On the Extension Dimension of Module Categories
J. Korean Math. Soc.
Published online June 3, 2020
Yeyang Peng and Tiwei Zhao
Nanjing University, Qufu Normal University
Abstract : Let $\Lambda$ be an artin algebra and $\mod \Lambda$ the category of finitely
generated right $\Lambda$-modules. We prove that the radical layer length of $\Lambda$ is an upper bound for the radical layer of $\mod \Lambda$. We give an upper bound for the extension dimension of $\mod \Lambda$
in terms of the injective dimension of a certain class of simple right $\Lambda$-modules and the radical layer length of $D\Lambda$.
Keywords : Extension dimension, radical layer length, Abelian Categories
MSC numbers : 18G20, 16E10, 18E10
Full-Text :


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd