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THE EXTREMAL PROBLEM ON HUA DOMAIN

Sujuan Long

Abstract. In this paper, we study the Carathéodory extremal problems

on the Hua domain of the first three types. We give the explicit formula

for the Carathéodory extremal problems between the first three types of
Hua domain and the unit ball, which improves the works done on Hua

domain and Cartan-egg domain and super-Cartan domain.

1. Introduction

Let M and N be two domains in CN with p ∈ M and q ∈ N . Let
Hol(Mp,Nq) denote the set of holomorphic maps f from M to N such that
f(p) = q, and let |Jf (p)| be the Jacobian |det df(p)| of f at the point p. We
define the Carathéodory extremal value, simply C-extremal value as follows:

(1.1) c(M,p;N ,q) = sup{|Jg(p)| : g ∈ Hol(Mp;Nq)}.
A map f ∈Hol(Mp,Nq) is said to be Carathéodory extremal map (C-extremal
map), if

(1.2) |Jf (p)| = c(M,p;N ,q).

The classical extremal problem is to find Carathéodory extremal maps from a
domain to the unit ball in CN , and the problem is an analogue of the classical
Schwarz Lemma [14]. It was first studied by Carathéodory in [1], where he
obtained the explicit formula for the C-extremal mapping from the unit polydisc
into the unit ball. Kubota and Travaglini [2–5] got the explicit formula for the
C-extremal mapping from symmetric domains to the ball. Ma [8, 9] obtained
the C-extremal mapping from the complex ellipsoids to the ball. Recently,
with the construction of the super-Cartan domain, Cartan-egg domain and Hua
domain given by Yin in [16–18], many researches have been done on the classical
extremal problem from these classes of domains to the ball (see [6,10,11,15,19]).
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Let D be a domain in CN . We say that D is a balanced domain if λz ∈ D
for z ∈ D and λ ∈ C with |λ| ≤ 1. It is clear that 0 ∈ D. The classical extremal
problem between two balanced domains D1 and D2 in CN which maps 0 to 0
was studied by Carathéodory [1], who proved the following theorem.

Theorem 1.1. Assume D1, D2 are two balanced domains in CN with D2 a
domain of holomorphy. If f ∈ Hol((D1; 0); (D2; 0)) then df(0)(D1) ⊂ D2.
Moreover,

(1.3) c(D1,0;D2,0) = sup{|det(l)| : l complex linear map; l(D1) ⊂ D2}.

If D1 = D is holomorphically convex balanced domain in CN , D2 = BN , for
simplicity, we let

(1.4)
cD := c(D,0;BN ,0)

= sup{|detA| : A ∈M (N,N)(C), ‖Az‖ < 1 for all z ∈ D},

where M (N,N)(C) is the set of all N ×N matrices with entries in C.
One of the balanced holomorphically convex domain is Hua domain. Let

n ≥ 2 be a positive integer, and for j = 1, . . . , n−1, let Nj be a positive integer
and pj > 0 be a real number. We use the following notation

(1.5) N = (N1, . . . , Nn−1), CN = CN1×· · ·×CNn−1 and p = (p1, . . . , pn−1).

It is well known that the first three types of Hua domain are:

HEA(n,N,p; q, `) := {(w1, . . . , wn−1, Z) ∈ CN ×RA(q, `) :

‖w1‖2p1 + · · ·+ ‖wn−1‖2pn−1 < det(I − ZZ∗)},(1.6)

where RA(q, `) is the classical bounded symmetric domain of type A (A =
I, II, III) (see [7]), consisting of elements in M (q,`)(C), the set of all q × `
matrices with q ≤ `.

Su and Yin [13] solved the C-extremal problem for HEI(n,N,p; q, `) and
obtained the C-extremal map from HEI(n,N,p; q, `) into the unit ball in CN×
Cq` when pj > q. For the special case n = 3, Su and Li [12] considered the first
type of Cartan-egg domain.

CEI(k, q, `) = {(w1, w2, Z) ∈ CN1 × CN2 ×RI(q, `) :

‖w1‖2 + ‖w2‖2k < det(I − ZZ∗)}.

They obtained the explicit formula for the extremal map from CEI(k, q, `) to
the unit ball in CN1 × CN2 × Cq` with k > 0.

