    - Current Issue - Ahead of Print Articles - All Issues - Search - Open Access - Information for Authors - Downloads - Guideline - Regulations ㆍPaper Submission ㆍPaper Reviewing ㆍPublication and Distribution - Code of Ethics - For Authors ㆍOnline Submission ㆍMy Manuscript - For Reviewers - For Editors       Restriction of scalars and cubic twists of elliptic curves J. Korean Math. Soc.Published online June 1, 2020 Dongho Byeon, Keunyoung Jeong, and Nayoung Kim Seoul National University, UNIST Abstract : Let $K$ be a number field and $L$ a finite abelian extension of $K$. Let $E$ be an elliptic curve defined over $K$. The restriction of scalars $\mathrm{Res}^{L}_{K}E$ decomposes (up to isogeny) into abelian varieties over $K$ $$\mathrm{Res}^{L}_{K}E \sim \bigoplus_{F \in S}A_F,$$ where $S$ is the set of cyclic extensions of $K$ in $L$. It is known that if $L$ is a quadratic extension, then $A_L$ is the quadratic twist of $E$. In this paper, we consider the case that $K$ is a number field containing a primitive third root of unity, $L=K(\root 3\of D)$ is the cyclic cubic extension of $K$ for some $D\in K^{\times}/(K^{\times})^3$, $E=E_a: y^2=x^3+a$ is an elliptic curve with $j$-invariant $0$ defined over $K$, and $E_a^D: y^2=x^3+aD^2$ is the cubic twist of $E_a$. In this case, we prove $A_L$ is isogenous over $K$ to $E_a^D \times E_a^{D^2}$ and a property of the Selmer rank of $A_L$, which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists. Keywords : restriction of scalars; cubic twist; elliptic curve MSC numbers : 11G05 Full-Text :   