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RING ISOMORPHISMS BETWEEN CLOSED STRINGS VIA

HOMOLOGICAL MIRROR SYMMETRY

Sangwook Lee

Abstract. We investigate how closed string mirror symmetry is related

to homological mirror symmetry, under the presence of an explicit geo-
metric mirror functor.

1. Introduction

Let X be a symplectic manifold and W : X̌ → k be the Landau-Ginzburg
mirror to X having only isolated singularities. We are interested in two different
kinds of invariants on each side: one is open while the other is closed. For a
symplectic manifold X, we have the Fukaya category Fu(X) as an open string
invariant and the quantum cohomology QH∗(X) as a closed string invariant.
For W : X̌ → k, the category MF (W ) of matrix factorizations of W is an
open string invariant. A natural closed string invariant is the Jacobian algebra
Jac(W ).

Mirror symmetry can be considered as a package of equivalences between
symplectic invariants of X and algebro-geometric invariants of W . The closed
string mirror symmetry asserts that QH∗(X) and Jac(W ) are isomorphic as
Frobenius algebras. The open string mirror symmetry, also known as homo-
logical mirror symmetry, is that Fu(X) and MF (W ) are equivalent.

In this paper, we investigate a relation between these two layers (closed/
open) of mirror symmetry, especially when homological mirror symmetry is
given by a localized mirror functor (in [3, 4]). Given an A∞-category, its
Hochschild cohomology is equipped with a ring structure. For Fukaya cat-
egories and matrix factorization categories, we have natural ring homomor-
phisms from closed string algebras (which are QH∗(X) and Jac(W ), respec-
tively) to Hochschild cohomologies. Denote such ring homomorphisms as fol-
lows.

COA : QH∗(X)→ HH∗(Fu(X)), COB : Jac(W )→ HH∗(MFA∞(W )).
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Our main result is the following.

Theorem. Let X be a symplectic manifold. Suppose that we have a localized
mirror functor

FL : Fu(X)→MFA∞(W ).

Then there is a Fu(X)-MFA∞(W )-bimodule M such that the following dia-
gram commutes:

QH∗(X)
COA //

ks

��

HH∗(Fu(X))

L1
M ))

Hom(M,M).

Jac(W )
COB // HH∗(MFA∞(W ))

R1
M

55

We will review the definition (due to [9]) of the closed string isomorphism
ks. The data of mirror functor FL is contained in the Fu(X)-MFA∞(W )-
bimodule M. The maps L1

M and R1
M from Hochschild cohomologies to the

endomorphism space of M are described in [16] and will be reviewed. The
main content of the proof begins with an explicit description of the map COB
when HH∗(MFA∞(W )) is described by the bar resolution.

Remark 1.1. More precisely, if W has a critical point with critical value λ, then
the nontrivial category of matrix factorizations is given by MF (W−λ). Also, if
W has more than one critical point, then we need to consider a decomposition
of the matrix factorization category into several critical points (we need to be
careful of this point in the toric case). We can also consider decompositions
of Fukaya category and quantum cohomology accordingly on A-side as follows:
first, the quantum cohomology is a finite direct product of local rings over an
index set A of nilpotent maximal ideals which give rise to critical points of
the mirror potential. Considering closed-open map on each summand of the
quantum cohomology, we can decompose the Fukaya category over the same
index set A (see [6, Section 4]). It is now clear that the mirror functor and ks
preserve decompositions on both sides. Therefore, we will pretend that W has
only one critical point with critical value 0, so that we only consider MF (W )
instead of nontrivial direct sums of categories.

2. A∞-bimodules

In this section, we give basic preliminaries on A∞-categories and bimodules
over them. We refer readers to [10,15,16] for more details.
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2.1. A∞-bimodules

Recall that an A∞-category C over k consists of objects Ob(C) and the space
of morphisms C(A,B) for each pair of objects A and B, with the following
conditions:

(1) C(A,B) is a filtered Z/2-graded k-vector space for any A,B ∈ Ob(C),
(2) for k ≥ 0 there are multilinear maps of degree 1

mk : C(A0, A1)[1]⊗ C(A1, A2)[1]⊗ · · · ⊗ C(Ak−1, Ak)[1]→ C(A0, Ak)[1]

such that they satisfy the A∞-relation

(2.1)
∑

k1+k2=n+1

k1∑
i=1

(−1)εmk1(x1, . . . , xi−1,mk2(xi, . . . , xi+k2−1), xi+k2 , . . . , xn) = 0,

where ε =
∑i−1
j=1(|xj |+ 1).