Main purpose of the paper is to solve the extremal problem for general
p = (p1, . . . , pn−1) with pj > 0 and n ≥ 2, which improves the works done by
Park [10], Su and Yin [13], Su and Li [12], Yin and Su [19] and Wang et al. [15].
Our main results will be stated in Section 3.
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2. Preliminaries

Let A = [aij ] be an N ×N self-adjoint positive definite matrix over C. The
Hermitian ellipsoid is defined as follows:

(2.1) EA := {z ∈ CN :

n∑
j,k=1

ajkzjzk < 1}.

The following basic properties of Hermitian ellipsoid were given in [9, 15].

Proposition 2.1. Let A and B be two self-adjoint positive definite matrices
over C. Then

(2.2) V ol(EA) =
1

detA
V ol(BN ).

Moreover, if EA = EB, then A = B.

Proposition 2.2 ([9]). Let D be a domain of dimension N , containing 0. If l
is a complex linear map such that l(D) ⊂ BN , then l−1(BN ) is an Hermitian
ellipsoid containing D. If l is a solution of the extremal problem

(2.3) |det l| = sup{|det l1| : l1 complex linear map; l1(D) ⊂ BN},

then l−1(BN ) is a circumscribed Hermitian ellipsoid of D of least volume, or
a minimal circumscribed Hermitian ellipsoid.

Proposition 2.3 ([9]). Let D be a bounded balanced domain. Then D has
minimal circumscribed Hermitian ellipsoids, and the minimal circumscribed
Hermitian ellipoid of D is unique.

Proposition 2.4 ([9]). For two bounded domains D1 and D2, let P (Dj) (j =
1, 2) be the minimal circumscribed Hermitian ellipsoid of Dj. If l ∈ GL(N ;C)
and D2 = l(D1), then l(P (D1)) = P (D2), where GL(N ;C) denotes the set of
N ×N invertible matrices in C and is called N-th-order general linear group.

Let Imi denote m × m diagonal matrix whose ith diagonal element is −1,
others being 1. Let Imij be the m ×m matrix obtained by exchanging ith row
and jth row from the identity matrix Im.

Proposition 2.5. Let D ⊂ CN1×N2×···×Nn be a balanced holomorphically con-
vex domain such that

(2.4) INi D ⊂ D, INk,jD ⊂ D

for 1 ≤ i ≤ N ,
∑`−1

i=0 Ni < j, k ≤
∑`

i=0Ni for 1 ≤ ` ≤ n, where N =
∑n

j=1Nj.
Then the minimal circumscribed Hermitian ellipsoid of D is the ellipsoid of the
following form:

(2.5) {(Z1, . . . , Zn) ∈ CN × CNn : a1‖Z1‖2 + · · ·+ an‖Zn‖2 < 1},

where a1, . . . , an > 0.
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Proof. Let EA be the minimal circumscribed Hermitian ellipoid of D with a
self-adjoint positive definite matrix A. By Proposition 2.4 and (2.4), one has
that

EIN
i AIN

i
= EA.

By Proposition 2.1, one has A = INi AI
N
i for all 1 ≤ i ≤ N , which implies that

A is a diagonal matrix. By (2.4), one has that

E(IN
kj)
∗AIN

kj
= EA for all

`−1∑
i=0

Ni < k, j ≤
∑̀
i=0

Ni, ` = 1, . . . , n.

By Proposition 2.1 again, one has

(INkj)
∗AINkj = A for all

`−1∑
i=0

Ni < k, j ≤
∑̀
i=0

Ni, ` = 1, . . . , n.

Since A is diagonal, it is easy to verify that

a` := ajj = akk if

`−1∑
i=0

Ni ≤ k, j ≤
∑̀
i=0

Ni, ` = 1, . . . , n.

This proves that

EA = {(Z1, . . . , Zn) :

n∑
j=1

aj‖Zj‖2 < 1},

where a1, . . . , an > 0. The proof of the lemma is complete. �

Corollary 2.6. If D is a holomorphically convex balanced domain in CN with
N =

∑n
j=1Nj and satisfies (2.4), then the minimal circumscribed Hermitian

ellipsoid of D is given

(2.6) E(a1,...,an) = {(Z1, . . . , Zn) ∈ CN×CNn : a1‖Z1‖2 + · · ·+an‖Zn‖2 < 1},

where a1, . . . , an > 0 are uniquely determined by

(2.7) D ⊂ E(a1,...,an)

and
∏n

j=1 a
Nj

j attains its maximum (this is equivalent to c2D =
∏n

j=1 a
Nj

j ).

