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GOLDBACH-LINNIK TYPE PROBLEMS WITH
UNEQUAL POWERS OF PRIMES

L1 Zuu

ABSTRACT. It is proved that every sufficiently large even integer can be
represented as a sum of two squares of primes, two cubes of primes, two
fourth powers of primes and 17 powers of 2.

1. Introduction

In the 1950s, Linnik [7, 8] proved that every sufficiently large even integer
can be represented as a sum of two primes and K powers of 2, where K is an
absolute constant. In 1975, Gallagher [1] established an asymptotic formula for
the number of such representations. Based on the work of Gallagher [1], Liu,
Liu and Wang [10] first established the explicit value of K and showed that
K = 54000 is acceptable. Afterwards, the value of K was improved by many
authors (see [3,5,6,11,13,17]). The best result so far is due to Pintz and Ruzsa
[14], who proved that K = 8 is acceptable.

In 2017, motivated by the works of Linnik [7,8] and Gallagher [1], Liu [9]
considered the problem on the representation of the large even integer N in the
form

(1.1) N =pi+ps+p5+pi+ps+ps+27 4 +2,

where p; are prime numbers and v; are positive integers. He proved that (1.1) is
solvable for k = 41. In 2019, by employing the techniques in Zhao [18], Lii [12]
improved the value of k to 24. Very recently, motivated by Platt and Trudgian
[15], Zhao [19] refined Lii’s result and showed that k = 22 is acceptable.

In this paper, by improving the estimates for the singular series and the
related integral over the minor arcs, we can obtain the following sharper result:

Theorem 1. Every sufficiently large even integer is a sum of two squares of
primes, two cubes of primes, two fourth powers of primes and 17 powers of 2.
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2. Notation and outline of the method

In this paper, we assume that N is a sufficiently large even integer. We fix a
positive constant 7 satisfying n < 1071%0, Let ¢ be an arbitrarily small positive
number where the value of € may change from line to line. The letter p, with
or without subscript, is reserved for a prime number. We use e(a) to denote
e?me As usual, p(n) stands for Euler’s function and d(n) denotes the number
of divisors of n.

We plan to investigate the sum

(2.1) R(k,N) = > (logp1) - - - (log pe),

N=p?+p3+pi+pd+pi+pd+2vl 4. 42k
P. Ps
F <p1.,p2<Py, 5 <p3,py<P3,

%Spsypeﬁﬂgylﬁ"] ----- v <L
where
1
N N\ 1
(2.2) = /AN, P, = (”) Py = (7’2)
and
log(N/log N)

L =
log 2

The exponents of P; are natural, since the summation (2.1) is solvable when

p1, P2 < N%, P3, Pa < N3 and Ps, e < Ni. In order to apply the circle
method, we set

Sa)= 3 ea)logp, Hla)= 3 e(2%a).
F<p<Pi 1<v<L
As in [9], let
(2.3) Qr=NH"% Q,=Nnt
Then we can define the major arcs 9t and the minor arcs m as
q
a 1 a 1

(24) M = U U m(qva)a 2:)‘n(qua’) = ( -

7774_7
g qQ2q¢ qQ2

qu(aq)l
1 1
m= 14+ — [\
{Qz Qz]\

By orthogonality, we get

R(k, N) = /52 26, (0)284 ()2 H(a) e(— Na)da

</ />52 283(a)*Sa(e) H(a)*e(~Na)da

(2.5) = I(k, 9, N) + I(k,m, N),
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where

(2.6) I(k,%X,N) = / So(a)?S3()2 Sy () H(a)k e(~Na)da.
x

In the following sections, we shall prove

(2.7) I(k, 9, N) > 0.0295049P; P7 L*,

(2.8) [I(k,m, N)| < 0.58814u* P P2L* + O(PZPZLF 1),

where © = 0.833783.

3. The lower bound for I(k, 2%, N)

The purpose of this section is to obtain the lower bound for I(k, 0, N). We
first state some auxiliary results. Let

a3 o().

