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THEOREM TO THE NONLINEAR MATRIX EQUATIONS

Sejong Kim and Hosoo Lee

Abstract. In this article we consider certain types of nonlinear matrix

equations including the stochastic rational Riccati equation and show
the existence and uniqueness of the positive definite solution by using

Bhaskar-Lakshmikantham’s coupled fixed point theorem.

1. Introduction

The fixed point theory has been studied widely in nonlinear analysis, and its
results have been developed in a variety of areas in mathematics and engineer-
ing. In recent years, there has been a lot of interest in establishing fixed point
theorems on ordered metric spaces with a contractive condition which holds for
all points that are related by partial ordering. This trend was initiated by Ran
and Reurings in [15] where they extended the Banach contraction principle in
partially ordered sets with some applications to matrix equations.

Bhaskar and Lakshmikantham [3] introduced the notions of a mixed mono-
tone mapping and a coupled fixed point, and proved some coupled fixed point
theorems for mixed mappings in ordered metric spaces. Afterwards, Laksh-
mikantham and Ćirić [10] established coupled coincidence and coupled fixed
point theorems. Many different kinds of coupled fixed point theorems with
applications have been developed; see the literatures [2,7,10,13]. In this article
we mainly focus on solving the certain nonlinear matrix equations using the
coupled fixed point theorem.

In [1] Berzig, Duan, and Samet have studied the positive definite solution
to the nonlinear matrix equation

(1.1) X = Q−A∗X−1A+B∗X−1B,

where Q is an n × n positive definite Hermitian matrix, A,B are arbitrary
n × n matrices. This is a special stochastic rational Riccati equation arisen
in stochastic control theory. Also, the special cases of (1.1) such as X =
Q−A∗X−1A and X = Q+B∗X−1B have been studied (see [8, 14]).
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Furthermore, many researchers have considered the following nonlinear ma-
trix equation generalizing the equations

(1.2) X −
m∑
i=1

A∗iX
δiAi = Q,

where 0 < |δi| < 1 and Ai’s are arbitrary n×n matrices for all i = 1, . . . ,m, and
suggested numerical methods for finding a solution [5, 6, 12]. Huang, Huang,
Tsai [9] and Duan, Liao, Tang [5] have shown the existence and uniqueness of
the positive definite solution of the equation (1.2) by using Hilbert’s projective
metric and fixed point theorems for monotone and mixed monotone operators,
respectively. Moreover, Lim [11] has shown it by proving that the map F (X) =
Q +

∑m
i=1A

∗
iX

δiAi is a strict contraction for the Thompson metric with the
contraction coefficient less than or equal to δ := max{|δi|}mi=1.

In this article, we investigate the matrix equation generalized the equations
(1.1) and (1.2)

(1.3) X = Q±
m∑
i=1

AiX
±piA∗i ∓

n∑
j=1

BjX
±qjB∗j ,

where pi, qj ∈ (0, 1], and Ai’s and Bj ’s are arbitrary n × n matrices for all
i = 1, . . . ,m and j = 1, . . . , n. We show the existence and uniqueness of the
positive definite solution to the nonlinear matrix equation (1.3) using Bhaskar-
Lakshmikantham’s coupled fixed point theorem. We also discuss some simple
cases of the equation (1.3) including two equations (1.1) and (1.2).

2. Preliminaries

Throughout this paper, we denote by H(n) the set of all n × n Hermitian
matrices. For A,B ∈ H(n), A ≤ B(A < B) means that B − A is positive
semidefinite (positive definite, respectively). Moreover, X ∈ [A,B] means that
A ≤ X ≤ B, and X ∈ [A,∞) means that X ≥ A. We denote by ‖A‖ and
‖A‖tr the spectral norm and trace norm, respectively, that is,

‖A‖ = max{σj(A) : j = 1, . . . , n},

‖A‖tr =

n∑
j=1

σj(A),

where σj(A), j = 1, . . . , n are the singular values of A.
The following lemmas will be useful later.

Lemma 2.1. Let A,B ∈ H(n) such that A ≥ O and B ≥ O. Then

0 ≤ tr(AB) ≤ ‖A‖ tr(B).

Lemma 2.2 ([4]). If A,B > O with A ≤ B, then At ≤ Bt for any 0 ≤ t ≤ 1
and A−1 ≥ B−1.
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Lemma 2.3 ([4]). Let P and Q be positive definite matrices of the same order
with P,Q ≥ aI, where a > 0. Then for every unitarily invariant norm |‖ · |‖
and 0 < t ≤ 1

|‖P t −Qt|‖ ≤ tat−1|‖P −Q|‖,

|‖P−t −Q−t|‖ ≤ ta−(t+1)|‖P −Q|‖.

