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AN ARTINIAN POINT-CONFIGURATION QUOTIENT AND
THE STRONG LEFSCHETZ PROPERTY

Young Rock Kim' anD Yong-Su SHint

ABSTRACT. In this paper, we study an Artinian point-configuration quo-
tient having the SLP. We show that an Artinian quotient of points in P™
has the SLP when the union of two sets of points has a specific Hilbert
function. As an application, we prove that an Artinian linear star con-
figuration quotient R/(Ix + Iy) has the SLP if X and Y are linear star-

configurations in P2 of type s and t for s > (;) — 1 and t > 3. We also

show that an Artinian k-configuration quotient R/(Ix + Iy) has the SLP
if X is a k-configuration of type (1,2) or (1,2,3) in P2, and XU Y is a
basic configuration in P2.

1. Introduction

Ideals of sets of finite points in P have been studied for a long time ([8,9,11]),
and in particular we consider an ideal of a special configuration in P™, so called
a star-configuration and a k-configuration in P™ ([1-3,6,7,9-11,15]). In 2006,
Geramita, Migliore, and Sabourin introduced the notion of a star-configuration
set of points in P? (see [10]), the name having been inspired by the fact that
10-points in P2, defined by 5 general linear forms in k[zg, x1, 73] resembles a
star. In this paper, we refer to this as a “linear star-configuration”, as more
general definition of star-configurations has evolved through the subsequent
literature (see [1,6,7,19]). Indeed, a star-configuration in P™ has been studied
to find the dimension of secant varieties to the variety of reducible forms in
R =Kk|[xg,1,...,%,], where k is a field of characteristic 0 (see [4,5,20]).

If R/I is a standard graded Artinian algebra and ¢ is a general linear form,
we recall that R/I is said to have the weak Lefschetz property (WLP) if the
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multiplication map by /¢
¢
[R/1a = [R/T)at1

has maximal rank for every d > 0. Over the years, there have been several
papers which have devoted to a classification of possible Artinian quotients
having the WLP (see [1,8,9,13,14,16-18,21,22]). The strong Lefschetz property
(SLP) says that for every i > 1 the multiplication map by ¢

(R/1a "5 [R/Iass

has maximal rank for every d > 0 ([13,14,17]). In [14] the authors proved
that a complete intersection ideal in k[zg,z1] has the SLP. Moreover, in [13],
the authors give a nice description for a graded Artinian ring having the SLP
by using the so-called Jordan type (see Lemma 2.2). The Jordan type is the
partition of n specifying the lengths of blocks in the Jordan block matrix de-
termined by the multiplication map by ¢ in a suitable k-basis for R/I. Here,
we apply this result often to show that some Artinian quotients of the ideals
of points in P" have the SLP.

We use Hilbert functions for many our arguments. Given a homogeneous
ideal I C R, the Hilbert function of R/I, denoted Hpg,;, is the numerical
function Hg,; : Z+ U {0} — Z* U {0} defined by

HR/I(i) = dlm]k[R/IL = dlmk[R]l - dimk[ﬂi,

where [R]; and [I]; denote the i-th graded component of R and I, respectively.
If I := Ix is the defining ideal of a subscheme X in P", then we denote

HR/IX(i) = Hx(l) for i Z O7

and call it the Hilbert function of X.

Let R = Kk[zo, 21, ..., 2z,] be a polynomial ring over a field k of characteristic
0. For positive integers r and s with 1 < r < min{n, s}, suppose Fi,..., Fy
are general forms in R of degrees dy, ..., ds, respectively. Here s general forms
Fi,...,Fs in R means that all subsets of size 1 < r < min{n + 1, s} are
regular sequences in R, and if H = {Fy,...,Fs} is a collection of distinct
hypersurfaces in P™ corresponding to general F7, ..., Fy respectively, then the
hypersurfaces meet properly, by which we mean that the intersection of any r
of these hypersurfaces with 1 < r < min{n, s} has codimesion r. We call the
variety X defined by the ideal

1< <<, <8

a star-configuration in P™ of type (r, s). In particular, if X is a star-configuration
in P" of type (n, s), then we simply call a point star-configuration in P™ of type
s for short.
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Notice that each n-forms Fj ,...,F; of s-general forms Fj,...,Fs in R
define d;, - - - d;, points in P" for each 1 <3 < --- < i, < s. Thus the ideal

N (F,....F)

1<i1 <+ <in<s

defines a finite set X of points in P with

deg<X) = Z di1di2 e din :
1<y <in<--<in<s
Furthermore, if F1, ..., Fy are general linear (quadratic, cubic, quartic, quin-
tic, etc) forms in R, then we call X a linear (quadratic, cubic, quartic, quintic,
ete) star-configuration in P™ of type s, respectively.
To provide some additional focus to this paper, we consider the following
questions.

Question 1.1. Let X and Y be finite sets of points in P and R = k[zg, z1, .. .,
(a) Does an Artinian ring R/(Ix + Iy) have the WLP?
(b) Does an Artinian ring R/(Ix + Iy) have the SLP?