1 q
(m,q)=1
Bing)= 3 Ci(g.a)C3(q.a)C3(g,a)e (—j) ,
Aln.q) = E:f;q 3), &) =Y A(n.q),
J(n) = > (mams) ™% (mamy) ™3 (msme) 1.

my+-+tmg=n
Py \2 Pa\3 E
(72) <my,mgy<PZ, (73) <mgz.my<P3,

(%)4Smr5:m/sipf
Lemma 3.1. Let M be defined as (2.4) with Q1, Q2 determined by (2.3). Then
for 1 —n)N <n <N, we have
/52(a)25’3(a)254(a)26(—na)da
m
1

(3.1) G(n)3(n) + O (N%L*I) .

©22.32.42
Here S(n) > 1 forn =0 (mod 2) and Nt < J(n) < Ns.

Proof. Note that Q1, Q2 are selected as the same values as in [9]. Therefore,
the desired conclusion follows from [9, Lemma 2.1]. O

Lemma 3.2. When (a,p) = 1, we have

(i) [C;(p.a)| < (j — p? +1,
(ii)) Cs(p,a) = =1 4f p=2 (mod 3).
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Proof. For (i), see [16, Lemma 4.3]. For (ii), note that p = 2 (mod 3) and
(a,p) = 1. Then it follows from [16, Lemma 4.3] that

Hence

Lemma 3.3. We have
[T @+ A(n,p)) > 0.902346.

p>11
Proof. For 11 < p < 199, we can directly calculate 11&1173217(1 + A(n,p)) on PC
and obtain that
1+ A(n, 11) > 0.999503, 1+A(n, 13) > 0.925347, ..., 1+ A(n, 199) > 0.999997.
Thus

(3.2) I[I @+ A, p)>0916851.
11<p<199

For 199 < p < 10°, if p = 2 (mod 3) and (a,p) = 1, then we can deduce from
Lemma 3.2(i) and (ii) that

p—1
5 3. 0)C3 0. a)
14+ A(n,p) >1 — &=

(VP +1)*Byp +1)?
(3.3) >1-— p—1) .
If p=1 (mod 3), then it follows from Lemma 3.2(i) that
(P 122yP )ABYE 1
(p—1)° '

Combining (3.3)-(3.4), we can deduce from numerical calculation that

I a+amp)= T[] 0_0@+U%%@+D%%@+w3

(p—1)°

(3.4) 1+ A(n,p) >1

199<p<10° 199<p<10°
p=1 (mod 3)

T (LJW+WBW+W>

(p—1)°
p=2 (mod 3)

> 0.98425 x 0.999989 > 0.984239.

—
w
ot

g

V
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For p > 10°, it follows from [9, Section 3, p. 443] that

1 37
(3.6) 1] a+Amp) > ] (1— (p—l)?> > 0.99994.

p>105 p>10°

Now, we can conclude from (3.2) and (3.5)-(3.6) that
3.7)  J @+ A(n,p)) > 0.916851 x 0.984239 x 0.99994 > 0.902346.

p>11 O
Lemma 3.4. Let E(N,k) = {1 —-n)N<n<N:n=N-2" —... - 2%,
1<wy,...,ux < L}. Then for k > 17 and N =0 (mod 2), we have
(3.8) > &(n)>1.80321L".
ne=(N,k)

n=0 (mod 2)

Proof. Since A(n, q) is multiplicative and A(n,p’) = 0 for j > 2 (see [9, (3.3)]),
we have

(3.9) &(n) = [[(1 + A(n,p)).

p>2

Set C' = 0.902346. Then by applying Lemma 3.3, we can get
&)= [ @ +Amp) [T 0 +AMRp)

2<p<T7 11<p
(3.10) >C ] 1+ A(n,p)).
2<p<7
Note that 14+ A(n,2) =2 for n =0 (mod 2). Then for ¢ = [][ p = 105, we
3<p<7
obtain
>, em=20 Y]] 1+AMnDp)
nES(N,k) n€E(N,k) 3<p<T
n=0 (mod 2) n=0 (mod 2)

=20 % Y II a+Awmp)

1<j<q ne=(N.k)  3<p<T
n=0 (mod 2)
n=j (mod q)

(3.11) =20 Y [ a+4Gp) > 1

1<j<q3<p<7 nES(N,k)
n=0 (mod 2)
n=j (mod q)

Let S denote the innermost sum in (3.11). Noting that N = 0 (mod 2), we

have
S= ) 1= > 1

neE(N,k) 1<vy,...,v <L
n=0 (mod 2) N—2Y1—...—2Yk =0 (mod 2)
n=j (mod q) N—-2Y1—...—2Yk =j (mod q)
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(3.12) = > 1.

