY, and R/(IX ∩ IY) (see Proposi-
tion 2.3) are

HR/IX : 1 3 · · ·
(t−2)-nd(

t
2

) (
t+1
2

)
· · ·

(s−2)-nd(
s
2

) (
s
2

)
→,

HR/IY : 1 3 · · ·
(t−2)-nd(

t
2

) (
t
2

)
· · ·

(
t
2

) (
t
2

)
→,

HR/(IX∩IY) : 1 3 · · ·
(t−2)-nd(

t
2

) (
t+1
2

)
· · ·

(s−2)-nd(
s
2

) (s−1)-st(
s+1
2

)
=
[(
s
2

)
+
(
t
2

)]
− 1 →,

respectively. Using the exact sequence

0→ R/(IX ∩ IY)→ R/IX ⊕R/IY → R/(IX + IY)→ 0,

the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 · · ·

(t−2)-nd(
t

2

)
· · ·

(s−2)-nd(
t

2

)
1 →,

and so by Proposition 2.7, an Artinian linear star-configuration quotient
R/(IX + IY) has the SLP, as we wished. �

3. Artinian k-configuration quotients in P2

In this section, we shall introduce another Artinian quotient having the SLP.
We first recall a definition of a k-configuration in P2 and some preliminary
result.

Definition 3.1. A k-configuration of points in P2 is a finite set X of points in P2

which satisfy the following conditions: there exist integers 1 ≤ d1 < · · · < dm,
and subsets X1, . . . ,Xm of X, and distinct lines L1, . . . ,Lm ⊆ P2 such that

(a) X =
⋃m
i=1 Xi,

(b) |Xi| = di and Xi ⊂ Li for each i = 1, . . . ,m, and
(c) Li (1 < i ≤ m) does not contain any points of Xj for all j < i.

In this case, the k-configuration in P2 is said to be of type (d1, . . . , dm).

Recall that a finite complete intersection set of points Z in Pn is said to be
a basic configuration in Pn (see [11, 12]) if there exist integers r1, . . . , rn and
distinct hyperplanes Lij(1 ≤ i ≤ n, 1 ≤ j ≤ ri) such that

Z = H1 ∩ · · · ∩Hn as schemes, where Hi = Li1 ∪ · · · ∪ Liri .
In this case Z is said to be of type (r1, . . . , rn).

Before we prove our main theorem, we first introduce two lemmas.
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12 Y. R. KIM AND Y. S. SHIN

Lemma 3.2. Let X be a k-configuration in P2 of type (1, 2, . . . , d) (see Fig-
ure 1), and let Li and Mj be lines in P2 defined by linear forms x0 − (i− 1)x2
and x1 − (j − 1)x2 for 1 ≤ i, j ≤ d − 1, respectively. Then the multiplication
map by L1 := x0

[R/IX]i
×L1→ [R/IX]i+1

is injective for i ≥ 0. In particular, for j ≥ 1, the multiplication map by Lj1

[R/IX]i
×Lj1→ [R/IX]i+j

is injective for every i ≥ 0.

• Ld
• • Ld−1
...

... ·
...

• • • · L3

• • • · · · • L2

• • • · · · • • L1

M1 M2 M3 · · · Md−1 Md

Figure 1

Proof. If d = 1, then X is a set of a single point in P2, so it is immediate. Hence
we assume that d > 1.

Note that

IX =(L1 · · ·Ld,M1L2 · · ·Ld,M1M2L3 · · ·Ld, . . . ,M1 · · ·Md−1Ld,M1M2 · · ·Md)

(see [9, 11]) and the Hilbert function of R/IX is

HX : 1

(
1 + 2

2

)
· · ·

(d−1)-st(
(d− 1) + 2

2

) (
d+ 1

2

)
→,

(see Theorems 2.7 and 3.6 in [9]).
First, it is obvious that the multiplication map by L1 := x0

[R/IX]i
×L1→ [R/IX]i+1

is injective for 0 ≤ i ≤ d− 2.

Let i = d− 1 = j1 + j2 + j3 with 0 ≤ j1, j2, j3 ≤ d.

(i) Assume j2 = 0 and

xj10 x
j3
2 L1 ∈ [IX]d = 〈L1 · · ·Ld,M1L2 · · ·Ld,M1M2L3 · · ·Ld, . . . ,

M1 · · ·Md−1Ld,M1M2 · · ·Md〉,
that is,

xj10 x
j3
2 L1 = α1L1 · · ·Ld + α2M1L2 · · ·Ld + α3M1M2L3 · · ·Ld + · · ·
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AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 13

+ αdM1 · · ·Md−1Ld + αd+1M1M2 · · ·Md

for some αi ∈ k. Let ℘i,j be a point defined by two linear forms Li and
Mj . Since two linear forms L1 and M2 vanish on a point ℘1,2, we get that

α2 = 0.

Moreover, since two forms L1 and M3 vanish on a point ℘1,3, we have

α3 = 0.

By continuing this procedure, one can show that

α2 = · · · = αd = 0.

Hence

xj10 x
j3
2 L1 = α1L1 · · ·Ld + αd+1M1M2 · · ·Md,

that is,

L1 | αd+1M1M2 · · ·Md and so, αd+1 = 0.

It follows that

xj10 x
j3
2 L1 = α1L1 · · ·Ld, and thus, α1 = 0.

(ii) Assume j2 > 0 and

xj10 x
j2
1 x

j3
2 L1 = α1L1 · · ·Ld + α2M1L2 · · ·Ld + α3M1M2L3 · · ·Ld

+ · · ·+ αdM1 · · ·Md−1Ld + αd+1M1M2 · · ·Md

for some αi ∈ k. Recall that M1 := x1. Thus

M1 | α1L1 · · ·Ld, and hence, α1 = 0.

By the analogous argument as in (i), one can show that

α2 = · · · = αd = αd+1 = 0.

It is from (i) and (ii) that

xj10 x
j2
1 x

j3
2 L1 /∈ [IX]d,

which means that the multiplication map by L1

[R/IX]d−1
×L1→ [R/IX]d

is injective, and surjective as well. Thus the multiplication map by L1

[R/IX]i
×L1→ [R/IX]i+1

is injective and surjective for every i ≥ d− 1, as we wished.

So it follows that the multiplication map by Lj1

[R/IX]i
×Lj1→ [R/IX]i+j

is injective for every i ≥ 0. This completes the proof. �
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14 Y. R. KIM AND Y. S. SHIN

The following lemma is immediate from Proposition 2.7. But we introduce
another elementary proof here.

Lemma 3.3. Let X be a k-configuration in P2 of type (1, 2) in a basic con-
figuration Z in P2 of type (a, 2) with a ≥ 2, and let Y := Z − X, (X is a set
of solid 3-points in Z in Figure 2). Then an Artinian k-configuration quotient
R/(IX + IY) has the SLP.

• ◦ ◦ · · · ◦ ◦ L2

• • ◦ · · · ◦ ◦ L1

M1 M2 M3 · · · Ma−1 Ma

Figure 2

Proof. First, if a = 2, then the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 1 0,

(see [12, Theorem 2.1]) and so it follows that R/(IX + IY) has the SLP.
Now suppose a ≥ 3 and assume that Li and Mj are lines defined by linear

forms Li = x0 − (i − 1)x2 and Mj = x1 − (j − 1)x2 for i and j, respectively.
Let ℘i,j be a point defined by two linear forms Li and Mj . Then

IX = (L1L2, L1M1,M1M2),

IY = (L1L2, L2M3M4 · · ·Ma,M2M3M4 · · ·Ma)

(see [9, 11]) and an ideal IX + IY has 5-minimal generators, i.e.,

IX + IY = (L1L2, L1M1,M1M2, L2M3M4 · · ·Ma,M2M3M4 · · ·Ma).

By [12, Theorem 2.1], the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 3 · · ·
(a−2)-nd

3 1 0 → .

Note that
HR/(IX+IY)(i) = HR/IX(i)

for 0 ≤ i ≤ a− 2.

(i) Assume x0L
a−2
1 = La−11 ∈ [IX + IY]a−1. Then

x0L
a−2
1 = La−11 = F1L1L2 + F2L1M1 + F3M1M2 + β1L2M3M4 · · ·Ma

+ β2M2M3M4 · · ·Ma

for some Fi ∈ Ra−3 and βj ∈ k. Since two linear forms L1 and M2 vanish
on a point ℘1,2, we get that β1 = 0. Similarly, we have β2 = 0 as well.
This means that

x0L
a−2
1 = La−11 = F1L1L2 + F2L1M1 + F3M1M2 ∈ [IX]a−1,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
HR/(IX+IY) is of the form

JL1
= (a, . . . ).
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AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 15

(ii) Similarly, it is from Lemma 3.2 that

x1L
a−3
1 , x2L

a−3
1 /∈ [IX]a−2 = [IX + IY]a−2.