Let (X,�) be a partially ordered set and F : X × X → X be a given
mapping. We say that F has the mixed monotone property if for any x, y ∈ X

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y),

y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2).

We say that (x, y) is a coupled fixed point of F if x = F (x, y) and y = F (y, x).
The following fixed point theorem is the key of the main result.

Theorem 2.4 ([3]). Let (X,�) be a partially ordered set endowed with a metric
d such that (X, d) is complete. Let F : X ×X → X be a continuous mapping
having the mixed monotone property on X. Assume that there exists a δ ∈ [0, 1)
such that

d(F (x, y), F (u, v)) ≤ δ

2
[d(x, u) + d(y, v)]

for any (x, y), (u, v) ∈ X × X with x � u and y � v. We suppose that there
exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0). Then

(a) F has a coupled fixed point (x̄, ȳ) ∈ X ×X; and
(b) the sequences {xn} and {yn} defined by xn+1 = F (xn, yn) and yn+1 =

F (yn, xn) converge to x̄ and ȳ, respectively.

In addition, suppose that every pair of elements has a lower bound and an upper
bound, then

(c) F has a coupled fixed point (x̄, ȳ) ∈ X ×X;
(d) x̄ = ȳ; and
(e) we have the following estimate

max{d(xn, x̄), d(yn, x̄)} ≤ δn

2(1− δ)
[d(F (x0, y0), x0) + d(F (y0, x0), y0)].

3. Solving X = Q +

m∑
i=1

AiX
piA∗

i −
n∑

j=1

BjX
qjB∗

j

In this section, we consider the following matrix equation

(3.4) X = Q+

m∑
i=1

AiX
piA∗i −

n∑
j=1

BjX
qjB∗j ,

where pi, qj ∈ (0, 1].
For a, b > 0 the following assumptions are considered:
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1. aI + bM

n∑
j=1

BjB
∗
j ≤ Q ≤ bI − bM

m∑
i=1

AiA
∗
i ,

2.

m∑
i=1

‖AiA∗i ‖ <
a

2aM
,

n∑
j=1

∥∥BjB∗j ∥∥ < a

2aM
,

where

aM := max{api , aqj : 1 ≤ i ≤ m, 1 ≤ j ≤ n},
bM := max{bpi , bqj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Theorem 3.1. Under the assumptions 1 and 2, we have

(I) Equation (3.4) has a unique solution X̄ ∈ [aI, bI], and
(II) the sequences {Xk} and {Yk} defined by

X0 = aI,

Xk+1 = Q+

m∑
i=1

AiX
pi
k A

∗
i −

n∑
j=1

BjY
qj
k B∗j ,

Y0 = bI,

Yk+1 = Q+

m∑
i=1

AiY
pi
k A∗i −

n∑
j=1

BjX
qj
k B

∗
j ,

converge to X̄, that is,

lim
k→∞

‖Xk − X̄‖tr = lim
k→∞

‖Yk − X̄‖tr = 0.

Furthermore, the error estimation is given by

max{‖Xk − X̄‖tr, ‖Yk − X̄‖tr} ≤
δk

1− δ
max{‖X1 −X0‖tr, ‖Y1 − Y0‖tr},

where 0 < δ < 1.

Proof. For X,Y ∈ H(n) let

F (X,Y ) = Q+

m∑
i=1

AiX
piA∗i −

n∑
j=1

BjY
qjB∗j .

By Lemma 2.2 F is a continuous mapping having the mixed monotone property.
We claim that F ([aI, bI]2) ⊆ [aI, bI]. Let X,Y ∈ [aI, bI], that is, aI ≤

X,Y ≤ bI. This implies by assumption 1 that

F (X,Y ) ≤ Q+

m∑
i=1

AiX
piA∗i ≤ Q+

m∑
i=1

bpiAiA
∗
i ≤ Q+ bM

m∑
i=1

AiA
∗
i ≤ bI,

and

F (X,Y ) ≥ Q−
n∑
j=1

BjY
qjB∗j ≥ Q−

n∑
j=1

bqjBjB
∗
j ≥ Q− bM

n∑
j=1

BjB
∗
j ≥ aI.
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Let X,Y, U, V ∈ [aI, bI] such that X ≥ U and Y ≤ V . Then