Definition 2.1. Let (C, {mCk}) and (D, {mDk }) be A∞-categories. A C-D-
bimodule M is the following data:

• For V ∈ Ob(C) and V ′ ∈ Ob(D), M(V, V ′) is a graded k-vector space,
• degree 1−r−s multilinear maps (which are scalar multiplication maps)

µr|1|s : C(V0, V1)⊗ · · · ⊗ C(Vr−1, Vr)⊗M(Vr,W0)⊗D(W0,W1)⊗ · · · ⊗ D(Ws−1,Ws)

→M(V0,Ws)

for any Vi ∈ Ob(C) and Wj ∈ Ob(D) satisfying∑
(−1)εµi+1|1|s−j−1(v0, . . . , vi, µ

r−i−1|1|j+1(vi+1, . . . , vr−1,m,w0, . . . , wj), wj+1, . . . , ws−1)

+
∑

(−1)εµi+r−j+1|1|s(v0, . . . , vi,m
C
j−i(vi+1, . . . , vj), vj+1, . . . , vr−1,m,w0, . . . , ws−1)

+
∑

(−1)ε
′
µr|1|i+s−l+1(v0, . . . , vr−1,m,w0, . . . , wi,m

D
l−i(wi+1, . . . , wl), wl+1, . . . , ws−1)

= 0,

where

ε = |v0|′ + · · ·+ |vi|′, ε′ = |v0|′ + · · ·+ |vr−1|′ + |m|+ |w0|′ + · · ·+ |wi|′.

Definition 2.2. A premorphism of C-D-bimodules F : M →M′ of degree k
is a collection of multilinear maps

Fr|1|s : C(V0, V1)⊗ · · · ⊗ C(Vr−1, Vr)⊗M(Vr,W0)⊗D(W0,W1)⊗ · · · ⊗ D(Ws−1,Ws)

→M′(V0,Ws)

of degree k − r − s, and the composition F ′ ◦ F is defined by

(F ′ ◦ F)(v1, . . . , vr,m,w1, . . . , ws)

:=
∑

(−1)|F|(|v1|
′+···+|vi|′)F ′i|1|s−j(v1, . . . , vi,Fr−i|1|j(vi+1, . . . ,m,w1, . . . , wj), wj+1, . . . , ws).

The differential δ on premorphisms is defined by

(δF)(v1, . . . , vr,m,w1, . . . , ws)



424 S. LEE

:=
∑

(−1)ε1µ
i|1|s−j
M′ (v1, . . . , vi,Fr−i|1|j(vi+1, . . . , vr,m,w1, . . . , wj), wj+1, . . . , ws)

−
∑

(−1)ε2F i|1|s−j(v1, . . . , vi, µ
r−i|1|s−j(vi+1, . . . , vr,m,w1, . . . , wj), wj+1, . . . , ws)

−
∑
F∗|1|s(m̂C(v1, . . . , vr),m,w1, . . . , ws)

−
∑

(−1)ε3Fr|1|∗(v1, . . . , vr,m, m̂
D(w1, . . . , ws)),

where

ε1 = |F|(|v1|′ + · · ·+ |vi|′), ε2 = |v1|′ + · · ·+ |vi|′, ε3 = |v1|′ + · · ·+ |vr|′ + |m|
and m̂ means the coderivation induced by the A∞-structure {mk}.

Remark 2.3. The definition of the degree of a premorphism of bimodules is mo-
tivated by the fact that the degree k premorphism is indeed given by multilinear
maps

C[1]⊗r ⊗M⊗D[1]⊗s →M′

of degree k. Once we accept such a definition of degrees of maps, all signs obey
Koszul rules and so we sometimes just write (−1)Koszul for signs.

The readers can easily check that C-D-bimodules together with premor-
phisms form a dg category. If F :M→N is a premorphism such that δF = 0
and its cohomology level map [F0|1|0] is an isomorphism, then F is called a
quasi-isomorphism. We write M' N when they are quasi-isomorphic.

Example 2.4. For an A∞-category C, the diagonal bimodule C∆ is a C-C-
bimodule defined by

C∆(X,Y ) := C(X,Y )

with scalar multiplication maps

µr|1|s := mCr+s+1.

We recall some operations on bimodules.

Definition 2.5 (Base change). Let F : C1 → C2 and G : D1 → D2 be A∞-
functors. Suppose that M is a C2-D2-bimodule. Then a C1-D1-bimodule (F ⊗
G)∗M is defined on objects by

(F ⊗ G)∗M(X,Y ) :=M(F(X),G(Y ))

for X ∈ Ob(C1), Y ∈ Ob(D1), and the structure maps are given by

µ
r|1|s
(F⊗G)∗M(v1, . . . , vr,m,w1, . . . , ws)

:=
∑
k,l

µ
k|1|l
M

(
Fi1(v1, . . .), . . . ,Fik(. . . , vr),m,Gj1(w1, . . .), . . . ,Gjl(. . . , ws)

)
.

Definition 2.6 (Tensor product). Let M be a C-D-bimodule and N be a D-
E-bimodule for A∞-categories C, D and E . Then M⊗D N is a C-E-bimodule
such that

(M⊗D N )(C,E)
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:=
⊕

D1,...,Dk∈Ob(D)

M(C,D1)⊗D(D1, D2)⊗ · · · ⊗ D(Dk−1, Dk)⊗N (Dk, E)

for C ∈ Ob(C) and E ∈ Ob(E), and the structure maps are given as follows:

µ
0|1|0
M⊗DN (m⊗ d1 ⊗ · · · ⊗ dk ⊗ n)

:=
∑

µ
0|1|i
M (m, d1, . . . , di)⊗ di+1 ⊗ · · · ⊗ dk ⊗ n

+
∑

(−1)Koszulm⊗ d1 ⊗ · · · ⊗ di ⊗mDj−i(di+1, . . . , dj)⊗ dj+1 ⊗ · · · ⊗ dk ⊗ n

+
∑

(−1)Koszulm⊗ d1 ⊗ · · · ⊗ di ⊗ µk−i|1|0N (di+1, . . . , dk, n),

µ
r|1|0
M⊗DN (c1, . . . , cr,m⊗ d1 ⊗ · · · ⊗ dk ⊗ n)

:=
∑

µ
r|1|p
M (c1, . . . , cr,m, d1, . . . , dp)⊗ dp+1 ⊗ · · · ⊗ dk ⊗ n,

µ
0|1|s
M⊗DN (m⊗ d1 ⊗ · · · ⊗ dk ⊗ n, e1, . . . , es)

:=
∑

(−1)Koszulm⊗ d1 ⊗ · · · ⊗ dp ⊗ µk−p|1|sN (dp+1, . . . , dk, n, e1, . . . , es)

and µ
r|1|s
M⊗DN = 0 if r and s are both nonzero.

Definition 2.7. Two A∞-categories C and D are Morita equivalent if there
are a C-D-bimodule M and a D-C-bimodule N such that

M⊗D N ' C∆, N ⊗CM' D∆.

In this case, we call M and N Morita bimodules.

2.2. Hochschild cohomology of A∞-bimodules

Definition 2.8. LetM be an A∞-bimodule over C. We define the Hochschild
cochain complex of M

CH∗(C,M)

:=
∏

X0,...,Xk∈Ob(C)

hom•
(
C(X0, X1)[1]⊗ · · · ⊗ C(Xk−1, Xk)[1],M(X0, Xk)

)
[−1]

with differential b∗ defined by

b∗φ(x0, . . . , xk−1)

:=
∑

φ(m̂(x0, . . . , xk−1))

+
∑

(−1)|φ|
′(|x0|′+···+|xi|′)µ

i+1|1|k−l−1
M (x0, . . . , xi, φ(xi+1, . . . , xl), xl+1, . . . , xk−1).

Its cohomology of b∗ is called the Hochschild cohomology of C with coefficient
in M. If M = C∆, then we write CH∗(C) := CH∗(C, C∆).

Proposition 2.9 ([11]). CH∗(C) is an A∞-algebra with A∞-operations given
by

Mk(φ1, . . . , φk)(x1, . . . , xn)
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:=
∑

(−1)εm∗(~xi1 , φ1(~xj1), ~xi2 , φ2(~xj2), . . . , ~xik , φk(~xjk), ~xik+1
).

with ~xi1 ⊗ ~xj1 ⊗ · · · ⊗ ~xik+1
= x1 ⊗ · · · ⊗ xn, M0 = 0, M1 = b∗, and

ε =

k∑
l=1

|φl|′(|~xi1 |′ + |~xj1 |′ + · · ·+ |~xjl−1
|′ + |~xil |′).

In particular, the binary product M2 induces the Yoneda product ∪ on the
cohomology HH∗(C) by

φ ∪ ψ := (−1)|φ|M2(φ, ψ).

Then the Yoneda product is associative.
Finally, we recall that Hochschild cohomology is a Morita invariant. Let A

and B be Morita equivalent with Morita bimodules M and N which are over
A-B and B-A, respectively.

Lemma 2.10 ([16]). The following are A∞ quasi-isomorphisms

LM : CH∗(A)→ hom∗A−B(M,M),

RM : CH∗(B)op → hom∗A−B(M,M)

which are defined as follows:

LpM(φ1, . . . , φp)(a1, . . . , ar,m, b1, . . . , bs)

:=
∑

(−1)Koszulµ
∗|1|s
M (~a1, φ1(~a2),~a3, . . . , φp(~a2p),~a2p+1,m, b1, . . . , bs),

RpM(φ1, . . . , φp)(a1, . . . , ar,m, b1, . . . , bs)

:=
∑

(−1)Koszulµ
r|1|∗
M (a1, . . . , ar,m,~b1, φp(~b2),~b3, . . . , φ1(~b2p),~b2p+1).

In particular, L1
M and R1

M induce ring isomorphisms on cohomology.

3. Homological mirror symmetry by localized mirror functors

First we recall A∞-categories which are counterparts to each other in the
homological mirror symmetry statement.

3.1. Fukaya categories

Given a symplectic manifold, we consider the Fukaya category which is de-
fined over the Novikov field. So we first give the definition of Novikov field.

Definition 3.1. The Novikov field is

Λ :=
{∑
i≥0

aiT
λi | ai ∈ C, λi ∈ R, λi →∞ as i→∞

}
.

We write

Λ+ :=
{∑
i≥0

aiT
λi ∈ Λ | λi > 0 for all i

}
, Λ0 :=

{∑
i≥0

aiT
λi ∈ Λ | λi ≥ 0 for all i

}
.
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Let C be an A∞-category. We want to consider objects for which m1-
operations become differentials. It motivates the following definition.

Definition 3.2. Let A be an object of a unital A∞-category C. We say A
is weakly unobstructed if there is a morphism b ∈ C(A,A) such that for some
constant W (b) ∈ Λ,

mb
0 := m0 +m1(b) +m2(b, b) + · · · = W (b) · 1A.