Proof. The proof of this corollary follows directly from Proposition 2.5 and the
fact that

c2D = max {detA : A is positive definite and EA is Hermitian ellipsoid,

D ⊂ EA }.(2.8)

When E(a1,...,an) is the minimal circumscribed Hermitian ellipsoid of D given
by (2.6), one has

(2.9) c2D = aN1
1 · · · aNn

n . �
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For A,B ∈MN,N (C), let A ∼ B :=A is similar with B. We define

(2.10) Dh :=

{
(Z1, . . . , Zn) ∈ CN × CNn ;

f(Z1, . . . , Zn−1, t1, . . . , tm) < 0,
ZnZ

∗
n ∼ cD[t1, t2, . . . , tm]

}
,

where c is positive constant, D[t1, t2, . . . , tm] denote m × m diagonal matrix
whose ith diagonal element is ti, ti ∈ [0, 1) (j = 1, . . . ,m),

(2.11) f(Z1, . . . , Zn−1, t1, . . . , tm) =

n−1∑
j=1

‖Zj‖2pj −
m∏

k=1

(1− tk).

Remark 1. We may check that Dh defined by (2.10) and (2.11) is a holomor-
phically convex balanced domain, and the Hua domain defined by (1.6) can be
identified with Dh if we view Zn as a matrix in RA (A = I, II, III), and the
eigenvalues of ZnZ

∗
n as t1, . . . , tm.

Next we will find the minimal circumscribed Hermitian ellipsoid of Dh. By
applying Proposition 2.5 and Corollary 2.6 to Dh, the minimal circumscribed
Hermitian ellipsoid of Dh has the form given by (2.6). In order to find the min-

imal E(a1,...,an), we only need to find the maximum value of c2D = aN1
1 · · · aNn

n .

Let ‖Zj‖2 = rj , then

f(r1, . . . , rn−1, t1, . . . , tm) =

n−1∑
j=1

r
pj

j −
m∏

k=1

(1− tk)

is the defining function of Dh.
Now we are considering the extremal problem with f(r, t) ≥ 0:

(2.12)


Minimize: f(r1, . . . , rn−1, t1, . . . , tm) =

n−1∑
j=1

r
pj

j −
m∏
j=1

(1− tj),

Subject to:
n−1∑
j=1

ajrj + can(t1 + · · ·+ tm) = 1, 0 ≤ rj ≤ 1, 0 ≤ tj ≤ 1.

Notice that when t1 + · · · + tm is fixed, we know
∏m

j=1(1 − tj) attains its
maximum at where t1 = t2 = · · · = tm =: t. Therefore, to solve Problem
(2.12), it is equivalent to solve

(2.13)


Minimize: f(r, t) := f(r1, . . . , rn−1, t) =

n−1∑
j=1

r
pj

j − (1− t)m,

Subject to: g(r, t) :=
n−1∑
j=1

ajrj + canmt = 1, 0 ≤ rj ≤ 1, 0 ≤ t ≤ 1.

Assume that Problem (2.13) takes its minimum value 0 at point
(r0, t0) := (r01, . . . , r

0
n−1, t

0).

Let ∂D denote the boundary of domain D. Then (r0, t0) must be located
at where ∂Dh and ∂E(a1,...,an) meets tangentially. Notice that f(r, t) is the



Ah
ea

d 
of

 P
rin

t6 S. LONG

defining function of Dh, so that

(2.14) f(r01, . . . , r
0
n−1, t

0) =
( n−1∑

j=1

r
pj

j − (1− t)m
)∣∣∣

(r0,t0)
= 0.

And aj (1 ≤ j ≤ n) as well as t0 can be expressed as functions of r01, . . . , r
0
n−1,

which are uniquely determined so that
∏n

j=1 a
Nj

j is maximum. Finally, we
obtain the minimal E(a1,...,an) of Dh.

Proposition 2.7. If E(a1,...,an) is a circumscribed Hermitian ellipsoid for Dh

defined in (2.10) and (2.11), then
(i) a0 := cman ≤ 1;
(ii) aj ≤ 1 for 1 ≤ j ≤ n− 1;
(iii) If aj = 1, then a0 ≤ m

pj
;

(iv) If pj ≤ 1 for 1 ≤ j ≤ n−1, then E(1,...,1, 1
mc )

is the minimal circumscribed

Hermitian ellipsoid for Dh.

Proof. If a0 > 1, we choose t0 = 1
a0
< 1 such that cmant0 = 1. Then (0, t0) =

(0, . . . , 0, t0) ∈ ∂E(a1,...,an), but

f(0, t0) = −(1− t0)m < 0,

which contradicts the assumption E(a1,...,an) is the circumscribed Hermitian
ellipsoid for Dh. So Part (i) is proved.

Similarly, one can prove Part (ii).
For Part (iii), we consider (0, . . . , 0, rj , 0, . . . , 0, t) satisfying

rj + a0t = 1.

Then

h(rj , t) : = f(0, . . . , 0, rj , 0, . . . , 0, t)

= r
pj

j − (1− t)m = (1− a0t)pj − (1− t)m

= 1− pja0t+O(t2)− 1 +mt

= (m− pja0)t+O(t2)

≥ 0.

This implies that

m− pja0 ≥ 0 or a0 ≤ m/pj .
This proves (iii).

To prove (iv), we take aj = 1 for 1 ≤ j ≤ n− 1 and an = 1
cm . Then

f(r1, . . . , rn−1, t) =

n−1∑
j=1

r
pj

j −(1−t)m ≥
m∑
j=1

rj−(1−t)m = (1−t)−(1−t)m ≥ 0,

where
∑n−1

j=1 rj + t = 1. Therefore, this ellipsoid E(1,...,1, 1
cm ) is the minimal

circumscribed Hermitian ellipsoid for Dh. �
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Proposition 2.8. If n = 2, then the following statements hold.
(i) If 0 < p1 ≤ m, then the minimal circumscribed Hermitian ellipsoid of

Dh is E(1, 1
mc )

.

(ii) If p1 > m, then E(a1,
1

cm ) with a1 ≤ 1 is not the minimal circumscribed

Hermitian ellipsoid of Dh.

Proof. By Proposition 2.7, we have a1 ≤ 1 and a2 ≤ 1
cm . Then aN1

1 aN2
2 ≤

(cm)−N2 . Let a1 = 1 and a2 = 1
cm . Then on the boundary of E(1, 1

cm ), we have

r1 = 1− t.

Since p1 ≤ m, we have

f(r1, t) = (1− t)p1 − (1− t)m ≥ 0, r1, t ∈ [0, 1].

Therefore, E(1,1/mc) is the minimal circumscribed Hermitian ellipsoid of Dh.
If a1 = 1, Part (ii) was proved by Yin and Su [19]. When a1 < 1, for

the points (r1, t) satisfying a1r1 + t = 1, it is easy to check that there exist

r1 ∈ (0, a
m

p1−m

1 ) and t ∈ (0, 1) such that a1r1 + t = 1, but rp1

1 − (1 − t)m < 0.
Thus E(a1,

1
cm ) can not be the minimal circumscribed Hermitian ellipsoid of

Dh. �

Proposition 2.9. If n ≥ 2, E(1,a2,...,an) with an < 1
cm is the circumscribed

Hermitian ellipsoid of Dh, then there exists another Dh’s circumscribed Her-
mitian ellipsoid E(b,a2,...,an−1,a) with b < 1, an < a < 1

cm and bN1aNn > aNn
n .

Proof. Considering (r1, . . . , rn−1, t) ∈ ∂E(b,a2,...,an−1,a) and

(2.15) br1 + a2r2 + · · ·+ an−1rn−1 + cmat = 1, 1/cm > a > an, b < 1.

We need to find a and b such that bN1aNn > aNn
2 and

n−1∑
j=1

r
pj

j − (1− t)m ≥ 0 for (r1, . . . , rn−1, t) ∈ (0, . . . , 0, 1) satisfying (2.15).

Let a0 = cman, a′ = cma. We want to find x ∈ (0, 1) such that

1 = br1 +

n−1∑
j=2

ajrj + a′t(2.16)

= xr1 +

n−1∑
j=2

ajrj + a0

[
1−

(
(1− |x|p1)

n−1∑
j=2

r
pj

j + xp1(1− t)m
)1/m]

.

Notice that (2.16) holds if and only if

(2.17) a0

[
1−
(

(1−|x|p1)

n−1∑
j=2

r
pj

j +xp1(1− t)m
)1/m]

+

n−1∑
j=2

ajrj +xr1− 1 = 0.
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Next we show that the equality of (2.17) has a positive solution x. Let

h(x) := a0

[
1−

(
(1− |x|p1)

n−1∑
j=2

r
pj

j + xp1(1− t)m
)1/m]

+

n−1∑
j=2

ajrj + xr1 − 1.