‖F (X,Y )− F (U, V )‖tr

=

∥∥∥∥∥∥
m∑
i=1

Ai(X
pi − Upi)A∗i +

n∑
j=1

Bj(V
qj − Y qj )B∗j

∥∥∥∥∥∥
tr

≤
m∑
i=1

‖Ai(Xpi − Upi)A∗i ‖tr +

n∑
j=1

∥∥Bj(V qj − Y qj )B∗j
∥∥
tr

≤
m∑
i=1

‖AiA∗i ‖ ‖Xpi − Upi‖tr +

n∑
j=1

∥∥BjB∗j ∥∥ ‖V qj − Y qj‖tr
≤

(
m∑
i=1

pia
pi−1 ‖AiA∗i ‖

)
‖X − U‖tr +

 n∑
j=1

qja
qj−1

∥∥BjB∗j ∥∥
 ‖V − Y ‖tr

≤ aM
a

( m∑
i=1

‖AiA∗i ‖

)
‖X − U‖tr +

 n∑
j=1

∥∥BjB∗j ∥∥
 ‖V − Y ‖tr

 .
The first inequality follows from the triangle inequality, the second from Lemma
2.1, the third from Lemma 2.3, and the last from the following inequality: for
any t ∈ {pi, qj}

0 < tat−1 ≤ at

a
≤ aM

a
.

This implies that

‖F (X,Y )− F (U, V )‖tr ≤
δ

2
[‖X − U‖tr + ‖V − Y ‖tr] ,

where

δ =
2aM
a

max


m∑
i=1

‖AiA∗i ‖ ,
n∑
j=1

∥∥BjB∗j ∥∥
 .

From condition 2 we can easily see that 0 ≤ δ < 1.
Taking X0 = aI and Y0 = bI we can show from condition 1 that X0 ≤

F (X0, Y0) and Y0 ≥ F (Y0, X0). On the other hand, for every X,Y ∈ H(n)
there exist a greatest lower bound and a least upper bound. Thus, (I) and
(II) follow immediately from Theorem 2.4, and X̄ is the unique solution to
Equation (3.4) in [aI, bI]. �

The following results are immediate consequences of Theorem 3.1.

Corollary 3.2. Consider the matrix equation (3.4) with Q = I. Suppose that
m∑
i=1

‖AiA∗i ‖ ≤ min

{
b− 1

bM
,
a

2aM

}
and

n∑
j=1

‖BjB∗j ‖ ≤ min

{
1− a
bM

,
a

2aM

}
.

Then items (I) and (II) of Theorem 3.1 hold.
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Corollary 3.3. Consider the matrix equation (3.4) with unitary matrices Ai
and Bj for all i and j. Suppose that

1. (a+ nbM )I ≤ Q ≤ (b−mbM )I, and

2. aM < min
{ a

2m
,
a

2n

}
.

Then items (I) and (II) of Theorem 3.1 hold.

The following is the case when pi = qj = t ∈ (0, 1] for all i, j, and Ai = Bj =
O for all i, j except one term.

Corollary 3.4. Consider the matrix equation

(3.5) X = Q+AXtA∗ −BXtB∗,

where t ∈ (0, 1]. Suppose that

1. aI + btBB∗ ≤ Q ≤ bI − btAA∗, and

2. ‖AA∗‖ < a1−t

2
, ‖BB∗‖ < a1−t

2
.

Then items (I) and (II) of Theorem 3.1 hold.

4. Solving X = Q −
m∑
i=1

AiX
−piA∗

i +

n∑
j=1

BjX
−qjB∗

j

In this section, we consider the following matrix equation

(4.6) X = Q−
m∑
i=1

AiX
−piA∗i +

n∑
j=1

BjX
−qjB∗j ,

where pi, qj ∈ (0, 1].
For a, b > 0 the following assumptions are considered:

1. aI +
1

am

m∑
i=1

AiA
∗
i ≤ Q ≤ bI −

1

am

n∑
j=1

BjB
∗
j ,

2.

m∑
i=1

‖AiA∗i ‖ <
ama

2
,

n∑
j=1

∥∥BjB∗j ∥∥ < ama

2
,

where

am := min{api , aqj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Theorem 4.1. Under the assumptions 1 and 2,

(I) Equation (4.6) has a unique solution X̂ ∈ [aI,∞), and
(II) the sequences {Xk} and {Yk} defined by

X0 = aI,

Xk+1 = Q−
m∑
i=1

AiX
−pi
k A∗i +

n∑
j=1

BjY
−qj
k B∗j ,
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Y0 = bI,

Yk+1 = Q−
m∑
i=1

AiY
−pi
k A∗i +

n∑
j=1

BjX
−qj
k B∗j ,

converge to X̂, that is,

lim
k→∞

‖Xk − X̂‖tr = lim
k→∞

‖Yk − X̂‖tr = 0.