The constant W (b) is called the superpotential of (A, b). In this case, b is called
a weak bounding cochain of A.

Let Mweak(A) be the set of weak bounding cochains of A (it is called a
weak Maurer-Cartan space). Then W is a function on Mweak(A). Define a
new A∞-category Cwo consisting of (Ai, bi) as objects (bi is a weak bounding
cochain of Ai), with morphisms and operations are defined by

Cwo
(
(Ai, bi), (Aj , bj)

)
:= C(Ai, Aj)

with the following new A∞-structure maps

mb0,...,bk
k : Cwo

(
(A0, b0), (A1, b1)

)
⊗ · · · ⊗ Cwo

(
(Ak−1, bk−1), ((Ak, bk)

)
→ Cwo

(
(A0, b0), (Ak, bk)

)
,

mb0,...,bk
k (x1, . . . , xk) :=

∑
l0,...,lk

mk+l0+···+lk(bl00 , x1, b
l1
1 , . . . , b

lk−1

k−1 , xk, b
lk
k ),

where xi ∈ Cwo
(
(Ai, bi), (Ai+1, bi+1)

)
. We have (mb,b

1 )2 = 0 because bi are weak
bounding cochains.

Now we briefly define the Fukaya category. Let (X,ω) be a symplectic
manifold, J be an almost complex structure and L0, . . . , Lk be its transversally
intersecting Lagrangian submanifolds. Let

CF (Li, Li+1) :=
⊕

p∈Li∩Li+1

Λ · p

be a Z/2-graded vector space over Λ. The degree is defined by the Maslov
index of each intersection point. Let β ∈ π2(X,L0 ∪ · · · ∪Lk). Define a moduli
space

M̂(p0, . . . , pk−1; q;β; J)

:=
{
u : (D2, z0, . . . , zk−1, zk)

J-hol−→ (X, p0, . . . , pk−1, q)

| u(żizi+1) ⊂ Li+1, u(z̄kz0) ⊂ L0, [u] = β
}
.

and let M(p0, . . . , pk−1; q;β) be its stable map compactification.
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Definition 3.3. The Fukaya category Fu(X) is an A∞-category whose objects
are Lagrangian submanifolds and morphism spaces are CF (L,L′). The A∞-
structure is given by operations {mk}k≥0, defined by

mk(p0, . . . , pk−1) :=
∑

β∈π2(X,L0∪···∪Lk)

q∈Lk∩L0

#M(p0, . . . , pk−1; q;β) · Tω(β) · q.

We only count the moduli space when its virtual dimension is zero. Modulo
technical assumptions (such as transversality of moduli spaces), these opera-
tions give rise to a filtered A∞-algebra. In general, there might be nonzero
m0, which comes from holomorphic discs with one marked point. As we dis-
cussed above, we are only interested in objects whose endomorphism spaces
are m1-chain complexes. So let us still use Fu(X) as the category of weakly
unobstructed Lagrangians (with weak bounding cochains), instead of Fu(X)wo.

3.2. Category of matrix factorizations

Let R be a commutative algebra and W ∈ R be a non-zero-divisor. A matrix
factorization of W is a Z/2-graded R-module E = E0 ⊕ E1 with a degree 1
endomorphism

Q =

Å
0 Q01

Q10 0

ã
, where Qij ∈ Hom(Ej , Ei),

satisfying Q2 = W · id. We denote the above data by (E,Q) for short.
Matrix factorizations of W form a differential Z/2-graded category MF (R,

W ) as follows: given two matrix factorizations (E,Q), (F,Q′), Z/2-graded mor-
phisms from (E,Q) to (F,Q′) are given by homomorphisms

Φ =

Å
Φ00 Φ01

Φ10 Φ11

ã
, where Φij ∈ Hom(Ej , F i).

Compositions of morphisms are defined in the obvious way. The differential on
a morphism is defined as

δΦ := QΦ− (−1)|Φ|ΦQ

for morphisms of homogeneous degrees.

3.3. Localized mirror functors

To define a localized mirror functor, we modify the dg category (MF (W ),
δ, ◦) to an A∞-category (MFA∞(W ),mMF

1 ,mMF
2 ). Objects are still matrix

factorizations of W , but morphism spaces are changed:

HomMFA∞ (W )((E,QE), (F,QF )) := HomR(F,E).

mMF
1 and mMF

2 are defined as

mMF
1 (Φ) := δ(Φ) = QE ◦ Φ− (−1)|Φ|Φ ◦QF ,

mMF
2 (Φ,Ψ) := (−1)|Φ|Φ ◦Ψ.



RING ISOMORPHISMS BETWEEN CLOSED STRING VIA HMS 429

Then {mMF
k | k ≥ 1, mMF

k = 0 for all k ≥ 3} satisfy A∞-relation (2.1), rather
than usual dg relation.

Let L be a weakly unobstructed Lagrangian and let W (b) be the super-
potential function on Mweak(L). For any other weakly unobstructed La-
grangian L with potential λ (i.e., there is a weak bounding cochain b0 such

that mb0
0 = λ · 1L), the A∞-equation gives the following matrix factorization

identity

(mb0,b
1 )2 = (W − λ) · id.