Since h(0) = −1 + a0 < 0 and br1 +
∑n−1

j=2 ajrj + a′t = 1 implies that

r1 ≥
1− a2 − · · · − an−1 − a′

b
.

If b <
1−a′−

∑n−1
j=2 aj

1−a0−
∑n−1

j=2 aj
, we have

h(1) = r1 +

n−1∑
j=2

ajrj + a0t− 1

= r1 + br1 +

n−1∑
j=2

ajrj + a′t− br1 − a′t+ a0t− 1

= (1− b)r1 − (a′ − a0)t

≥ (1− b)1− a2 − · · · − an−1 − a′

b
− (a′ − a0) > 0.

Let

(2.18) r′1 = xr1 ∈ (0, 1), r′j = rj for j = 2, . . . , n− 1,

t′ = 1−
(

(1− |x|p1)

n−1∑
j=2

r
pj

j + xp1(1− t)m
)1/m

,

then there exists x ∈ (0, 1/r) such that r′1 +
∑n−1

j=2 ajr
′
j + a0t

′ = 1. Thus

(2.19) 0 ≤
n−1∑
j=1

r
′pj

j − (1− t′)m = xp1(

n−1∑
j=1

r
pj

j − (1− t)m),

which implies that
∑n−1

j=1 r
pj

j − (1− t)m ≥ 0 for (r, t) ∈ ∂E(b,a2,...,an−1,a).

Moreover, for any (r′1, . . . , r
′
n−1, t

′) ∈ (0, 1]n such that r′1+
∑n−1

j=2 ajr
′
j+a0t

′ =

1 and
∑n−1

j=1 r
′pj

j − (1− t′)m = 0. We can reverse the above process by choosing
x > 0 such that

r̃1 = r′1x
−1, r̃j = r′j for j = 2, . . . , n− 1

t̃ = 1−
(
x−p1(1− t′)m − (x−p1 − 1)

n−1∑
j=2

r
′pj

j

)1/m
∈ [0, 1].

Moreover, there exist a′, b such that

1 = br̃1 +

n−1∑
j=2

aj r̃j + a′t̃
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= xr̃1 + a0

[
1−

(
(1− |x|p1)

n−1∑
j=2

r̃
pj

j + xp1(1− t̃)m
)1/m]

.

By (2.18) and (2.19), we have( n−1∑
j=1

rj
pj − (1− t)m

)∣∣∣
(r̃1,...,r̃n−1,t̃)

= 0.

For any a0 < a′ < 1, we choose

1 >
1− a′ −

∑n−1
j=2 aj

1− a0 −
∑n−1

j=2 aj
> b >

(a0
a′

)N2/N1

.

Then
aN2bN1 > aN2

2 .

The proof of Part (iii) is complete. �

To solve Problem (2.13), we will divide our argument into the following
cases:

Case 1: (r0, t0) ∈ [0, 1)n.

By the Lagrange multiplier method, the minimizers of extremal problem
(2.13) must be located in the solutions of

(2.20)


pjr

pj−1
j = ajλ, j = 1, . . . , n− 1; (1− t)m−1 = canλ,

n−1∑
j=1

ajrj + canmt = 1.

From (2.20), we have

(2.21) pjr
pj

j = ajrjλ, 1 ≤ j ≤ n− 1; mt(1− t)m−1 = cmantλ,

and

(2.22)

n−1∑
j=1

pjr
pj

j +mt(1− t)m−1 = λ.

Therefore,

(2.23) aj = pjr
pj−1
j /λ, j = 1, . . . , n− 1; an = c−1(1− t)m−1/λ.

Let

F (r1, . . . , rn−1, t) := detA = aN1
1 · · · aNn

n(2.24)

=

n−1∏
j=1

(pjrpj−1
j

λ

)Nj

(
(1− t)m−1

cλ
)Nn

= CD

n−1∏
j=1

r
Nj(pj−1)
j (1− t)Nn(m−1)λ−N ,
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where

(2.25) CD =

n−1∏
j=1

p
Nj

j c−Nn , N =

n∑
j=1

Nj .

By (2.14) and (2.22), we have

λ =

n−1∑
j=1

pjr
pj

j +m(1− (

n−1∑
j=1

r
pj

j )1/m)(

n−1∑
j=1

r
pj

j )
m−1
m(2.26)

=

n−1∑
j=1

(pj −m)r
pj

j +m(

n−1∑
j=1

r
pj

j )
m−1
m .

Let

(2.27) yj = r
pj

j , j = 1, 2, . . . , n− 1.

Then

(2.28) λ =

n−1∑
j=1

pjyj −m
n−1∑
j=1

yj +m(

n−1∑
j=1

yj)
(m−1)/m.

Thus

(2.29)
∂λ

∂yj
= pj −m+ (m− 1)(

n−1∑
j=1

yj)
−1/m.

Then

(2.30)

n−1∑
j=1

yj
∂λ

∂yj
= λ− (

n−1∑
j=1

yj)
(m−1)/m.

Thus
(2.31)

G := logF = −N log λ+logCD+

n−1∑
j=1

Nj(1−1/pj) log yj +
m− 1

m
Nn log(

n−1∑
j=1

yj)

and

(2.32)
∂G

∂yj
= −N

λ

∂λ

∂yj
+

1

yj
Nj(1− 1/pj) +

m− 1

m
Nn

1∑n−1
j=1 yj

= 0.

Thus

(2.33) −Nyj
∂λ

∂yj
+Nj(1− 1/pj)λ+

m− 1

m

yj∑n−1
j=1 yj

Nnλ = 0.

Summing up (2.33) for j = 1, . . . , n− 1, one has

(2.34) −Nλ+N(

n−1∑
j=1

yj)
(m−1)/m +

n−1∑
j=1

Nj(1− 1/pj)λ+
m− 1

m
Nnλ = 0.
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Therefore,

(2.35) −

Nn

m
+

n−1∑
j=1

Nj

pj

λ+N(

n−1∑
j=1

yj)
(m−1)/m = 0

and

(2.36) λ =
N(
∑n−1

j=1 yj)
(m−1)/m

Nn

m +
∑n−1

j=1
Nj

pj

=
Nb(m−1)/m

N(p)
,

where

(2.37) b =

n−1∑
j=1

yj and N(p) :=
Nn

m
+

n−1∑
j=1

Nj

pj
.

By (2.29), (2.33) and (2.37), one has

(2.38) −Nyj [(pj −m) + (m− 1)b−1/m] +Nj(1− 1/pj)λ+
m− 1

m

Nnλ

b
yj = 0.

By (2.36) and (2.38), one has

(2.39) yj [N(pj −m) +N(m−1)b−1/m− m− 1

m

NnNb
−1/m

N(p)
] = Nj(1−1/pj)λ.

Therefore,

yj =
Nj(1− 1/pj)b

N(p)(pj −m)b1/m + (m− 1)− m−1
m

Nn

N(p)

(2.40)

=
Nj(1− 1/pj)b

N(p)(pj −m)b1/m + (m− 1)
∑n−1

k=1 Nk/pk
.

Summing up (2.40) for j = 1, . . . , n− 1, we have

b =

n−1∑
j=1

Nj(1− 1/pj)b

N(p)(pj −m)b1/m + (m− 1)
∑n−1

k=1 Nk/pk
.

Then

(2.41)

n−1∑
j=1

Nj/pj(pj − 1)

N(p)(pj −m)b1/m + (m− 1)
∑n−1

k=1 Nk/pk
= 1.

It is clear that

(2.42) b1/m =

∑n−1
k=1 Nk/pk
N(p)

is a solution of (2.41).
Let

(2.43) I = {1, . . . , n− 1}, J = {j : pj = 1, j ∈ I}.
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By (2.40) and (2.42), one has

(2.44) yj =
Nj

pjN(p)

(∑n−1
k=1 Nk/pk
N(p)

)m−1
, j ∈ I \ J.

By (2.23), (2.27), (2.36) and (2.44), we have

aj = pj [
Nj

pjN(p)

(∑n−1
k=1 Nk/pk
N(p)

)m−1
]1−1/pj

N(p)

N

( N(p)∑n−1
k=1 Nk/pk

)m−1
(2.45)

=
p
1/pj

j N
1−1/pj

j N(p)m/pj

N

( n−1∑
k=1

Nk/pk

)−(m−1)/pj

, j ∈ I \ J,

and

(2.46) an =
(1− t)m−1

cλ
=

b
(m−1)

m

c N
N(p)b

(m−1)/m =
N(p)

cN
.

