Jung Pil Park, Yong-Su Shin Seoul National University; Sungshin Women's University

Abstract : In \cite{AS:3}, the authors showed that if an $h$-vector $(h_0,h_1,\dots,h_e)$ with $h_1=4e-4$ and $h_i\le h_1$ is a Gorenstein sequence, then $h_1=h_i$ for every $1\le i\le e-1$ and $e\ge 6$. In this paper, we show that if an $h$-vector $(h_0,h_1,\dots,h_e)$ with $h_1=4e-4$, $h_2=4e-3$, and $h_i\le h_2$ is a Gorenstein sequence, then $h_2=h_i$ for every $2\le i\le e-2$ and $e\ge 7$. We also propose an open question that if an $h$-vector $(h_0,h_1,\dots,h_e)$ with $h_1=4e-4$, $4e-3

Keywords : Gorenstein $h$-vectors, unimodal or nonunimodal $h$-vectors, Hilbert functions