Theorem 3.4 ([3]). Define FL from Fu(X) to MFA∞(W ) as follows. FL
0

sends an object (L, b0) ∈ Fu(X) to the matrix factorization (E,Q) by

E := CF
(
(L, b0), (L, b)

)
, Q := −mb0,b

1 .

On the level of morphisms, FL
k is defined as

(3.1) FL
k (x1, . . . , xk)(•) := mk+1(x1, . . . , xk, •).

Then {FL
k } becomes an A∞-functor.

Remark 3.5. In [3, 4], they considered CF
(
(L, b), (L, b0)

)
instead. In our new

convention, we do not have any sign in (3.1).

Proof. We need to show that

FL(m̂Fu(x1, . . . , xk))(3.2)

=
∑

~x1⊗~x2=x1⊗···⊗xk

mMF
2 (FL(~x1),FL(~x2)) +mMF

1 (FL(x1, . . . , xk)).

The left hand side can be written as∑
~x1⊗~x2⊗~x3=x1⊗···⊗xk

(−1)|~x1|′mFu
(
~x1 ⊗mFu(~x2)⊗ ~x3, •

)
.

By definition of mMF
2 , ∑
~x1⊗~x2=x1⊗···⊗xk

mMF
2 (FL(~x1),FL(~x2))

=
∑

~x1⊗~x2=x1⊗···⊗xk

(−1)|~x1|′+1FL(~x1) ◦ FL(~x2)

=
∑

~x1⊗~x2=x1⊗···⊗xk

(−1)|~x|
′+1mFu(~x1,m

Fu(~x2, •)).

The last term equals to

−mFu
1 mFu

k+1(x1, . . . , xk, •)− (−1)|x1|′+···+|xk|′+1mFu
k+1(x1, . . . , xk,−mFu

1 (•)).

Summarizing, the equation (3.2) is nothing but an A∞-relation of the Fukaya
category. �
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A priori FL need not be an equivalence, but in various examples of localized
mirror functors were indeed shown to give homological mirror symmetry. The
examples include orbifold spheres or toric Fano manifolds. See [3, 4].

4. Closed string mirror symmetry

Let β ∈ H2(X,L) where L is a Lagrangian submanifold of X. LetMmain
k+1,l(β)

be the moduli space of holomorphic discs of class β with k+1 boundary marked
points respecting the cyclic order and l interior marked points. Define the
evaluation map

ev = (ev+
1 , . . . , ev

+
l , ev0, . . . , evk) :Mmain

k+1,l(β)→ X l × Lk+1

and consider the map [7,8]:

ql,k;β : El(H
∗(X,Λ+))⊗H∗(L; Λ)⊗k → H∗(L; Λ),

ql,k;β([α1 ⊗ · · · ⊗ αl], p1, . . . , pk)

:= (ev0)∗(ev
+
1 × · · · × ev

+
l × ev0 ⊗ · · · ⊗ evk)∗([α1 ⊗ · · · ⊗ αl], p1 ⊗ · · · ⊗ pl).

The map q is induced from the chain level and is well-defined. El(H
∗(X,Λ+))

means the subspace of H∗(X,Λ+)⊗l consisting of Sl-invariant elements. The
bracket is the symmetrization as follows.

[α1 ⊗ · · · ⊗ αl] =
∑
σ∈Sl

1

l!
ασ(1) ⊗ · · · ⊗ ασ(l).

We similarly define

ql,k;β([α1 ⊗ · · · ⊗ αl], p1, . . . , pk)

for p1, . . . , pk being transverse intersections among distinct Lagrangians L0, . . .,
Lk, using moduli spaces of holomorphic polygons with faces on L0, . . . , Lk
together with interior marked points. We also define the following for both a
single Lagrangian or a collection of transverse Lagrangians

ql,k([α1⊗· · ·⊗αl], p1, . . . , pk) :=
∑

β∈π2(M,~L)

ql,k;β([α1⊗· · ·⊗αl], p1, . . . , pk)·Tω(β).

Now, suppose that we have a Lagrangian submanifold L such that FL gives
a mirror equivalence. The following assumption on L is crucial in this paper.

Assumption 4.1. For any b ∈ H(X,Λ+) and b ∈ H1(L; Λ+) the following
always holds:

∞∑
l=0

∞∑
k=0

ql,k(bl; bk) ≡ 0 mod Λ+1L.

We denote the left hand side by W b(b) · 1L and call the coefficient W b(b) a
bulk-deformed potential.

Remark 4.2. The assumption holds for compact toric manifolds and orbifold
spheres. See [8] and [1], respectively.
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Figure 1. A degeneration of holomorphic discs with interior
constraint α. In broken discs, components without interior
constraints correspond to mk(~p) and components with interior
constraints correspond to q1,k(α; ~p).

For α ∈ H∗(X,Λ+) and t is a formal variable, let b = tα and b =
∑
xiei ∈

H1(L,Λ0). Then W b(b) is a formal power series in t. We observe the following:‹ks(α) :=
∂W b(b)

∂t

∣∣
t=0

=
∑
k≥0

q1,k(α; bk).

By Assumption 4.1, ‹ks(α) is a multiple of the unit 1L. Again, the coefficient is a
power series in x1, . . . , xn, or a Laurent polynomial in y1 := ex1 , . . . , yn := exn .