Question 1.2. More precisely, let X and Y be finite point star configurations
in P or X be a k-configuration in P™ such that XU Y is a basic configuration
in P".

(a) Does an Artinian ring R/(Ix + Iy) have the WLP?

(b) Does an Artinian ring R/(Ix + Iy) have the SLP?

In [1], the authors proved that an Artinian linear star-configuration quotient
in P2 has the WLP, which is a partial answer to Question 1.2 (a). Indeed, it is
still true that any finite number of an Artinian linear point star-configuration
quotient in P™ has the WLP. In [8,9], the authors show that Question 1.2(a) is
true in general if X is a k-configuration in P and XUY is a basic configuration
in P with the condition 20(X) < o(XUY), where

o(X) = min{i | Hy (i — 1) = Hyx(i)}.

In this paper, we focus on Questions 1.1(b) and 1.2(b). More precisely, we
first find a condition in which an Artinian quotient of two sets of points in
P™ has the SLP (see Lemma 2.4 and Proposition 2.5). Next we find some
Artinian linear star configuration quotient in P? that has the SLP (see Corol-
lary 2.9). Then, we find an Artinian k-configuration quotient having the SLP
(see Proposition 3.4 and Theorem 3.6). Unfortunately, we do not have any
counter example of an Artinian quotient R/(Ix + Iy) of two point sets in P",
which does not have the SLP, and thus we expect Question 1.1(a) and (b) are
true in general, especially when X and Y are sets of general points in P"™.
Acknowledgement. We took inspiration for this subject from Professor An-
thony Iarrobino during the Research Station on Commutative Algebra, June
13-18, 2016, which was supported by the Korea Institute of Advanced Study.
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2. Artinian linear star-configuration quotients in P?

In this section, we shall show that an Artinian ring R/(Ix + Iy) has the SLP
if X and Y are linear star-configurations in P? of type s and ¢t with s > (;) -1
and t > 3, respectively.

We first introduce the following two results of a star-configuration in P” in
[13,22].

Remark 2.1. Let k be a field of characteristic zero and let F' € k[zq, z1, ..., zy]
=R=@,.,Ri (n>1) be a homogeneous polynomial (form) of degree d, i.e.,
F € Ry. Tt is well known that in this case each R; has a basis consisting of i-th
powers of linear forms. Thus we may write

F=> oL}, o€k, L €R.
=1

If k is algebraically closed (which we now assume for the rest of the paper),
then each a; = Bzd for some ; € k and so we can write

(2.1) F=> (BL)*=> M M eR.
i=1 i=1

We call a description of F' as in equation (2.1), a Waring Decomposition of F.
The least integer r such that F' has a Waring Decomposition with exactly r
summands is called the Waring Rank (or simply the rank) of F.

Lemma 2.2 ([13]). Assume A is graded and Hy is unimodal. Then

(a) A has the WLP if and only if the number of parts of the Jordan type
Joe = max{Hy4(¢)}. (The Sperner number of A);
(b) £ is a strong Lefschetz element of A if and only if J, = HY.

Proposition 2.3 ([22, Proposition 2.5]). Let X and Y be linear star-configura-
tions in P2 of type s and t, respectively, with 3 <t and s > L% (;)J Then XUY
has generic Hilbert function.

Recall that
Hy : ho hy -+ he
is said to be unimodal if there exists j such that
hi < hiyr (i <3),
hi > hiy1 (3 <4).
Lemma 2.4. Let X be a finite set of points in P and let A be an Artinian

quotient of the coordinate ring of X. Assume that H(i) = Hx(i) for every
0<i<s—1and A; =0. Then an Artinian ring A has the SLP.

Proof. First, we assume that the Hilbert function of A is of the form

Ha @ ho h1 -+ hoo1 he -+ hs1 O
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where hy_o < hy—1 =hys =+ =hs_1.
Let ¢ be a general linear form in A;. Since £ is not a zero divisor of A, we
see that the multiplication map by ¢3!

Xzs—l

[R/Ixlo = [Alo — [Als—1 = [R/Ix]s—1
is injective. Hence we have a string of length s
1,0,...,0571
and so the Jordan type Jy for Hy4 is of the form
Je=(s,...).
(i) Let i = 1. Then the multiplication map by £5~2

X[572

[R/Ix]1 = [Ali — [A]ls—1 = [R/Ix]s—1

is injective. Hence there are g; := (h; — hg) = (hy — 1) linear forms
Fi1,Fi9,...,F1 4 € [A]; such that the h; linear forms

K?F1,17F1,27"'7F1,gl

are linearly independent. Hence there are g;-strings of length (s — 1)

-2
Fl’l,Fng, ey Fl’lgs 5 and

,—2
Fio, Fipl, ..., Fi0°77

—2
F13917F1191£’ ) FL{hgs :

(ii) For 1 <i<o—1and 1 <j <14, define
gi=hj —hj

for such j. Assume that there are g;-forms Fj 1, ..., Fj 4, € [A]; and there
are g;-strings of length (s — j)

—i-1
Fj,lvFj,lga ceey Fj71€S J s
s—i—1
F‘j’z,Fj’Qg, o090 Fjg(é J s
, : . ps—d
Fngj ’ FJ’!]J’E’ Tt FJijg

such that the (1+ Y7_, gx)-forms
O R P 0T Fj 0l g, 6 Fj,. . F

7,95

g1-forms gj—1-forms g;j-forms
are linearly independent for such j.
Since the multiplication map by ¢(s—1—(+1)

wpls=D)=(+1)

[R/Ix]iv1 = [Alis1 — [Als—1 = [R/Ix]s—1
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is injective, there are linearly independent g;+; := (hHl — h;)-forms
Fiy1,1,---, Fit1,gi41 € [Ali41. Then the following (1 + Z;;ll gr)-forms

i1 i i 2 2
CFV R 0 Py g 0 F 08 g Rl F g Py, Fip g

g1-forms gi—1-forms gi-forms gi+1-forms

are linearly independent as well. Hence we have g;11-strings of length

(s—i—1)
Fiviq, Fipial, ..., Fz‘+1,1esfl.727
Fii19, Fig100, ..., Fipq205772
_i—2
Fi+1,gi+13Fi+1,gi+1£a L) Fi+1,gi+12€s a

It is from (i) ~ (ii) that the Jordan type
Jo=(s,8s—1,...,86=1,...,8i,....,6 —4,....,s—o+1,...,s —a+1)=HY,

g1-times gi-times go—1-times

as we wished. Therefore, by Lemma 2.2, an Artinian ring has the SLP, which
completes the proof. O

The following proposition is immediate from Lemma 2.4.

Proposition 2.5. Let X and Y be linear star-configurations in P? of type t
and s witht > 2 and s > (;) Then an Artinian ring R/(Ix + Iy) has the SLP.

Proof. First, note that the Hilbert functions of R/Ix, R/Iy, and R/(Ix N Iy)
(see Proposition 2.3) are

(t—2)-nd
Heppe 13 0 () () =

(t—2t)—nd 1 (s—2)-nd
N G I
Hpjory = 103 - () (%) G =0+6 -

respectively. Using the exact sequence
0— R/(IX ﬂ]y) — R/IX D R/IY — R/(IX + Iy) — 0,
the Hilbert function of R/(Ix + Iy) is

(t—2)-nd (s—2)-nd
Hr/(tevry =+ 1 3 - (;) (;) 0 =,
and so by Lemma 2.4, an Artinian linear star configuration quotient R/(Ix+ Iy)
has the SLP, which completes the proof. O

Example 2.6. Let X and Y be linear star-configurations in P? of type 5 and
9, respectively. Note that 9 = (g) — 1. By Proposition 2.3 the Hilbert function
of an Artinian ring A := R/(Ix + Iy) is

8-th
(1,3,6,10,10,10,10,10, 1 ).
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By Waring decomposition, there is a general linear form ¢ € [A]; such that

68 S [A]g,
i.e., we have a string of length 9
1,0,...,08.

Hence the Jordan type Jp is of the form
Je=1(9,...).
Note that the multiplication map by ¢°

x 48

(A1 = [A]7.
is injective, and the multiplication map by £7

x 47

(Al = [A]s
is surjective. Then we can choose a basis {¢, F 1, Fy o} for [A]; such that
F171€6, FLQEG 7’5 0, and F1,1£7, F1’2£7 =0.

Moreover, since {Fy 1£%, Fy 2£°} is linearly independent, we have 2-strings
of length 7

F1,17F1,1€,...,F171€6, and

Fl,g, F1,2€7 o ,F172€6.
Note that the multiplication map by ¢°

x 02

[A]l2 = [A]7
is injective, and the multiplication map by ¢°

x 06

[A]2 = [Als
is surjective. Then we can choose a basis {¢2, Fy 1, Fy o, Fs 1, Fs 2, Fo 3}
for [A]2 such that
F‘QJ[S7 F272€5, F2’3£5 7’5 0, and F2,1£6, F2’2£67 nggfﬁ =0.

Moreover, since {Fs10°, F 20°, F5 30°} is linearly independent, we have 3-
strings of length 6

F2,1) F2,1€7 oo 7F2,1‘€5,

FQ’Q, F2,2€7 N ,F2’2€5, and

Fy3,Fogl, ... Fy3lo.
Note that the multiplication map by ¢*

x4

[A]s = [A]7
is injective, and the multiplication map by ¢°

[A]s 5 [Als
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is surjective. Then we can choose a basis {£3, Fy 102 Fy 20? Fy1{, F o/,
F273€, Fg,l, ey F3,4} for [A}g, such that
F3’1€4,...,F3’4£4 7&0, and F3’1€5,...,F3’4£5 =0.

Moreover, since {F3104,..., F54¢*} is linearly independent, we have 4-
strings of length 5

F31,F510, ... F5,0%
F30,F350, ... F320%,
F3)37F3,3€7...,F3 364, and
Fs4,F34l,. .., F5 40"

This shows that the Jordan type of Hpg (1, +1,) is
Je=1(9,7,7,6,6,6,5,5,5,5) = HIV%/(IxHy)'

Thus, by Lemma 2.2, an Artinian quotient of two linear star-configurations in
P? of type 5 and 9 has the SLP, as we wished.