1<vy,...,v <L
2V1 4. +2Yk =N—j (mod q)

Let p(q) denote the smallest positive integer p such that 2?7 =1 (mod ¢). Thus

S = <[)(Lq)+0(1))k > 1

1<vy,..., v, <p(q)
2V1 4. +2Yk =N—j (mod q)

o =gl () (5,

1<v<p(q)

Since ¢ = 105, we can get p(q) = 12. Write f(r) =

the help of a computer, it is easy to check that

(3.14) max f(r) = f(7) =6 and f(q) = p(q) = 12.

1<r<g-—1

Therefore, we can get

Gy s )

max  f(r) k

LF 1<r<q—1 b1
> |1-(¢g-1)| =——— +O(L
q (@1 p(a) )
Lk 1 17
(3.15) 2 o8 (1 — 104 x <2> ) +O(LF=1) > 0.009516 L*,

where the bound k > 17 is used. Combining (3.11) and (3.15), we obtain

(3.16) > 8(n) =20 x0009516LF > [ (1+AG.p).

nES(Nk) 1<j<q3<p<T7
n=0 (mod 2)

On considering the facts ¢ = 3x5x 7 and A(j,p) = A(j1,p) for j = j1 (mod p),

we have
S I (+4G.»)

1<j<q3<p<7

D (L+AG3)(1+ A, 5) (1 + A(, 7))

1<j<q

Yo D (L AGL3) + AG,5)( + A, 7))

1<51<31<j2<51<j3<7
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Gy = ] | D a+4G»)

3<p<7 \1<j<p

Moreover, from the definition of A(j,p), we have

> (1+A(,p)

1<j<p
aj
1t Y ot X Geadeacieae(-2)
1<]<p 1<a<p-1 p
1
=P Ty > C3(p,a)C5(p,a)Ci(p,a) Y e<
p— 1<a<p-—1 1<j<p
(3.18) =p,
where the bound e(—%j) = 0 is used in the last step. Now we can
1<j<p

conclude from (3.16)-(3.18) that

> 8(n) =20 x00095162F [T [ D, 1+ AG.p)

nEE(N,k) 3<p<7 \1<i<p
n=0 (mod 2)

(3.19) =2C x 0.009516L% J] p>1.80321L".
3<p<T O

We remark that the primary role of taking ¢ = [][ p is to deduce (3.11)
3<p<T
and (3.17). It is easy to verify that taking ¢ = J] p is the optimal choice.
3<p<7
Changing the number of primes contained in ¢ will reduce the lower bound in

(3.8).

Lemma 3.5. For (1 —n)N <n < N, we have

(3.20) J(n) > (37 — 180n) Pi P},

Proof. This is [12, Lemma 3.1]. O

Proposition 3.1. We have
(3.21) I(k, M, N) > 0.0295049 P2 P2 L*.
Proof. Note that N = 0 (mod 2) and H(a)*e(—Na) = > e(—na).

neZE(N,k)
n=N(mod 2)

Then we can deduce from Lemma 3.1 and Lemmas 3.4-3.5 that

MmN = 3 /52 12530284 () 2e(—na)da

neE(N,k)
n=0 (mod 2)
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= > <MG(n)3(n) +0 (NZLl))

nEZ(N,k)
n=0 (mod 2)

37 — 1807 P
> 372133134 2 " S(n)+O0|NiL _§ 1
ne=(N,k) n€Z(N,k)
n=0 (mod 2) n=0 (mod 2)

> 0.02950495PF PL* + O (NS LF)

(3.22) > 0.0295049 P2 PZL*,

where the trivial bound Y. 1 < LF is used. (]
n€Z(N,k)
n=0(mod 2)

4. The upper bound for |I(k,m, N)|

In this section, we will give the upper bound for |I(k, m, N)|. For this pur-
pose, we need to introduce a further division of the minor arcs m. Let

(4.1) E(u) = {a € (0,1] : [H(a)| > uL}.

Then we have

I(k,m, ) /52 0)284()2 H(a) e(—Na)da

m

([~ / ) $2(0)?85()2S4(0)* H(0)*e(~ Na)da
m\ & (u) NE(u)
(4.2) — I(k,m\Ew), N) + I(k, m N E(u), N).

The first term in (4.2) will be evaluated by the following Lemma 4.1(i) while
the second term will be evaluated by Lemma 4.1(ii) and Lemmas 4.5-4.6.

Lemma 4.1. We have
1
/ 19 ()25 ()2 54 (@)2|dor < 0.58814P2P2,
0

(i) / 155(0)253(0)da < NI,
where ¢ is an absolut[; constant.
Proof. This is [12, Lemma 2.2 ]. O
Proposition 4.1. We have
(4.3) [I(k,m\E(u), N)| < 0.58814u" Py Py L*.

Proof. Note that |H(a)| < uL for o € m\E(u). Then by Lemma 4.1(i), we
have

[ (k, m\E(u), N)| < (uL)k/\g( )\52(a)253(a)254(a)2|da
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1
<L)t [ |50 Sa(aS1(e)’lda
0
(4.4) < 0.58814uf PZPELF. 0

Lemma 4.2. For a € m, we have

(4.5) Sy(a) < Niste,

Proof. This is [9, Lemma 2.4]. O
Lemma 4.3. Define the multiplicative function wi(q) by

wk(pkquv) _ k:p_“_%7 when u > 0and v = 1;
p when v >0and 2<v <k

and let
2

wilg)| X elp*(a+7))logp

- La<p<py
L(y) = / # << a .
Za ; la—2|<N 1+P§|O‘_E|

q<PI (a0=1

Then we have uniformly for v € R that
L(y) < N7t

Proof. Write a = g + A. Then we have

L(7)
2
wilg) 2 | X e (§) +p'(A+7)) logp
(4.6) < Z/ e dA
T ey 1+ PJIA| '
3

It is easy to see that

ORI €<P4 <Z> +p4(/\+7)) log p

P,
1S0Sq| 5 <p<Py

4 4 a
> (logpy)(ogpa)e((pt —pH(A+7) Y. (@p)>

q
%SPthSsz 1<a<q
(4.7) < (logN)%*q > 1+ (log N)%q > L.
%SPLP?SPAL PTSPLPQSP4
P%Epé (mod q) p‘lL p‘zL (mod q)

(P1p2,9)=1 r1la, p2la
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3
Note that ¢ < P;'. Thus

S4e
(4.8) (logN)’q > 1< (logN)%qd(q)* < P&~
%Sm,mﬁlﬂ
p}=p3 (mod q)
rila, p2la

Moreover,
P2
4 2
(4.9) q > 1< > 1<P > 1
q
PTSMJJQSFZ; 41_3"41’"2<q 4:1Sn<q
i_ 4 n{=ng5 (mod q) n®=1 (mod q)
pi=p5 (mod q) (nymg.a)=1
(p1p2,9)=1

1 T2

Write ¢ = q1'q5? - - - ¢5* (prime factorization). Then by [2, Theorem 122] and
[4, p. 45], we can get

)SIEE | D SR

1<n<gq 1<i<s 1<n<q]?
nd=1 (mod q) 4y b gTi
n*=1 (mod q;")

(4.10) <[] @e(g)) < 4° < d*(g).

1<i<s

Now we can deduce from (4.6)-(4.10) that

2 13 2
o)< Y v [ P 0
<N

: L+ AIPS
g<Pst
1
< PPN wi(g)d*(g) / 1d\ + / ——d\
s A< 2 Ze<pen AP
q<P; s 3
(411) < PP (logN) > wi(g)d®(q) < N72 P,
qug%
where we used [18, Lemma 2.1] in the last step. O

Lemma 4.4. Let
_9
M(q,a) = {a tqo —a| < Py 4}
and let M be the union of the intervals M(q,a) for1 <a <q< P3%, (a,q) = 1.