We will later employ ‹ks for the statement of the closed string mirror symmetry
for toric Fano manifolds.

Now we recall the bulk-deformation of A∞-structure by ambient cohomology
elements.

Definition 4.3. Let X be a symplectic manifold and b ∈ H∗(X,Λ+). Let
(L0, b0), . . . , (Lk, bk) be objects in Fu(X). Then the following operations define
a new A∞-structure:

mb,~b
k (x1, . . . , xk) :=

∞∑
l=0

ql,∗(b
l; eb0 , x1, e

b1 , x2, . . . , e
bk−1 , xk, e

bk).

We can also consider the t-derivative of A∞-relation of {mtα,~b
k } at t = 0 as

follows. We omit the decoration ebi for simplicity.

0 =
∑

(−1)|x1|′+···+|xi|′mi+k−j+1

(
x1, . . . , xi, q(α;xi+1, . . . , xj), xj+1, . . . , xk

)(4.1)

+
∑

(−1)|x1|′+···+|xi|′q(α;x1, . . . , xi,mj−i(xi+1, . . . , xj), xj+1, . . . , xk).

This equation will be crucially used in Section 5. We remark that it is related to
the degeneration of holomorphic discs with one interior constraint (see Figure
1).
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We turn to mirror symmetry between closed strings. The following state-
ment has been of great interest.

Conjecture 4.4. For a symplectic manifold X and its mirror W , there is a
ring isomorphism

QH∗(X) ∼= Jac(W ).

There were some related results due to [2,12,13]. While these approaches are
explicit and given by algebraic methods, the following Fukaya-Oh-Ohta-Ono’s
construction of the isomorphism is rather geometric. Their construction was
also used to prove mirror symmetry of orbifold spheres by [1]. We summarize
the results as follows.

Theorem 4.5 ([1, 9]). When X is a compact toric manifold or an orbifold
sphere, the following map ks is a ring isomorphism (when X is an orbifold,
QH∗(X) is the orbifold quantum cohomology).

ks : QH∗(X)→ Jac(W ), α 7→ [‹ks(α)].

5. Main result

Homological mirror symmetry and closed string mirror symmetry are con-
nected by the closed-open map on each side of mirror pair.

Definition 5.1. Let X be a symplectic manifold. The closed-open map is

COA : QH∗(X)→ HH∗(Fu(X))

defined by

COA(α)(p1, . . . , pk) := q1,k(α, p1, . . . , pk)

for p1 ∈ CF (L1, L2), . . . , pk ∈ CF (Lk, Lk+1).

We give a mirror counterpart of the map COA by the following lemma.

Lemma 5.2. The following map is a well-defined ring isomorphism:

COB : Jac(W )→ HH∗(MFA∞(W )), [r] 7→ [φr],

where

φr =
⊕

E∈Ob(MFA∞ (W ))

r · idE ∈ CH∗(MFA∞(W ))

which is a Hochschild cocycle with length zero part only.

Proof. Denote B = MFA∞(R,W ) for convenience. Recall from [5] that a well-
defined ring isomorphism

γ : Jac(W )→ HH∗(B)

is induced by the map

Jac(W )→ RHomB−B(B∆,B∆), [r] 7→ (B∆
r·−→ B∆).
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We reformulate γ (and rename it by COB) by realizing the map r· : B∆ → B∆

as a map from BB∆, the bar resolution of B∆ as follows:

· · · // ⊕
X0,X1∈B

B(−, X0)⊗ B(X0, X1)⊗ B(X1,−) //

��

⊕
E∈B
B(−, E)⊗ B(E,−) //

r·mB2
��

0

0 // 0 // B∆
// 0

and by the following identification

homB−B
(
B(−, X0)⊗ B(X0, X1)⊗ · · · ⊗ B(Xp−1, Xp)⊗ B(Xp,−),B∆

)
' homk

(
B(X0, X1)⊗ · · · ⊗ B(Xp−1, Xp),B(X0, Xp)

)
,

the above map of complexes changes to

· · · // ⊕
X0,X1∈B

B(X0, X1) //

��

⊕
E∈B

k //

r

��

0

0 // 0 //⊕
E∈B B(E,E) // 0

where the map r sends 1 to r · idE for each E. �

We justify that the map COB is indeed the appropriate closed-open map
on B-model as follows. For simplicity let A := Fu(X) (and B = MFA∞(W )
as well). Given the open-closed map OCA : HH∗(Fu(X)) → QH∗(X) on the
A-model, let σ ∈ HH∗(Fu(X)) be the preimage of the unit 1 ∈ QH∗(X). For
ψ = a0 ⊗ a1 ⊗ · · · ⊗ an ∈ HH∗(C) for an A∞-category C, recall the cap product

− ∩ ψ : HH∗(C)→ HH∗(C),

φ ∩ ψ

:=
∑

(−1)?mC∗
(
al+1, . . . , ai, φ(ai+1, . . . , aj)⊗ aj+1 ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ak

)
⊗ ak+1 ⊗ · · · ⊗ al,

where

? = |φ|′(|a0|′ + |a1|′ + · · ·+ |ai|′)
+ (|al+1|′ + · · ·+ |φ(ai+1, . . . , aj)|′ + · · ·+ |an|′)(|a0|′ + |a1|′ + · · ·+ |al|′).

