J. Korean Math. Soc. 2022; 59(3): 571-594
Published online May 1, 2022 https://doi.org/10.4134/JKMS.j210419
Copyright © The Korean Mathematical Society.
Gyu Whan Chang
Incheon National University
Let $D$ be an integral domain with quotient field $K$, $Pic(D)$ be the ideal class group of $D$, and $X$ be an indeterminate. A polynomial overring of $D$ means a subring of $K[X]$ containing $D[X]$. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain $D$, defined by the intersection of $K[X]$ and rank-one discrete valuation rings with quotient field $K(X)$, and their ideal class groups. Next, let $\mathbb{Z}$ be the ring of integers, $\mathbb{Q}$ be the field of rational numbers, and $\mathfrak{G}_f$ be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring $R$ of $\mathbb{Z}[X]$ such that (i) $R$ is a Bezout domain, (ii) $R \cap \mathbb{Q}[X]$ is an almost Dedekind domain, (iii) $Pic(R \cap \mathbb{Q}[X]) = \bigoplus_{G \in \mathfrak{G}_f}G$, (iv) for each $G \in \mathfrak{G}_f$, there is a multiplicative subset $S$ of $\mathbb{Z}$ such that $R_S \cap \mathbb{Q}[X]$ is a Dedekind domain with $Pic(R_S \cap \mathbb{Q}[X]) = G$, and (v) every invertible integral ideal $I$ of $R \cap \mathbb{Q}[X]$ can be written uniquely as $I = X^nQ_1^{e_1} \cdots Q_k^{e_k}$ for some integer $n \geq 0$, maximal ideals $Q_i$ of $R \cap \mathbb{Q}[X]$, and integers $e_i \neq 0$. We also completely characterize the almost Dedekind polynomial overrings of $\mathbb{Z}$ containing Int$(\mathbb{Z})$.
Keywords: (almost) Dedekind domain, ideal class group, DVR, polynomial overring of $\mathbb{Z}$, Int$(\mathbb{Z})$
MSC numbers: 13A15, 13B25, 13F05, 16W60, 20K99
Supported by: This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B06029867)
2022 © The Korean Mathematical Society. Powered by INFOrang Co., Ltd