Journal of the
Korean Mathematical Society
JKMS

ISSN(Print) 0304-9914 ISSN(Online) 2234-3008

Current Issue

HOME VIEW ARTICLES Current Issue
    November, 2023 | Volume 60, No. 6
  • 2023-11-01

    Low rank orthogonal bundles and quadric fibrations

    Insong Choe, George H. Hitching

    Abstract : Let $C$ be a curve and $V \to C$ an orthogonal vector bundle of rank $r$. For $r \le 6$, the structure of $V$ can be described using tensor, symmetric and exterior products of bundles of lower rank, essentially due to the existence of exceptional isomorphisms between $\mathrm{Spin} (r , \mathbb C)$ and other groups for these $r$. We analyze these structures in detail, and in particular use them to describe moduli spaces of orthogonal bundles. Furthermore, the locus of isotropic vectors in $V$ defines a quadric subfibration $Q_V \subset \mathbb P V$. Using familiar results on quadrics of low dimension, we exhibit isomorphisms between isotropic Quot schemes of $V$ and certain ordinary Quot schemes of line subbundles. In particular, for $r \le 6$ this gives a method for enumerating the isotropic subbundles of maximal degree of a general $V$, when there are finitely many.

    Show More  
  • 2023-11-01

    The automorphism groups of Artin groups of edge-separated CLTTF graphs

    Byung Hee An, Youngjin Cho

    Abstract : This work is a continuation of Crisp's work on automorphism groups of CLTTF Artin groups, where the defining graph of a CLTTF Artin group is connected, large-type, and triangle-free. More precisely, we provide an explicit presentation of the automorphism group of an edge-separated CLTTF Artin group whose defining graph has no separating vertices.

  • 2023-11-01

    On nonnil-exact sequences and nonnil-commutative diagrams

    Wei Zhao, De chuan Zhou

    Abstract : In this paper, we investigate the nonnil-exact sequences and nonnil-commutative diagrams and show that they behave in a way similar to the classical ones in Abelian categories.

  • 2023-11-01

    Some abelian McCoy rings

    Rasul Mohammadi, Ahmad Moussavi, masoome zahiri

    Abstract : We introduce two subclasses of abelian McCoy rings, so-called $\pi$-\textit{CN}-rings and $\pi$-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as $2$-primal rings, bounded rings etc. It is shown that a ring $R$ is $\pi$-\textit{CN} whenever every nilpotent element of index $2$ in $R$ is central. These rings naturally generalize the long-known class of \textit{CN}-rings, introduced by Drazin \cite{drz}. It is proved that $\pi$-\textit{CN}-rings are abelian, McCoy and $2$-primal. We also show that, $\pi$-duo rings are strongly McCoy and abelian and also they are strongly right $AB$. If $R$ is $\pi$-duo, then $R[x]$ has property ($A$). If $R$ is $\pi$-duo and it is either right weakly continuous or every prime ideal of $R$ is maximal, then $R$ has property ($A$). A $\pi$-duo ring $R$ is left perfect if and only if $R$ contains no infinite set of orthogonal idempotents and every left $R$-module has a maximal submodule. Our achieved results substantially improve many existing results.

    Show More  
  • 2023-11-01

    Finite quotients of singular Artin monoids and categorification of the desingularization map

    Helena Jonsson, Volodymyr Mazorchuk, Elin Persson Westin, Shraddha Srivastava, Mateusz Stroinski, Xiaoyu Zhu

    Abstract : We study various aspects of the structure and representation theory of singular Artin monoids. This includes a number of generalizations of the desingularization map and explicit presentations for certain finite quotient monoids of diagrammatic nature. The main result is a categorification of the classical desingularization map for singular Artin monoids associated to finite Weyl groups using BGG category $\mathcal{O}$.

  • 2023-11-01

    On the $\eta$-parallelism in almost Kenmotsu $3$-manifolds

    Jun-ichi Inoguchi, Ji-Eun Lee

    Abstract : In this paper, we study the $\eta$-parallelism of the Ricci operator of almost Kenmotsu $3$-manifolds. First, we prove that an almost Kenmotsu $3$-manifold $M$ satisfying $\nabla_{\xi}h=-2\alpha h \varphi$ for some constant $\alpha$ has dominantly $\eta$-parallel Ricci operator if and only if it is locally symmetric. Next, we show that if $M$ is an $H$-almost Kenmotsu $3$-manifold satisfying $\nabla_{\xi}h=-2\alpha h \varphi$ for a constant $\alpha$, then $M$ is a Kenmotsu $3$-manifold or it is locally isomorphic to certain non-unimodular Lie group equipped with a left invariant almost Kenmotsu structure. The dominantly $\eta$-parallelism of the Ricci operator is equivalent to the local symmetry on homogeneous almost Kenmotsu $3$-manifolds.

    Show More  
  • 2023-11-01

    The Bongartz's theorem of Gorenstein cosilting complexes

    Hailou Yao, Qianqian Yuan

    Abstract : We describe the Gorenstein derived categories of Gorenstein rings via the homotopy categories of Gorenstein injective modules. We also introduce the concept of Gorenstein cosilting complexes and study its basic properties. This concept is generalized by cosilting complexes in relative homological methods. Furthermore, we investigate the existence of the relative version of the Bongartz's theorem and construct a Bongartz's complement for a Gorenstein precosilting complex.

Current Issue

November, 2023
Vol.60 No.6

Current Issue
Archives

Most Read

Most Downloaded

JKMS