Via the cap product, HH∗(C) is equipped with a module structure overHH∗(C).
Then we have the following important fact:

(5.1) OCA ◦ (∩σ) ◦ COA = id.

Now consider the “open-closed map” on the B-model

OCB : HH∗(B)→ Jac(W )
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which is explained in [14, Section 3.1]. Since it is an isomorphism, let ψ :=
ξ−1(1) ∈ HH∗(B). Let ψ = a0 ⊗ a1 ⊗ · · · ⊗ an. Pick r ∈ Jac(W ). Since
COB(r) =

⊕
X∈Ob(B) r·idX , we have the following computation of cap products:

COB(r) ∩ ψ = m2(r · id, a0)⊗ a1 ⊗ · · · ⊗ an = r · a0 ⊗ a1 ⊗ · · · ⊗ an,
so the following analogous relation as (5.1) is straightforward:

OCB ◦ (∩ψ) ◦ COB = id.

Now we state the main theorem.

Theorem 5.3. Let X be a symplectic manifold and FL : Fu(X)→MFA∞(W )
be a localized mirror functor. Then the following diagram commutes:

QH∗(X)
COA //

ks

��

HH∗(Fu(X))

[L1
M] **

HomFu(X)−MFA∞ (W )(M,M)

Jac(W )
COB // HH∗(MFA∞(W ))

[R1
M]

44

where M = (FL ⊗ 1)∗MFA∞(W )∆ is a Fu(X)-MFA∞(W ) bimodule given by
base change of MFA∞(W )∆ via FL.

Proof. Let us denote A = Fu(X) and B = MFA∞(W ). Let

Φα := (L1
M ◦ COA)(α) ∈ homA−B(M,M)

for α ∈ QH∗(X). Let (ai : Li → Li+1)i=1,...,r be a tuple of morphisms in
Fu(X). Let

m ∈M(Lr+1, P ) = B∆(FL(Lr+1), P ) = homMFA∞ (W )(FL(Lr+1), P )

for some P ∈ Ob(MFA∞(W )). Then

Φr|1|0α (a1, . . . , ar,m)

= L1
M(COA(α))(a1, . . . , ar,m)

=
∑

(−1)|a1|
′+···+|ai|′µ

(i+r−j+1)|1|0
M

(
a1, . . . , ai, q(α; ai+1, . . . , aj),

aj+1, . . . , ar,m
)

=
∑

(−1)|a1|
′+···+|ai|′mB2

(
FL(a1, . . . , ai, q(α; ai+1, . . . , aj),(5.2)

aj+1, . . . , ar
)
,m
)

and Φ
r|1|s
α = 0 if s is nonzero, since B has A∞-operations only up to m2.

Also, for Ψα := (R1
M ◦ γ ◦ ks)(α) ∈ hom•A−B(M,M),

Ψ0|1|0
α (m) = R1

M(γ(ks(α)))(m) = (−1)|m|mB2
(
m, ks(α) · idP

)
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and Ψ
r|1|s
α = 0 if r 6= 0 or s 6= 0. The sign (−1)|m| is due to the definition of

RpM in Lemma 2.10.
We show that

Ψα − Φα = δξα

for some ξα ∈ hom•A−B(M,M), so [Φα] = [Ψα] in HomA−B(M,M). For any
r ≥ 0, let

ξr|1|0α (a1, . . . , ar,m) := mB2 (q(α; a1, . . . , ar, •),m)

and ξ
r|1|s
α = 0 if s 6= 0. Then |ξα| = 0. Here, q(α; a1, . . . , ar, •) is a mor-

phism in B from CF (L1,L) to CF (Lr+1,L), i.e., the bullet means an input in
CF (Lr+1,L).

First let r ≥ 1. Then (Φα −Ψα)r|1|0 = Φ
r|1|0
α , and continuing from (5.2),

Φr|1|0α (a1, . . . , ar,m)

=
∑

(−1)|a1|
′+···+|ai|′mB2 (FL(a1, . . . , ai, q(α; ai+1, . . . , aj),

aj+1, . . . , ar),m)

=
∑

(−1)|a1|
′+···+|ai|′mB2 (mAi+r−j+1(a1, . . . , ai, q(α; ai+1, . . . , aj),

. . . , ar, •),m)

=
∑

mB2

(
(−1)|~a1|

′+1q(α;~a1,m
A(~a2, •))(5.3)

+ (−1)|~a
′
1|
′+1q(α;~a′1,m

A(~a′2),~a′3, •),m
)

+
∑

(−1)|~a1|
′+1mB2

(
mA(~a1, q(α;~a2, •)),m

)
(5.4)

±
∑

mB2

(
q(α; a1, . . . , ar, •,mL

0 (1)),m
)

(5.5)

±
∑

mB2

(
mAr+2(a1, . . . , ar, •, qL0 (α)),m

)
.(5.6)

Recall that the third identity is given by the formula (4.1). Also observe that

(5.3) = −(−1)|ξα|(ξα ◦ µ̂M)(a1, . . . , ar,m).

On the other hand, the following also holds

(5.4) = −(µM ◦ ξ̂α)(a1, . . . , ar,m),

by computations below:∑
mB2

(
(−1)|~a1|

′+1mA(~a1, q(α;~a2, •)),m
)

=
∑

mB2

(
(−1)|~a1|

′+1mA(~a1, •) ◦ q(α;~a2, •),m
)

=
∑

mB2

(
mB2
(
mA(~a1, •), q(α;~a2, •)

)
,m
)

=
∑

(−1)|~a1|
′
mB2

(
mA(~a1, •),mB2

(
q(α;~a2, •),m

))
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=
∑

(−1)|~a1|
′+|~a1|′+1mA

(
~a1,m

B
2

(
q(α;~a2, •),m

))
= − (µM ◦ ξ̂α)(a1, . . . , ar,m).

Furthermore, (5.5) and (5.6) vanish since mL
0 (1) and qL0 (α) are both constant

multiples of A∞-unit. Hence,

(Ψα − Φα)r|1|0 = (δξα)r|1|0 for r > 0.

If m ∈ B(FL(L), P ), then we have

(Φα −Ψα)0|1|0(m) = mB2 (FL(qL0 (α)),m)− (−1)|m|mB2 (m, ks(α) · idP )

= mB2 (FL(qL0 (α)),m)−m ◦ (ks(α) · idP )

= mB2

(
mA2
(
qL0 (α), •

)
− (−1)|•|mA2

(
•, qL0 (α)

)
,m
)

(5.7)

and by (4.1) again,

(5.7) = −mB2
(
q(α;mA1 (•)) +mA1 (q(α; •)),m

)
(5.8)

−mB2
(
q(α;mL

0 (1), •) + (−1)|•|
′
q(α; •,mL

0 (1)),m
)

(5.9)

and since mL
0 (1) and mL

0 (1) are both (multiples of) A∞-units, (5.9) vanish. On
the other hand,

(δξα)0|1|0(m) = ξα(mB1 (m)) +mB1 (ξα(m))

= mB2

(
q(α; •),mB1 (m)

)
+mB1

(
mB2 (q(α; •),m)

)
(5.10)

and we observe that

q(α;−mA1 (•))−mA1 (q(α; •)) = mB1 (• 7→ q(α; •)),
but by A∞-relation on B we have

mB2

(
mB1 (q(α; •)),m

)
+mB2

(
q(α; •),mB1 (m)

)
+mB1

(
mB2
(
q(α; •),m

))
= 0,

hence
(5.8) = −(5.10) = −(δξα)0|1|0(m).

Finally, we show (δξα)r|1|s = 0 for s 6= 0, so that in this case

(Ψα − Φα)r|1|s = (δξα)r|1|s,

where the left hand side is automatically zero by definition of Ψα and Φα.
Since B has no A∞-operations m≥3, we only need to compute (δξα)r|1|1.

δξα(a1, . . . , ar,m, b)

= (−1)|a1|
′+···+|ar|′ξα(a1, . . . , ar,m

B
2 (m, b))

+ ξα(m̂(a1, . . . , ar),m, b)(5.11)

+
∑

(−1)|a1|
′+···+|ai|′ξα(a1, . . . , ai, µM(ai+1, . . . , ar,m), b)(5.12)

+mB2 (ξα(a1, . . . , ar,m), b).
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By property ξ
r|1|s
α = 0 for s 6= 0, (5.11) and (5.12) are zero, and

(−1)|a1|
′+···+|ar|′ξα(a1, . . . , ar,m

B
2 (m, b))

= (−1)|a1|
′+···+|ar|′mB2

(
q(α; a1, . . . , ar, •),mB2 (m, b)

)
,

mB2

(
ξα(a1, . . . , ar,m), b

)
= mB2

(
mB2
(
q(α; a1, . . . , ar, •),m

)
, b
)
.

The sum of above two terms is zero due to the A∞-relation of mB2 , hence

δξα(a1, . . . , ar,m, b) = 0.

Summarizing all above arguments, we conclude that

(Ψα − Φα)r|1|s = (δξα)r|1|s

for any r and s, so on the cohomology level,

[Φα] = [Ψα]. �
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Basel, 1995.

http://projecteuclid.org/euclid.jdg/1493172094
https://doi.org/10.1016/j.geomphys.2018.11.006
https://doi.org/10.1016/j.geomphys.2018.11.006
https://doi.org/10.1215/00127094-1415869
https://doi.org/10.1090/jams/909
https://doi.org/10.1090/jams/909
https://doi.org/10.1090/crmp/049/07
https://doi.org/10.1007/s00029-011-0057-z
https://doi.org/10.1007/s00029-011-0057-z


438 S. LEE

[13] H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric

orbifolds, Adv. Math. 222 (2009), no. 3, 1016–1079. https://doi.org/10.1016/j.aim.

2009.05.016

[14] E. Segal, The closed state space of affine Landau-Ginzburg B-models, J. Noncommut.

Geom. 7 (2013), no. 3, 857–883. https://doi.org/10.4171/JNCG/137
[15] P. Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced

Mathematics, European Mathematical Society (EMS), Zürich, 2008. https://doi.org/
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