For j ∈ J , by (2.23), we have aj = 1/λ. Thus (2.36) and (2.42) yield

(2.47) aj =
N(p)m

N

( n−1∑
k=1

Nk/pk

)(1−m)

j ∈ J.

Case 2. Either t0 = 1 or there exist some r0j = 1

1. If t0 = 1, by (2.13), one has that r0j = 0 for all 1 ≤ j ≤ n− 1, then

(2.48) cman = 1,

When mN(p) < N , one can easily see that there exists at least one pj > m, we
may assume that p1 > m. For any point (r1, 0, . . . , 0, t) satisfying a1r1 + t = 1,
by (2.13), we have rp1

1 − (1− t)m ≥ 0, which is impossible by the proof of Part
(ii) of Proposition 2.8. Therefore, this case can not happen when mN(p) < N .

2. If there exist some r0j = 1, then by (2.13), there is only one r0j = 1, we

may also assume that r01 = 1, then r0k = 0 for k 6= 1 and t0 = 0 such that

(2.49) a1 = 1.

When mN(p) < N , by the discussion above, we have cman < 1. For n ≥ 2,
Then E(1,a2,...,an)(an <

1
cm ) is the minimal circumscribed Hermitian ellipsoid

of Dh, which contradicts statement of Proposition 2.9. Therefore, this case also
can not happen.

As a summary, we have proved the following theorem.

Theorem 2.10. Let m,n, N1, . . . , Nn be positive integers and p1, . . . , pn−1 are
positive real numbers such that mN(p) < N and (2.41) has unique solution b
given by (2.42). Let Dh be defined by (2.10) and (2.11). Then the minimal
circumscribed Hermitian ellipsoid of Dh is given by
(2.50)
E(a1,...,an) := {(Z1, . . . , Zn) ∈ CN1 ×· · ·×CNn : a1‖Z1‖2 + · · ·+an‖Zn‖2 < 1},
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where aj are given by (2.45)-(2.47).

Remark 2. (i) If we substitute pj = 1 into (2.45), then we obtain (2.47) even-
tually.

(ii) Let

(2.51)

J1 := {j | pj < 1, j ∈ I},
J2 := {j | 1 < pj < m, j ∈ I},
J3 := {j | pj > m, j ∈ I}.

By (2.41), we let

(2.52) H(t) =

n−1∑
j=1

Nj/pj(pj − 1)

N(p)(pj −m)t+ (m− 1)
∑n−1

k=1 Nk/pk
.

Notice that

(2.53) H ′(t) = N(p)

n−1∑
j=1

Nj/pj(pj − 1)(pj −m)

[N(p)(pj −m)t+ (m− 1)
∑n−1

k=1 Nk/pk]2
.

If I \ J = Ji for either i = 1, 2, 3, then H(t) is monotonic function and (2.41)
has unique solution b given by (2.42).

3. Explicit formula for C-extremal maps

Let

(3.1) Nn =


q`, if A = I;
q(q+1)

2 , if A = II;
q(q−1)

2 , if A = III.

(3.2) m =

{
q, if A = I or II;

2[ q2 ], if A = III.
c =

{
1, if A = I or II;
1
2 , if A = III.

By Remark 1 and Theorem 2.10, we can obtain the minimal circumscribed
Hermitian ellipsoid of Hua domain, which promotes us to give the C-extremal
map for the Hua domain in this section. When m = 1, Hua domain is ellipsoid,
we may consult [8] for discussion of the C-extremal problem. Therefore, in this
section, we may assume that m > 1.

We are going to view HEA(n,N,p, q, `) as a domain in CN × CNn and
RA(q, `) (A = I, II, III) as a domain in CNn as follows:

(i) For Z ∈ RI(q, `), we let

(3.3) z = (z11, . . . , z1q, z21, . . . , z2q, . . . , zq`) ∈ Cq`

and ‖z‖2 = ‖Z‖2 = tr(ZZ∗).
(ii) For X = [xjk] ∈ RII(q), we consider

(3.4) R̂II(q) := {Z : xjk =
zjk√
2pjk

, X ∈ RII(q)},
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where

(3.5) pjk =

{
1, if j 6= k;
1√
2
, if j = k.

For Z ∈ R̂II(q), let

(3.6) z = (z11, . . . , z1q, z22, . . . , z2q, . . . , zqq) ∈ C
q(q+1)

2 .

Then

‖z‖2 = ‖Z‖2 = tr(XX∗).