Example 2.6 motivates the following proposition.

Proposition 2.7. Let X be a finite set of points in P™ and let A be an Artinian
quotient of the coordinate ring of X. Assume that Ha(i) = Hx(i) for every
0<i<s—2with A; =0, and the Hilbert function of A is of the form

(s—2)-nd
HA : ho hl hg_l hg hg hs—l 0

where hy_o < hy_1 = hy and hs_1 = 1. Then an Artinian ring A has the
SLP.

Proof. We first define
gi:=h;—h;—1 for i=1,...,0—1.
(a) By Waring decomposition, there is a linear form ¢ € [A]; such that
571 € [A]s_1.
In other words, there is a string of length s as
1,0,...,057 1
Hence Jordan type of Hp (1, 41,) is of the form
Je=(s,...).
(b) Note that the multiplication map by £5~3

X[573

[R/Ix]1 = [AlL [A]s—2 = [R/Ix]s—2

is injective, and the multiplication map by £5~2

Al ST (Al
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is surjective. Then we can choose a basis {¢, F11, F1 2,...,Fi 4} for [A];
such that

Fl,lgs_g, FLQES_S, feay F1,91€5—3 # 07 and F1,1€S_2, FLQES_Q, [SPN ,FLgles_Q =0.

Moreover, since {Fy 10573, F} 90573 ... Fy 4, 0*73} is linearly independent,
we have g;-strings of length (s — 2)
F1’1,F1,1€, ey F17165737
Fio, Fiol, ..., Fjo0573,
Flﬁglfl,Flyglfle, ceey F1791,11€873, and
Fig, Fig.l, ..., Fpg 0573

This means that Jordan type of Hg/ (1,41, is of the form
Je=1(8,8—2,...,5—2,...).
(c) Let 1 <4 <o — 1. Note that the multiplication map by ¢*~¢~2

><£371'72

[R/Ixli = [Al; " =  [Als—2 = [R/Ix]s—2
is injective, and the multiplication map by ¢5~*~!

X657i71
%

[R/Ix]i = [Als [A]s—1
is surjective. Then we can choose a basis B;
Bi = {0 B0 P g O R By g 0

g1-times g2-times

Fi—l,lga ey Fi_17gi71£, Fi717 R 7Fi,gi

gi—1-times gi-times
for [A]; such that

.Fi,lésfif27 cee ,Fi’g[S*i*2 7£ 0, and Fiﬁlgsiiil, e Fi,gig‘Siiil —0.

i

Moreover, since {F; €572, ... | F; ;,,¢°7*=2?} is linearly independent, we
have g;-strings of length (s —i — 1)

Fi,laF"i,lga ey Fil_i:_Qv

Fi,?aF‘ngv DRI Fis)Q_l_27

Fiyglfl, Fi’glflg, ey Fls,;ll:127 ) and
Fiygi,Fi,gi& ey Fiﬁgigsili .
Hence Jordan type of Hg/(, 4 1,) is of the form
Jo = (s,s—2,5-2,...,5=2,...,s—i—1,s—i—1,...,s—i—1,...)

g1-times gi-times
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for such .
It is from (a) ~ (c) that the Jordan type Jp of Hg/(r,+1,) is

Je=Hp/(141)V

=(s,5—2,5—2,...,s=2,...,s—i—1,s—i—1,...,s—i—1,...,

g1-times gi-times

s—a,s—a,...,s—a).

Jo—1-times

Therefore, by Lemma 2.2, an Artinian ring R/(Ix + Iy) has the SLP, as we
wished. 0

The following two corollaries are immediate from Proposition 2.7.

Corollary 2.8. Let X and Y be finite sets of general points in P™ with n > 2
and s >t > n. Assume that

(Z) < deg(X) < (S:1> (;) < deg(Y) < (tzl),

deg(X) + deg(Y) = (s : 1) +1.

and

Then an Artinian ring R/(Ix + Iy) has the SLP.

Proof. Since X and Y are finite sets of general points in P", we get that the
Hilbert functions of R/Ix, R/Iy, and R/(Ix N Iy) are

(t—n)-th
Hes o1 (0) () ()

(t—n)-th
Hpp o1 (00 o0 () des(¥) o deg(¥) deg() -,

n

(s—n)-th
() deg(X) -,

) (t—n)-th ) (s—n)-th
n t t s
Hejenry = 1 (0 - Q) () Q)

respectively. Using the exact sequence
0—>R/(IxNly) > R/Ix®R/Iy — R/(Ix + Iy) — 0,
the Hilbert function of R/(Ix + Iy) is

() = o) ] 1

n

(t—7t1)—th (s—n)-th
Hr/ 4y @ 1 3 -+ (n) deg(Y) -+ deg(Y) 1 —,

and so by Proposition 2.7, an Artinian ring R/(Ix + Iy) has the SLP, which
completes the proof. O

Corollary 2.9. Let X and Y be linear star-configurations in P? of type s and t
with s > (;) —1 and t > 3. Then an Artinian linear star-configuration quotient
R/(Ix + Iy) has the SLP.
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Proof. By Proposition 2.5, it holds for s > (;) So we assume that s = (;) -1
First note that

s (1)) (] (1)
(- (1)

Hence the Hilbert functions of R/Ix, R/Iy, and R/(Ix N Iy) (see Proposi-

tion 2.3) are

(t—2)-nd (s—2)-nd

Hppo o0 103 () (%) (3) () -
(t—2)-nd
t t t t
Hpjr, = 1 3 - (2) (2) (2) (2) —
(t—2)-nd (s—2)-nd (s—1)-s

G

Hejrory = 103 () (%)
respectively. Using the exact sequence
0—-R/(IxNly) > R/Ix®R/Iy — R/(Ix + Iy) — 0,
the Hilbert function of R/(Ix + Iy) is
(t—2)-nd (s—2)-nd

t t
HR/(IX+IY) . 1 3 <2) <2) 1 —,

and so by Proposition 2.7, an Artinian linear star-configuration quotient
R/(Ix + Iy) has the SLP, as we wished. O

3. Artinian k-configuration quotients in P?

In this section, we shall introduce another Artinian quotient having the SLP.
We first recall a definition of a k-configuration in P? and some preliminary
result.

Definition 3.1. A k-configuration of points in P? is a finite set X of points in P2
which satisfy the following conditions: there exist integers 1 < dy < -+ < dpm,
and subsets X, ...,X,, of X, and distinct lines L, ...,L,, € P? such that

(a) X =U;1, X,

(b) |X;|=d; and X; CLL; for each i =1,...,m, and

(¢) L; (1 <4< m) does not contain any points of X; for all j < i.
In this case, the k-configuration in P? is said to be of type (dy,...,d).

Recall that a finite complete intersection set of points Z in P™ is said to be
a basic configuration in P (see [11,12]) if there exist integers rq,...,r, and
distinct hyperplanes L;; (1 <7 <n,1 < j <r;) such that
Z =H; N---NH, as schemes, where H; =L;; U---ULj,.

In this case Z is said to be of type (r1,...,7,).

Before we prove our main theorem, we first introduce two lemmas.
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Lemma 3.2. Let X be a k-configuration in P? of type (1,2,...,d) (see Fig-
ure 1), and let L; and M be lines in P? defined by linear forms xo — (i — 1)z
and x1 — (j — Dag for 1 <i,5 < d —1, respectively. Then the multiplication

map by L1 := xg
L
[R/Ix]i = [R/Ix]iv1

is injective for i > 0. In particular, for j > 1, the multiplication map by L]

RIS R/ T,

is injective for every i > 0.

Lqg
J Lg 1
° ° . Ls
° ° e e Lo
° ° ) ° Ly
M; M Mz -+ Mg1 My

FIGURE 1

J

Proof. If d = 1, then X is a set of a single point in P2, so it is immediate. Hence

we assume that d > 1.

Note that

Ix=(Ly---Lg,MyLy---Lg,MyMyL3---Lg,...,My---Mg_1Lq, M1 Ms---

(see [9,11]) and the Hilbert function of R/Ix is

(d—1)-st

H, : 1 <142—2> ((d—;)—l—?) <d—;1> N
(see Theorems 2.7 and 3.6 in [9]).
First, it is obvious that the multiplication map by L; := xg
(R/Ix)i %" [R/Ix]in
is injective for 0 < i < d — 2.
Let i =d—1=j1 +J2 + j3 with 0 < j1, j2,j3 < d.
(i) Assume j3 =0 and
ah P Ly € [Ixlg= (L1~ Lag, MiLo--- Lgy MyMsLz--- Ly, ...,
My Mg_yLg, MiMs--- Mg),
that is,

LL’gl:L";SLl = a1L1 s 'Ld + OZ2M1L2 s Ld + Oé3M1M2L3 s 'Ld + -

My)
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+oagMy - - Mg_1Lg+ cgei MMy --- My

for some a; € k. Let p; ; be a point defined by two linear forms L; and
M;. Since two linear forms L; and M vanish on a point g; », we get that

Qo = 0.
Moreover, since two forms L; and M3 vanish on a point p; 3, we have
a3 = 0.
By continuing this procedure, one can show that
ag = =aqg=0.

Hence
.%'O {L‘23L1 =a1Ly---Lg+ agriMiMy--- My,
that is,

Ly | agy1MiMs--- My and so, «g41 =0.
It follows that
xo x23L1 =a1lq---Lg, and thus, a3 =0.
(ii) Assume jo > 0 and
950 ,’EJ2$L'J3L1 =a1Ly---Lg+ oMLy Lg+asMiMsLs--- Ly
- agMy - Ma_1La + gy MMy -~ My
for some «; € k. Recall that M; := z1. Thus
M |ayLy---Lg, and hence, «; =0.
By the analogous argument as in (i), one can show that
Qg =+ =09 =0g4+1 =0.
It is from (i) and (ii) that
aco a: L1 ¢ [Ix]a,
which means that the multiplication map by L,
[R/Ixla—r 3" [R/Ixla
is injective, and surjective as well. Thus the multiplication map by L,
[R/Ix): 5" [R/Ix)i
is injective and surjective for every i > d — 1, as we wished.

So it follows that the multiplication map by Lj

[R/Ix)i - [R/ Ixliv;

is injective for every ¢ > 0. This completes the proof. (|
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The following lemma is immediate from Proposition 2.7. But we introduce
another elementary proof here.

Lemma 3.3. Let X be a k-configuration in P? of type (1,2) in a basic con-
figuration Z in P% of type (a,2) with a > 2, and let Y := Z — X, (X is a set
of solid 3-points in Z in Figure 2). Then an Artinian k-configuration quotient
R/(Ix + Iy) has the SLP.

° o o .- o ) Lo
° ° o .- o o L,
My My Mz -+ My M,
FIGURE 2

Proof. First, if a = 2, then the Hilbert function of R/(Ix + Iy) is

HR/(IX+Iy) : 1 1 0,
(see [12, Theorem 2.1]) and so it follows that R/(Ix + Iy) has the SLP.

Now suppose a > 3 and assume that L; and M are lines defined by linear
forms L, = xo — (i — 1)xo and M; = 1 — (j — 1)x2 for ¢ and j, respectively.
Let @; ; be a point defined by two linear forms L; and M;. Then

Ix = (L1 Lo, L1 My, My My),
Iy = (L1Lg, LaM3My - - - My, Mo M3 My - - - M,)
(see [9,11]) and an ideal Ix + Iy has 5-minimal generators, i.e.,
Ix + Iy = (Ly Lo, Ly My, My My, LyM3My - - - Mo, Mo M3 My - - - M,).
By [12, Theorem 2.1], the Hilbert function of R/(Ix + Iy) is

(a—2)-nd
HR/(IXJ’,IY) 13 3 .- 3 1 0 —.

Note that
Hp)(1,41,)(1) = Hp/1, (1)
for0<i<a-—2.
(i) Assume xoL‘fQ = L‘fl € [Ix + Iy]a—1- Then
2oL8? = Ly = Fi Ly Ly + FoLy My + F3My Mo + 8y LoMs M, - - - M,
+ BoMaMzMy --- M,
for some F; € R,_3 and §; € k. Since two linear forms L; and M, vanish

on a point gq 2, we get that §; = 0. Similarly, we have S = 0 as well.
This means that

xoL{ ? = L{ ' = L1 Ly + Fo L1 My + F3Mi My € [Ix)q-1,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
Hpr/(1,+1y) is of the form
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(ii) Similarly, it is from Lemma 3.2 that
21 L83 2o L% ¢ [Ix]a—z = [Ix + Iy]a—o-

Furthermore, it is obvious that two forms xq L’f_3, argL‘f_S are linearly inde-
pendent in [R/(Ix + Iy)]a—2 = [R/Ix]a—2. So it is from (i) and (ii) that the
Jordan type Jr, of Hg/(r,11,) 18

JLI :HE/(IX+Iy):(a7a_2,a/—2).
Therefore, by Lemma 2.2, an Artinian k-configuration quotient R/(Ix + Iy)
has the SLP. (]

The following proposition can be obtained using Proposition 2.7. However,
we also introduce a different proof here.

Proposition 3.4. Let X be a k-configuration of type (1,2) contained in a basic
configuration Z in P? of type (a,b) with 2 < b < a. Define Y := Z — X, (X is
a set of solid 3-points in Figure 8). Then an Artinian k-configuration quotient
R/(Ix + Iy) has the SLP.

o o o o o o L,
o o o L3
° o o Lo
° 'Y o e Ll
Ml MQ MS s Mafl Ma
FI1GURE 3

Proof. First, if a = b = 2, then it is immediate. If ¢« > 3 and b = 2, by
Lemma 3.3 it holds.

Now suppose a > b > 3 and assume that L; is a line defined by a linear form
L; = 29— (i—1)x2 and M is a line defined by a linear form M; = z1 —(j—1)z2
for ¢ and j. Let p; ; be a point defined by two linear forms L; and M;. Then
it is from [9,11] that
Ix = (L1 Lo, L1 My, M1 Ms), and
Iy = (LiLy--- Ly, LoLg -+ LyMs--- My, L3 --- LyMaMs - - - Mg, My My - - - M,).
Then an ideal Ix + Iy has 5-minimal generators, i.e.,

Ix + Iy = (L1Lo, Ly My, My My, LyLz - - LyMs - - - My, Lz - - - Ly Mo M3 - - - M),
and by [12, Theorem 2.1] the Hilbert function of R/(Ix + Iy) is

(a+b—4)-st
Hp/ 4,y : 1 3 3 -+ 3 3 1 0 —.
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(i) Assume QCOLTFZ”‘1 = L‘f*bi?’ € [Ix + Iy]a+b—3. Then
2o L4T0™ = LY = YLy Ly + FoLy My + F3 My My
+ P1LoLs - LyMs--- Mo + BaLg -+ LMo Ms -+~ M,

for some F; € Rq4p—5 and B; € k. Since two linear forms L; and Ms
vanish on a point p; 2, we get that 5; = 0. Similarly, we have 85 = 0 as
well. This means that

xo L9t = LIP3 — B\ L Ly 4+ Fo Ly My + Fs My My € [Ix]ats-3,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
Hpg/(1,+1y) is of the form

J,=(a+b—2,...).
(ii) Similarly, it is from Lemma 3.2 that the following 3-forms
2o L0753y [OTb=5 g, patb=5
are linearly independent. In particular, the following 2-forms
@ Lo+b=5 g, [atb=5
are linearly independent. Hence the Jordan type of Hg, (7,4 1,) is
Jo, =Hp)rin) = (a+b—2,a+b—4,a+b—4).

It is from (i) and (ii) with Lemma 2.2 that an Artinian k-configuration
quotient R/(Ix + Iy) has the SLP, which completes the proof. O

We now slightly extend the previous result.

Lemma 3.5. Let X be a k-configuration of type (1,2,3) in a basic configuration
Z in P? of type (a,3) with a > 3 such that Y := Z — X, (X is a set of solid
6-points in Figure 4). Then an Artinian k-configuration quotient R/(Ix + Iy)
has the SLP.

° o o o ) L3
° ° o o o Lo
° ° ° o o L
My My Mg My --- M,
FIGURE 4

Proof. If a = 3, then in Proposition 3.4, Z is a basic configuration of type (3, 3)
and hence, Y is a set of 6 points, Lemma holds. So we suppose that a > 3.
First note that the Hilbert function of R/(Ix + Iy) is

(a—2)-nd
HR/(Ix-I-I\v) 1 3 6 --- 6 3 1 0.
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We assume that L; is a line defined by a linear form L; = 29 — (i — 1)x5 and
M, is a line defined by a linear form M; = 1 — (j — 1)z for ¢ and j. Let g, ;
be a point defined by two linear forms L; and M;. Then

Ix = (L1 LoL3, Ly LoMy, L1 My Mo, My MsMs), and
Iy = (L1LoLg, LoL3My - - - M, LsMsMy - - - My, MoMs - - - M,).
So an ideal Ix + Iy has 7-minimal generators, i.e.,
Ix + Iy = (L1 Lo L3, Ly Loy My, Ly My My, My My M3,
LoLsMy-- My, LsMsMy--- My, MoMs--- M,).
Note that
Hp)(1+1,)(0) = Hpy 1, (4)
for0<i<a-2.
(i) Assume 29L¢"! = L§ € [Ix + Iy]a. Then
woL§™" = LY = FiLyLyLg + FyLy Lo My + F3Ly My My + Fy My My Mg
+ B1LoLsMy- - Mg + BoLs MMy -+ My + B3 MaM; - - - M,

for some F; € R,—3 and §; € k. Since two linear forms L; and M3 vanish
on a point pj 3, we get that 81 = 0. Similarly, we have Sy = 3 = 0 as
well. This means that

xoL{™t = LY = F1 L1 LyLy + FoLy Lo M; + F3Ly My My + FyMy My Ms € [Ix).,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
Hpr/(1,41y) is of the form

Jr,=(a+1,...).
(ii) By the analogous argument as in (i), one can show that
o1 L7 w2 L% ¢ [Ix + Iyla-1.
We now suppose that
ax1Ly™? + BraLi™? € [Ix + Iyla—1
for some «, 5 € k. Then

ax L2 + Bag 142
= F\LiLoLs + FoLy Lo My + F3Ly My Mo + Fy My Mo Ms

+ P1LoLsMy--- My + BoLsM3My--- Mg + S3MoMs -+ M,

for some F; € R,_3 and §; € k. Since two linear forms L; and M3 vanish
on a point (i3, we get that 31 = 0. Similarly, we have 8 = 3 = 0 as
well. This means that

ozanlL‘f_2 + Ba:QL‘f_Q
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By Lemma 3.2, we get that
axy + fre =0, ie, a=p=0,
which implies that two forms
21 L8 72 o L2

are linearly independent. Hence the Jordan type of Hp/ (1, 41,) is of the
form

Jp,=(@+1la—-1a—-1,...).
(iii) It is from Lemma 3.2 that
3Ly waa LY a3 LY ¢ [Ixla—2 = [Ix + Iy]a—2
and the following set of 6-forms
{woL9™3, 2 L3 ap L33, 22 L™ wya LS, 23 L)
= {:ch‘f_4,xole‘f_4,xonL‘f_Al,x%L‘f_‘l,xlng‘f_4,m§L‘f_4}
is linearly independent. In particular, the 3-forms
22084 ryao LY 2308

are linearly independent. Hence the Jordan type of Hp/ (1, 41,) is of the
form

Jp,=(a+1,a—1,a—1,a—3,a—3,a—3).
It is from (i) ~ (iii) that the Jordan type Jr, is
Jo, =Hp 1) = (@+La—1la—1,a-3,a—3,a—3).