Furthermore, it is obvious that two forms x1L
a−3
1 , x2L

a−3
1 are linearly inde-

pendent in [R/(IX + IY)]a−2 = [R/IX]a−2. So it is from (i) and (ii) that the
Jordan type JL1 of HR/(IX+IY) is

JL1
= H∨R/(IX+IY) = (a, a− 2, a− 2).

Therefore, by Lemma 2.2, an Artinian k-configuration quotient R/(IX + IY)
has the SLP. �

The following proposition can be obtained using Proposition 2.7. However,
we also introduce a different proof here.

Proposition 3.4. Let X be a k-configuration of type (1, 2) contained in a basic
configuration Z in P2 of type (a, b) with 2 ≤ b ≤ a. Define Y := Z − X, (X is
a set of solid 3-points in Figure 3). Then an Artinian k-configuration quotient
R/(IX + IY) has the SLP.

◦ ◦ ◦ ◦ ◦ ◦ Lb
...

...
...

...
...

...
...

◦ ◦ ◦ · · · ◦ ◦ L3

• ◦ ◦ · · · ◦ ◦ L2

• • ◦ · · · ◦ ◦ L1

M1 M2 M3 · · · Ma−1 Ma

Figure 3

Proof. First, if a = b = 2, then it is immediate. If a ≥ 3 and b = 2, by
Lemma 3.3 it holds.

Now suppose a ≥ b ≥ 3 and assume that Li is a line defined by a linear form
Li = x0−(i−1)x2 and Mj is a line defined by a linear form Mj = x1−(j−1)x2
for i and j. Let ℘i,j be a point defined by two linear forms Li and Mj . Then
it is from [9,11] that

IX = (L1L2, L1M1,M1M2), and

IY = (L1L2 · · ·Lb, L2L3 · · ·LbM3 · · ·Ma, L3 · · ·LbM2M3 · · ·Ma,M1M2 · · ·Ma).

Then an ideal IX + IY has 5-minimal generators, i.e.,

IX + IY = (L1L2, L1M1,M1M2, L2L3 · · ·LbM3 · · ·Ma, L3 · · ·LbM2M3 · · ·Ma),

and by [12, Theorem 2.1] the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 3 · · · 3
(a+b−4)-st

3 1 0 → .
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16 Y. R. KIM AND Y. S. SHIN

(i) Assume x0L
a+b−4
1 = La+b−31 ∈ [IX + IY]a+b−3. Then

x0L
a+b−4
1 = La+b−31 = F1L1L2 + F2L1M1 + F3M1M2

+ β1L2L3 · · ·LbM3 · · ·Ma + β2L3 · · ·LbM2M3 · · ·Ma

for some Fi ∈ Ra+b−5 and βj ∈ k. Since two linear forms L1 and M2

vanish on a point ℘1,2, we get that β1 = 0. Similarly, we have β2 = 0 as
well. This means that

x0L
a+b−4
1 = La+b−31 = F1L1L2 + F2L1M1 + F3M1M2 ∈ [IX]a+b−3,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
HR/(IX+IY) is of the form

JL1 = (a+ b− 2, . . . ).

(ii) Similarly, it is from Lemma 3.2 that the following 3-forms

x0L
a+b−5
1 , x1L

a+b−5
1 , x2L

a+b−5
1

are linearly independent. In particular, the following 2-forms

x1L
a+b−5
1 , x2L

a+b−5
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is

JL1
= H∨R/(IX+IY) = (a+ b− 2, a+ b− 4, a+ b− 4).

It is from (i) and (ii) with Lemma 2.2 that an Artinian k-configuration
quotient R/(IX + IY) has the SLP, which completes the proof. �

We now slightly extend the previous result.

Lemma 3.5. Let X be a k-configuration of type (1, 2, 3) in a basic configuration
Z in P2 of type (a, 3) with a ≥ 3 such that Y := Z − X, (X is a set of solid
6-points in Figure 4). Then an Artinian k-configuration quotient R/(IX + IY)
has the SLP.

• ◦ ◦ ◦ · · · ◦ L3

• • ◦ ◦ · · · ◦ L2

• • • ◦ · · · ◦ L1

M1 M2 M3 M4 · · · Ma

Figure 4

Proof. If a = 3, then in Proposition 3.4, Z is a basic configuration of type (3, 3)
and hence, Y is a set of 6 points, Lemma holds. So we suppose that a > 3.
First note that the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 6 · · ·
(a−2)-nd

6 3 1 0.
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AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 17

We assume that Li is a line defined by a linear form Li = x0− (i− 1)x2 and
Mj is a line defined by a linear form Mj = x1 − (j − 1)x2 for i and j. Let ℘i,j
be a point defined by two linear forms Li and Mj . Then

IX = (L1L2L3, L1L2M1, L1M1M2,M1M2M3), and

IY = (L1L2L3, L2L3M4 · · ·Ma, L3M3M4 · · ·Ma,M2M3 · · ·Ma).