Instead of HEII(n,N,p, q), we define

ĤEII(n,N,p; q) :=
{

(w1, . . . , wn−1, Z) ∈ CN × R̂II(q) :

‖w1‖2p1 + · · ·+ ‖wn−1‖2pn−1 < det(I − ZZ∗)
}
,(3.7)

where Z = [zjk] ∈ R̂II(q).
(iii) For Z ∈ RIII(q), we let

(3.8) z = (z12, . . . , z1q, z23, . . . , z2q, . . . , z(q−1)q) ∈ C
q(q−1)

2

and 2‖z‖2 = 2‖Z‖2 = tr(ZZ∗).
Let I, J be defined by (2.43). Now we can state the main results of the

paper. By Proposition 2.2, Theorem 2.10 and Remark 2(i), It is easy to prove
the following theorem.

Theorem 3.1. Let HEA(n,N,p, q, `) (A = I, III) (or ĤEII(n,N,p; q)) be
Hua domain defined by (1.6) (or (3.7)) with N =

∑n
j=1Nj and p1, . . . , pn−1

are positive real numbers. If mN(p) < N and (2.41) has unique solu-
tion b given by (2.42). Then the C-extremal map F : HEA(n,N,p, q, `)

(or ĤEII(n,N,p; q))→ BN is given by

(3.9) F (w1, . . . , wn−1, Z) = (
√
a1w1, . . . ,

√
an−1wn−1,

√
anZ),

where
(3.10)

aj =
p
1/pj

j N
1−1/pj

j N(p)1/pj

N

( n−1∑
k=1

Nk/pk

)−(m−1)/pj

j ∈ I; an =
N(p)

cN
.

Theorem 3.2. Let HEII(n,N,p, q) be Hua domain defined by (1.6) and
p1, . . . , pn−1 are positive real numbers, mN(p) < N and (2.41) has unique
solution b given by (2.42). Let F (w1, . . . , wn−1, Z) be the map defined by (3.9)-
(3.10) and

(3.11) h : HEII(n,N,p, q)→ ĤEII(n,N,p, q),

(3.12) (w1, . . . , wn−1, [xjk]) 7→ (w1, . . . , wn−1, [
√

2pjkxjk]).
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Then the C-extremal map T (w1, . . . , wn−1, X) : HEII(n,N,p, q) → BN is
given by

(3.13) T = F ◦ h.

Proof. By Theorem 3.1, the C-extremal map F (w1, . . . , wn−1, Z) from ĤEII(n,
N,p; q) to BN is given by (3.9)-(3.10). Let X = [xjk] ∈ RII(q), [Z] =

[
√

2pjkxjk] ∈ R̂II(q), we consider

h : HEII(n,N,p, q)→ ĤEII(n,N,p, q)

(w1, . . . , wn−1, [xjk]) 7→ (w1, . . . , wn−1, [
√

2pjkxjk]).

Obviously, h is biholomorphic mapping from HEII(n,N,p, q) to ĤEII(n,
N,p, q). Let T = F ◦ h, then T (w1, . . . , wn−1, X) is the C-extremal holo-
morphic map from HEII(n,N,p; q) to BN . �

By Theorem 3.1 and Remark 2, it is easy to prove the following corollary.

Corollary 3.3. Let HEA(n,N,p, q, `) (A = I, III) (or ĤEII(n,N,p; q)) be
Hua domain defined by (1.6) (or (3.7)) with N =

∑n
j=1Nj. Then the C-

extremal holomorphic map F : HEA(n,N,p, q, `) (or ĤEII(n,N,p; q))→ BN

is given by

F (w1, . . . , wn−1, Z) = (
√
a1w1, . . . ,

√
an−1wn−1,

√
anZ).

Let K = {k | pk = m, k ∈ I}. If I \K = J3 is non-empty or I \ J = J3 such
that mN(p) < N , then (3.9)-(3.10) hold.

Remark 3. For Hua domain of the first type HEI(n,N,p, q, `) with N =∑n
j=1Nj .

(i) When all pj > m, the results of [10] and [13] are included in statement
of Corollary 3.3.

(ii) When n = 2, p1 = k, the results of [19] and [15] are included in state-
ments of Proposition 2.8 and Corollary 3.3.

(iii) When HEI(n,N,p, q, `) = CEI(k, q, `) with n = 3, N2 = q`, p1 =
1, p2 = k, the result of [12] is included in Proposition 2.7 and Corollary 3.3.
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