J. Korean Math. Soc. 2022; 59(2): 235-254
Online first article February 14, 2022 Printed March 1, 2022
https://doi.org/10.4134/JKMS.j200484
Copyright © The Korean Mathematical Society.
Chunfang Gao
Qingdao University
Let $\mathbb{H}^{n}$ be the Heisenberg group and $Q=2n+2$ be its homogeneous dimension. Let $\mathcal{L}=-\Delta_{\mathbb{H}^{n}}+V$ be the Schr\"{o}dinger operator on $\mathbb{H}^{n}$, where $\Delta_{\mathbb{H}^{n}}$ is the sub-Laplacian and the nonnegative potential $V$ belongs to the reverse H\"{o}lder class $B_{q_{1}}$ for $q_{1}\geq Q/2$. Let ${H_{\mathcal{L}}^{p}(\mathbb{H}^{n})}$ be the Hardy space associated with the Schr\"{o}dinger operator $\mathcal{L}$ for $Q/(Q+\delta_{0})
Keywords: Heisenberg group, Schr\"{o}dinger operator, Riesz transform, commutator
MSC numbers: Primary 42B20, 42B35
Supported by: This work was financially supported by Shandong Natural Science Foundation of Chian ZR2017JL008.
2022; 59(3): 635-648
2021; 58(2): 383-400
2019; 56(1): 285-287
2018; 55(4): 939-962
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd