Weakly $(m,n)$-closed ideals and $(m,n)$-von Neumann regular rings
J. Korean Math. Soc. 2018 Vol. 55, No. 5, 1031-1043 https://doi.org/10.4134/JKMS.j170342 Published online August 6, 2018 Printed September 1, 2018
David F. Anderson, Ayman Badawi, Brahim Fahid The University of Tennessee, The American University of Sharjah, Mohammed V University
Abstract : Let $R$ be a commutative ring with $ 1 \neq 0$, $I$ a proper ideal of $R$, and $m$ and $n$ positive integers. In this paper, we define $I$ to be a weakly $(m,n)$-closed ideal if $ 0\neq x^{m}\in I$ for $x \in R$ implies $x^{n} \in I$, and $R$ to be an $(m,n)$-von Neumann regular ring if for every $x \in R$, there is an $r \in R$ such that $x^mr = x^n$. A number of results concerning weakly $(m, n)$-closed ideals and $(m,n)$-von Neumann regular rings are given.