Journal of the
Korean Mathematical Society
JKMS

ISSN(Print) 0304-9914 ISSN(Online) 2234-3008

Article

HOME ALL ARTICLES View

J. Korean Math. Soc. 2022; 59(2): 217-233

Published online March 1, 2022 https://doi.org/10.4134/JKMS.j200406

Copyright © The Korean Mathematical Society.

Margin-based generalization for classifications with input noise

Hi Jun Choe, Hayeong Koh, Jimin Lee

Yonsei University; Telecommunication Technology Association; Yonsei University

Abstract

Although machine learning shows state-of-the-art perfor\-man\-ce in a variety of fields, it is short a theoretical understanding of how machine learning works. Recently, theoretical approaches are actively being studied, and there are results for one of them, margin and its distribution. In this paper, especially we focused on the role of margin in the perturbations of inputs and parameters. We show a generalization bound for two cases, a linear model for binary classification and neural networks for multi-classification, when the inputs have normal distributed random noises. The additional generalization term caused by random noises is related to margin and exponentially inversely proportional to the noise level for binary classification. And in neural networks, the additional generalization term depends on (input dimension) $\times$ (norms of input and weights). For these results, we used the PAC-Bayesian framework. This paper is considering random noises and margin together, and it will be helpful to a better understanding of model sensitivity and the construction of robust generalization.

Keywords: Generalization bound, PAC-Bayesian, margin loss function

MSC numbers: Primary 68Q32, 65Y20

Supported by: Hi Jun Choe and Hayeong Koh were supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Korea government (No. 2015R1A5A1009350, No. 20181A2A3074566). Jimin Lee was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Korea government (No. 2020R1I1A1A01071731).

Stats or Metrics

Share this article on :

Related articles in JKMS