So an ideal IX + IY has 7-minimal generators, i.e.,

IX + IY = (L1L2L3, L1L2M1, L1M1M2,M1M2M3,

L2L3M4 · · ·Ma, L3M3M4 · · ·Ma,M2M3 · · ·Ma).

Note that

HR/(IX+IY)(i) = HR/IX(i)

for 0 ≤ i ≤ a− 2.

(i) Assume x0L
a−1
1 = La1 ∈ [IX + IY]a. Then

x0L
a−1
1 = La1 = F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3

+ β1L2L3M4 · · ·Ma + β2L3M3M4 · · ·Ma + β3M2M3 · · ·Ma

for some Fi ∈ Ra−3 and βj ∈ k. Since two linear forms L1 and M3 vanish
on a point ℘1,3, we get that β1 = 0. Similarly, we have β2 = β3 = 0 as
well. This means that

x0L
a−1
1 = La1 = F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3 ∈ [IX]a,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
HR/(IX+IY) is of the form

JL1
= (a+ 1, . . . ).

(ii) By the analogous argument as in (i), one can show that

x1L
a−2
1 , x2L

a−2
1 /∈ [IX + IY]a−1.

We now suppose that

αx1L
a−2
1 + βx2L

a−2
1 ∈ [IX + IY]a−1

for some α, β ∈ k. Then

αx1L
a−2
1 + βx2L

a−2
1

= F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3

+ β1L2L3M4 · · ·Ma + β2L3M3M4 · · ·Ma + β3M2M3 · · ·Ma

for some Fi ∈ Ra−3 and βj ∈ k. Since two linear forms L1 and M3 vanish
on a point ℘1,3, we get that β1 = 0. Similarly, we have β2 = β3 = 0 as
well. This means that

αx1L
a−2
1 + βx2L

a−2
1

= F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3 ∈ [IX]a−1.
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18 Y. R. KIM AND Y. S. SHIN

By Lemma 3.2, we get that

αx1 + βx2 = 0, i.e., α = β = 0,

which implies that two forms

x1L
a−2
1 , x2L

a−2
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is of the
form

JL1 = (a+ 1, a− 1, a− 1, . . . ).

(iii) It is from Lemma 3.2 that

x21L
a−4
1 , x1x2L

a−4
1 , x22L

a−4
1 /∈ [IX]a−2 = [IX + IY]a−2

and the following set of 6-forms

{x0La−31 , x1L
a−3
1 , x2L

a−3
1 , x21L

a−4
1 , x1x2L

a−4
1 , x22L

a−4
1 }

= {x20La−41 , x0x1L
a−4
1 , x0x2L

a−4
1 , x21L

a−4
1 , x1x2L

a−4
1 , x22L

a−4
1 }

is linearly independent. In particular, the 3-forms

x21L
a−4
1 , x1x2L

a−4
1 , x22L

a−4
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is of the
form

JL1 = (a+ 1, a− 1, a− 1, a− 3, a− 3, a− 3).

It is from (i) ∼ (iii) that the Jordan type JL1
is

JL1
= H∨R/(IX+IY) = (a+ 1, a− 1, a− 1, a− 3, a− 3, a− 3).

Therefore, by Lemma 2.2, an Artinian k-configuration quotient R/(IX + IY)
has the SLP. �

Theorem 3.6. Let X be a k-configuration of type (1, 2, 3) in a basic configu-
ration Z in P2 of type (a, b) with a ≥ 4 and b ≥ 3, and let Y := Z−X, (X is a
set of solid 6-points in Figure 5). Then an Artinian ring R/(IX + IY) has the
SLP.

◦ ◦ ◦ ◦ · · · ◦ Lb
...

...
...

...
...

...
...

• ◦ ◦ ◦ · · · ◦ L3

• • ◦ ◦ · · · ◦ L2

• • • ◦ · · · ◦ L1

M1 M2 M3 M4 · · · Ma

Figure 5
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AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 19

Proof. If b = 3, then, by Lemma 3.5, it holds. So we suppose that b > 3. Note
that, by [12, Theorem 2.1], the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 6 · · ·
(a+b−5)-nd

6 3 1 0.

