Abstract : This paper studies the eigenvalues of the $G(\cdot)$-Laplacian \linebreak Dirichlet problem $$\left \{ \begin{aligned} \displaystyle -\text{div}\left(\frac{g(x,|\nabla u|)}{|\nabla u|}\nabla u\right) & = \displaystyle \lambda \left(\frac{g(x,|u|)}{|u|}u\right) & &\text{in} \; \Omega,\\ u & = 0 & &\text{on} \; \partial\Omega, \end{aligned} \right.$$ where $\Omega$ is a bounded domain in $\mathbb R^N$ and $g$ is the density of a generalized $\Phi$-function $G(\cdot)$. Using the Lusternik-Schnirelmann principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues.
Abstract : We compute explicitly traces of one-dimensional diffusion processes. The obtained trace forms can be regarded as Dirichlet forms on graphs. Then we discuss conditions ensuring the trace forms to be conservative. Finally, the obtained results are applied to the Bessel process of order $\nu$.
Abstract : In this paper, we study the boundedness of a class of inhomogeneous Journ\'{e}'s product singular integral operators on the inhomogeneous product Lipschitz spaces. The consideration of such inhomogeneous Journ\'{e}'s product singular integral operators is motivated by the study of the multi-parameter pseudo-differential operators. The key idea used here is to develop the Littlewood-Paley theory for the inhomogeneous product spaces which includes the characterization of a special inhomogeneous product Besov space and a density argument for the inhomogeneous product Lipschitz spaces in the weak sense.
Abstract : In this paper, a stabilized-penalized collocated finite volume (SPCFV) scheme is developed and studied for the stationary generalized Navier-Stokes equations with mixed Dirichlet-traction boundary conditions modelling an incompressible biological fluid flow. This method is based on the lowest order approximation (piecewise constants) for both velocity and pressure unknowns. The stabilization-penalization is performed by adding discrete pressure terms to the approximate formulation. These simultaneously involve discrete jump pressures through the interior volume-boundaries and discrete pressures of volumes on the domain boundary. Stability, existence and uniqueness of discrete solutions are established. Moreover, a convergence analysis of the nonlinear solver is also provided. Numerical results from model tests are performed to demonstrate the stability, optimal convergence in the usual $L^2$ and discrete $H^1$ norms as well as robustness of the proposed scheme with respect to the choice of the given traction vector.
Abstract : Let $\mathcal{M}_{\alpha}$ be a bilinear fractional maximal operator and $BM_{\alpha}$ be a fractional maximal operator associated with the bilinear Hilbert transform. In this paper, the compactness on weighted Lebesgue spaces are considered for commutators of bilinear fractional maximal operators; these commutators include the fractional maximal linear commutators $\mathcal{M}_{\alpha,b}^{j}$ and $BM_{\alpha, b}^{j} $ $(j=1,2)$, the fractional maximal iterated commutator $\mathcal{M}_{\alpha,\vec{b}}$, and $BM_{\alpha, \vec{b}}$, where $b\in{\rm BMO}(\mathbb{R}^{d})$ and $\vec{b}=(b_{1},b_{2})\in{\rm BMO}(\mathbb{R}^{d})\times {\rm BMO}(\mathbb{R}^{d})$. In particular, we improve the well-known results to a larger scale for $1/2
Abstract : Let $R$ be a commutative ring with identity. The structure theorem says that $R$ is a PIR (resp., UFR, general ZPI-ring, $\pi$-ring) if and only if $R$ is a finite direct product of PIDs (resp., UFDs, Dedekind domains, $\pi$-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations $v$ or $t$ as follows: An integral domain $R$ is a Krull domain if and only if every nonzero proper principal ideal of $R$ can be written as a finite $v$- or $t$-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation $u$ on $R$, so that $R$ is a general Krull ring if and only if every proper principal ideal of $R$ can be written as a finite $u$-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.
Abstract : We introduce the notion of quasi-roots and study their uniqueness in right-angled Artin groups.
Abstract : Let $D$ be an integral domain with quotient field $K$, $Pic(D)$ be the ideal class group of $D$, and $X$ be an indeterminate. A polynomial overring of $D$ means a subring of $K[X]$ containing $D[X]$. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain $D$, defined by the intersection of $K[X]$ and rank-one discrete valuation rings with quotient field $K(X)$, and their ideal class groups. Next, let $\mathbb{Z}$ be the ring of integers, $\mathbb{Q}$ be the field of rational numbers, and $\mathfrak{G}_f$ be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring $R$ of $\mathbb{Z}[X]$ such that (i) $R$ is a Bezout domain, (ii) $R \cap \mathbb{Q}[X]$ is an almost Dedekind domain, (iii) $Pic(R \cap \mathbb{Q}[X]) = \bigoplus_{G \in \mathfrak{G}_f}G$, (iv) for each $G \in \mathfrak{G}_f$, there is a multiplicative subset $S$ of $\mathbb{Z}$ such that $R_S \cap \mathbb{Q}[X]$ is a Dedekind domain with $Pic(R_S \cap \mathbb{Q}[X]) = G$, and (v) every invertible integral ideal $I$ of $R \cap \mathbb{Q}[X]$ can be written uniquely as $I = X^nQ_1^{e_1} \cdots Q_k^{e_k}$ for some integer $n \geq 0$, maximal ideals $Q_i$ of $R \cap \mathbb{Q}[X]$, and integers $e_i \neq 0$. We also completely characterize the almost Dedekind polynomial overrings of $\mathbb{Z}$ containing Int$(\mathbb{Z})$.
Abstract : In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.
Abstract : The main objective of this paper is to develop a concrete inverse formula of the system induced by the fourth-order finite difference method for two-point boundary value problems with Robin boundary conditions. This inverse formula facilitates to make a fast algorithm for solving the problems. Our numerical results show the efficiency and accuracy of the proposed method, which is implemented by the Thomas algorithm.
Jaewook Ahn, Myeonghyeon Kim
J. Korean Math. Soc. 2023; 60(3): 619-634
https://doi.org/10.4134/JKMS.j220424
J. Korean Math. Soc. 2022; 59(2): 299-309
https://doi.org/10.4134/JKMS.j210123
Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Keewoo Lee
J. Korean Math. Soc. 2022; 59(3): 621-634
https://doi.org/10.4134/JKMS.j210446
Pengju Ma, Xiaoyan Yang
J. Korean Math. Soc. 2022; 59(2): 379-405
https://doi.org/10.4134/JKMS.j210349
Eui Chul Kim
J. Korean Math. Soc. 2023; 60(5): 999-1021
https://doi.org/10.4134/JKMS.j220480
Chun-Ru Fu , Huan-Nan Shi, Dong-Sheng Wang
J. Korean Math. Soc. 2023; 60(3): 503-520
https://doi.org/10.4134/JKMS.j220039
Hi Jun Choe, Hayeong Koh, Jimin Lee
J. Korean Math. Soc. 2022; 59(2): 217-233
https://doi.org/10.4134/JKMS.j200406
Tae Gab Ha, Sun-Hye Park
J. Korean Math. Soc. 2022; 59(1): 205-216
https://doi.org/10.4134/JKMS.j210364
© 2022. The Korean Mathematical Society. Powered by INFOrang Co., Ltd