Therefore, by Lemma 2.2, an Artinian k-configuration quotient R/(Ix + Iy)
has the SLP. O

Theorem 3.6. Let X be a k-configuration of type (1,2,3) in a basic configu-
ration Z in P? of type (a,b) witha >4 and b >3, and let Y :=Z — X, (X is a
set of solid 6-points in Figure 5). Then an Artinian ring R/(Ix + Iy) has the
SLP.

o o o o .- o L

° o o o ) Ls

° ° o o o Lo

° ° ° o o 1L
M; M, My My M,

FIGURE 5
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Proof. If b = 3, then, by Lemma 3.5, it holds. So we suppose that b > 3. Note
that, by [12, Theorem 2.1], the Hilbert function of R/(Ix + Iy) is

(a+b—5)-nd
HR/(IX+IY) 1 3 6 --- 6 3 1 0.

We assume that L; is a line defined by a linear form L; = 29 — (i — 1)x5 and
M, is a line defined by a linear form M; = 1 — (j — 1)z for ¢ and j. Let g, ;
be a point defined by two linear forms L; and M;. Then

Ix = (L1LoLs, L1 Lo My, Ly My My, My Mo Ms), and
Iy = (LyLy--- Ly, Ly---LyMy--- My, Ls--- LyMs - - - M,,
Ly LyMs -+ My, My Mo Ms - - - My).
So an ideal Ix + Iy has 7-minimal generators, i.e.,

Ix + Iy = (L1L2oLs, L1LaMy, LiMiMa, MiM;Ms,

Lo---LyMy-- My, Lg---LyMs--- My, Ly---LyMs--- M,).

Note that

Hr)(141)(1) = Hry1, (i)
for0<i<a+b->5.
(i) Assume mOL‘fJFZF4 = L‘f“’*g € [Ix + Iy]atb—3. Then
xoL§T0* = LYY = B\ Ly LoLs + FoLy Ly My + F3Ly My My + Fy My My Ms
+B1Llg - LyMy- -+ My + BoLls -+ LyMs - -+ M,
+ B3Ly--- LyMa--- M,
for some F; € R,4p—¢ and 3; € k. Since two linear forms L; and Ms
vanish on a point g 3, we get that 5; = 0. Similarly, we have B = 33 =0
as well. This means that
woLath—t = pa+b=3

= 1Ly LoLz+ FaLy Lo My + F3Ly My Mo+ Fy My Ma M3 € [Ix]atb—3,
which is a contradiction (see Lemma 3.2). Hence the Jordan type of
Hpg/(1,+1y) is of the form

Jo,=(a+b-2,...).
(ii) By the analogous argument as in (i), one can show that
@y LY w70 ¢ [Ixlays—a = [Ix + Ivlatba.
We now suppose that the following 3-forms
axoLYT75 4 By L4075 4 Bag LI™5 € [Ix 4 Iy]assa
for some «, B, € k, that is,
azoLItb= + By LI+0=5 4 By, [o+0—5
= L1 LoLs + Fy Ly Lo My + F3 Ly My My + Fy My Mo Ms
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+ B1Lo- - LyMy--- Mo + BoLis - LyMs--- Mo + B3Ly- - LyMa - - M,

for some F; € R,4p—¢ and B; € k. Since two linear forms L; and Ms
vanish on a point g 3, we get that 5; = 0. Similarly, we have B = 33 =0
as well. This means that

axoL‘f+b_5 + leL‘f+b_5 + ,Bng‘f+b_5
= 1L LoL3 + Foly Lo My + F3Ly My My + FyMy My M3 € [Ix]ayp—a-
Hence, Lemma 3.2, « = f = v = 0, as we wished. This implies that the

3-forms
.TQLT—H)_S, X1 L(ll+b_5 , L9 L‘f+b_5

are linearly independent. In particular, the 2-forms
LUlLlll+b75 $2L(11+b75

are linearly independent. Hence the Jordan type of Hp/ (1, 4r,) is of the
form
Jp,=(a+b—2,a+b—4,a+b—4,...).
(iii) It is from Lemma 3.2 that the following 6-forms
2L wowy LS oao LSO LY g g LSO a2 L4

are linearly independent. In particular, the following 3-forms

SC%L;L+b_77 $1.’E2L(11+b_7, ngtll+b—7
are linearly independent. Hence the Jordan type of Hp/ (1, 41,) is of the

form
Jp,=(a+b—-2,a+b—4,a+b—4,a+b—6,a+b—6,a+b—6).

It is from (i) ~ (iii) that the Jordan type Jp, is

Hy, () =(@+b—2a+b—4,a+b—4,a+b—6,a+b—6,a+b—06).

Therefore, by Lemma 2.2, an Artinian k-configuration quotient R/(Ix + Iy)
has the SLP, which completes the proof of this theorem. (I

Remark 3.7. Theorem 3.6 has been proved if X is a k-configuration in P2
of type (1,2) or (1,2,3) in a basic configuration in P2. However, if X is a k-
configuration in P2 of type (1,2, ..., d) in a basic configuration in P? with d > 4,
then it cannot be proved by the same method as in the proof of Theorem 3.6.
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