Unboundedness of the trilinear Hilbert transform under the critical index
J. Korean Math. Soc. 2021 Vol. 58, No. 5, 1299-1309
https://doi.org/10.4134/JKMS.j200656
Published online May 14, 2021
Printed September 1, 2021
Yasuo Komori-Furuya
Tokai University
Abstract : Demeter \cite{d} and Kuk and Lee \cite{kl} proved the unboundedness of the trilinear Hilbert transforms $H_{a,b,c}$ under the critical index $1/2$ for some parameters $a,b$ and $c$. We show the unboundedness of $H_{a,b,c}$ for any parameters.
Keywords : Bilinear Hilbert transform, trilinear Hilbert transform, trilinear fractional integral operator
MSC numbers : Primary 42B20
Downloads: Full-text PDF   Full-text HTML

   

Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd