The Ohm-Rush content function III. Completion, globalization, and power-content algebras
J. Korean Math. Soc.
Published online August 12, 2021
Neil Epstein and Jay Shapiro
George Mason University; George Mason University
Abstract : One says that a ring homomorphism $R \rightarrow S$ is Ohm-Rush if extension commutes with arbitrary intersection of ideals, or equivalently if for any element $f\in S$, there is a unique smallest ideal of $R$ whose extension to $S$ contains $f$, called the content of $f$. For Noetherian local rings, we analyze whether the completion map is Ohm-Rush. We show that the answer is typically `yes' in dimension one, but `no' in higher dimension, and in any case it coincides with the content map having good algebraic properties. We then analyze the question of when the Ohm-Rush property globalizes in faithfully flat modules and algebras over a 1-dimensional Noetherian domain, culminating both in a positive result and a counterexample. Finally, we introduce a notion that we show is strictly between the Ohm-Rush property and the weak content algebra property.
Keywords : commutative algebra, content algebras, Ohm-Rush, completion, extended ideals, faithfully flat, Dedekind domain
MSC numbers : 13B02
Full-Text :


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail:   | Powered by INFOrang Co., Ltd