We assume that Li is a line defined by a linear form Li = x0− (i− 1)x2 and
Mj is a line defined by a linear form Mj = x1 − (j − 1)x2 for i and j. Let ℘i,j
be a point defined by two linear forms Li and Mj . Then

IX = (L1L2L3, L1L2M1, L1M1M2,M1M2M3), and

IY = (L1L2 · · ·Lb, L2 · · ·LbM4 · · ·Ma, L3 · · ·LbM3 · · ·Ma,

L4 · · ·LbM2 · · ·Ma,M1M2M3 · · ·Ma).

So an ideal IX + IY has 7-minimal generators, i.e.,

IX + IY = (L1L2L3, L1L2M1, L1M1M2, M1M2M3,

L2 · · ·LbM4 · · ·Ma, L3 · · ·LbM3 · · ·Ma, L4 · · ·LbM2 · · ·Ma).

Note that

HR/(IX+IY)(i) = HR/IX(i)

for 0 ≤ i ≤ a+ b− 5.

(i) Assume x0L
a+b−4
1 = La+b−31 ∈ [IX + IY]a+b−3. Then

x0L
a+b−4
1 = La+b−31 = F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3

+ β1L2 · · ·LbM4 · · ·Ma + β2L3 · · ·LbM3 · · ·Ma

+ β3L4 · · ·LbM2 · · ·Ma

for some Fi ∈ Ra+b−6 and βj ∈ k. Since two linear forms L1 and M3

vanish on a point ℘1,3, we get that β1 = 0. Similarly, we have β2 = β3 = 0
as well. This means that

x0L
a+b−4
1 = La+b−31

= F1L1L2L3+ F2L1L2M1+ F3L1M1M2+ F4M1M2M3 ∈ [IX]a+b−3,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
HR/(IX+IY) is of the form

JL1 = (a+ b− 2, . . . ).

(ii) By the analogous argument as in (i), one can show that

x1L
a+b−5
1 , x2L

a+b−5
1 /∈ [IX]a+b−4 = [IX + IY]a+b−4.

We now suppose that the following 3-forms

αx0L
a+b−5
1 + βx1L

a+b−5
1 + βx2L

a+b−5
1 ∈ [IX + IY]a+b−4

for some α, β, γ ∈ k, that is,

αx0L
a+b−5
1 + βx1L

a+b−5
1 + βx2L

a+b−5
1

= F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3
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20 Y. R. KIM AND Y. S. SHIN

+ β1L2 · · ·LbM4 · · ·Ma + β2L3 · · ·LbM3 · · ·Ma + β3L4 · · ·LbM2 · · ·Ma

for some Fi ∈ Ra+b−6 and βj ∈ k. Since two linear forms L1 and M3

vanish on a point ℘1,3, we get that β1 = 0. Similarly, we have β2 = β3 = 0
as well. This means that

αx0L
a+b−5
1 + βx1L

a+b−5
1 + βx2L

a+b−5
1

= F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3 ∈ [IX]a+b−4.

Hence, Lemma 3.2, α = β = γ = 0, as we wished. This implies that the
3-forms

x0L
a+b−5
1 , x1L

a+b−5
1 , x2L

a+b−5
1

are linearly independent. In particular, the 2-forms

x1L
a+b−5
1 , x2L

a+b−5
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is of the
form

JL1 = (a+ b− 2, a+ b− 4, a+ b− 4, . . . ).

(iii) It is from Lemma 3.2 that the following 6-forms

x20L
a+b−7
1 , x0x1L

a+b−7
1 , x0x2L

a+b−7
1 , x21L

a+b−7
1 , x1x2L

a+b−7
1 , x22L

a+b−7
1

are linearly independent. In particular, the following 3-forms

x21L
a+b−7
1 , x1x2L

a+b−7
1 , x22L

a+b−7
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is of the
form

JL1
= (a+ b− 2, a+ b− 4, a+ b− 4, a+ b− 6, a+ b− 6, a+ b− 6).

It is from (i) ∼ (iii) that the Jordan type JL1
is

H∨R/(IX+IY) = (a+ b− 2, a+ b− 4, a+ b− 4, a+ b− 6, a+ b− 6, a+ b− 6).

Therefore, by Lemma 2.2, an Artinian k-configuration quotient R/(IX + IY)
has the SLP, which completes the proof of this theorem. �

Remark 3.7. Theorem 3.6 has been proved if X is a k-configuration in P2

of type (1, 2) or (1, 2, 3) in a basic configuration in P2. However, if X is a k-
configuration in P2 of type (1, 2, . . . , d) in a basic configuration in P2 with d ≥ 4,
then it cannot be proved by the same method as in the proof of Theorem 3.6.
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