Furthermore, the error estimation is given by

max{‖Xk − X̂‖tr, ‖Yk − X̂‖tr} ≤
δk

1− δ
max{‖X1 −X0‖tr, ‖Y1 − Y0‖tr},

where 0 < δ < 1.

Proof. For X,Y ∈ H(n) let

G(X,Y ) = Q−
m∑
i=1

AiX
−piA∗i +

n∑
j=1

BjY
−qjB∗j .

By Lemma 2.2, G is a continuous mapping having the mixed monotone prop-
erty.

We claim that G([aI,∞)2) ⊆ [aI,∞). Let X,Y ∈ [aI,∞), that is, X,Y ≥
aI. This implies by assumption 1 that

G(X,Y ) ≥ Q−
m∑
i=1

AiX
−piA∗i ≥ Q−

m∑
i=1

a−piAiA
∗
i ≥ Q− a−1m

m∑
i=1

AiA
∗
i ≥ aI.

Let X,Y, U, V ∈ [aI,∞) such that X ≥ U and Y ≤ V . Then

‖G(X,Y )−G(U, V )‖tr

=

∥∥∥∥∥∥
m∑
i=1

Ai(U
−pi −X−pi)A∗i +

n∑
j=1

Bj(Y
−qj − V qj )B∗j

∥∥∥∥∥∥
tr

≤
m∑
i=1

∥∥Ai(U−pi −X−pi)A∗i ∥∥tr +

n∑
j=1

∥∥Bj(Y −qj − V −qj )B∗j
∥∥
tr

≤
m∑
i=1

‖AiA∗i ‖
∥∥U−pi −X−pi∥∥

tr
+

n∑
j=1

∥∥BjB∗j ∥∥∥∥Y −qj − V −qj∥∥tr
≤

(
m∑
i=1

pia
−pi−1 ‖AiA∗i ‖

)
‖U −X‖tr +

 n∑
j=1

qja
−qj−1

∥∥BjB∗j ∥∥
 ‖Y − V ‖tr

≤ 1

ama

( m∑
i=1

‖AiA∗i ‖

)
‖U −X‖tr +

 n∑
j=1

∥∥BjB∗j ∥∥
 ‖Y − V ‖tr

 .
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The last follows from the following inequality: for any t ∈ {pi, qj}

0 < ta−t−1 ≤ 1

ata
≤ 1

ama
.

This implies that

‖G(X,Y )−G(U, V )‖tr ≤
δ

2
[‖X − U‖tr + ‖V − Y ‖tr] ,

where

δ =
2

ama
max


m∑
i=1

‖AiA∗i ‖ ,
n∑
j=1

∥∥BjB∗j ∥∥
 .

From condition 2 we can easily see that 0 ≤ δ < 1.
Taking X0 = aI and Y0 = bI we can show from condition 1 that X0 ≤

G(X0, Y0) and Y0 ≥ G(Y0, X0). On the other hand, for every X,Y ∈ H(n)
there exist a greatest lower bound and a least upper bound. Thus, (I) and

(II) follow immediately from Theorem 2.4, and X̂ is the unique solution to
Equation (4.6) in [aI,∞). �

The following results are immediate consequences of Theorem 4.1.

Corollary 4.2. Consider the matrix equation (4.6) with Q = I. Suppose that

1.

m∑
i=1

AiA
∗
i ≤ am(1− a)I,

n∑
j=1

BjB
∗
j ≤ am(b− 1)I, and

2.

m∑
i=1

‖AiA∗i ‖ <
ama

2
,

n∑
j=1

∥∥BjB∗j ∥∥ < ama

2
.

Then items (I) and (II) of Theorem 4.1 hold.

Corollary 4.3. Consider the matrix equation (4.6) with unitary matrices Ai
and Bj for all i and j. Suppose that

1.

(
a+

m

am

)
I ≤ Q ≤

(
b− n

am

)
I, and

2. am > max

{
2m

a
,

2n

a

}
.

Then items (I) and (II) of Theorem 4.1 hold.

The following is the case when pi = qj = t ∈ (0, 1] for all i, j, and Ai = Bj =
O for all i, j except one term.

Corollary 4.4. Consider the matrix equation

(4.7) X = Q−AX−tA∗ +BX−tB∗,

where t ∈ (0, 1]. Suppose that

1. aI + a−tAA∗ ≤ Q ≤ bI − a−tBB∗, and

2. ‖AA∗‖ < a1+t

2
, ‖BB∗‖ < a1+t

2
.



Ah
ea

d 
of

 P
rin

tAPPLICATIONS OF THE COUPLED FIXED POINT THEOREM 9

Then items (I) and (II) of Theorem 4.1 hold.
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