Suppose that G(«) and h(a) are integrable functions of period one. Then we
have

(4.12) /mSg(a)G(a)h(oz)da < ngoi </m |G(a)2da>i J? +P§+EJ,
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where

413)  J= / G(a)h(a)lda, To= sup / E”lsflgfjfff;da,

Be0,1) J M

Proof. It follows from [18, Lemma 3.1] with k& = 3. 0
Lemma 4.5. We have
(4.14) / |52 ()25 ()3 S4()?|do < N2i+e.

m

Proof Applying Lemma 4.4 with G(a) = S3(—a)Ss(—a) |S2(a)?S3(e)| and
h(a) = S4(a), we have

/|Sg )2S3(a (a)2|da:/ S3(a)G(a)h(a)da

1 % 1 Tie
(4.15) <ngl ([ (6apda) 7t rita
where
w3 (q)|Ss(a + B)?
4.16 Jo = sup / 3 - = da
(419 " slon Ju T+ Pfla— 2]

with M given in Lemma 4.4 and
(4.17) J = / |G(a)h(a)|da = / |S2 ()2 S3(a)? Sy ()?|do.

For Jy, by Lemma 4.3, we have
(4.18)

w3(q) > e(p*(a + B)) logp
A§P§P4
Jo < sup / 2 - do
0 Z Z g1y (1+p§|a_6|)2

B€[0,1) 3 a=1 )
g<Pj (a.0)=1 aPd

< sup L(B) < Nzt
Belo,1)

Applying Cauchy’s inequality, Hua’s inequality and Lemma 4.2, we obtain

[ 16(@)da < sup e (/ Ssa da)é(/01|52<a>|2|s4<oz>|4m)é

419 <<N16+6+2+€<<N48 +5’
where Lemma 4.1(ii) is used. For 7, it follows from Lemma 4.1(i) that

1
(4.20) 7 < / 193(0)2 ()2 S4(0)?|der < N+,
0
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Combining (4.15) and (4.18)-(4.20), we have
2 3 2 NE—st+15s+t1ste o NoatEte
|Sz(0¢) 83(04) 54((1) |d0¢ < +
)

(4.21 < N%*e_

O

Lemma 4.6. Let E(u) be defined as (4.1). Write meas(E(u)) for the measure
of the set E(u). Then we have

(4.22) meas(£(0.833783)) < N~3107"

Proof. For any A > 0 and € > 0, we can deduce from [13, Section 7] that

($(N)=Aute)log N

(4.23) meas(E(u)) < e logz |

where () is defined in [13, Theorem 2]. Following the procedure of [13,
Sections 4-6] with k =40, L =230, A = 1.1, ¢ = 1071%° we obtain

(4.24) ¥(1.1) < 0.4550627.

Now combining (4.23)-(4.24), we have

4 (1.1)—1.1x0.833783+10~ 100

meas(£(0.833783)) < N Tog 2 < 0666667

Proposition 4.2. Let uw = 0.833783. Then we have
(4.25) [I(k,m N E(u), N)| < N§—¢ <« PIP2LFL.

Proof. By Hélder’s inequality, Hua’s inequality and Lemmas 4.5-4.6, we have

1 mA e, Nl 1 (/ 182(0)*Safe |da> (/ S5 (a Idoz>112
’ (/m |52(O‘)253(a) S4(a) da) </€(0.833783) 1d04>

(4.26) <« Notmt3-—1s—-10" "+ o NF—c

L
12

where Lemma 4.1(ii) and the trivial bound H(«) < L are used.
Now combining (4.2) and Propositions 4.1-4.2 with « = 0.833783, we have

\I(k,m, N)| < [I(k,m\E(uw), N)| + [I(k,m N E(u), N)|
(4.27) <0.58814u* P2 PILF + O(PZPILF ).
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5. Proof of Theorem 1

On recalling notations defined in Section 2, we have

R(k, N) = / S5(0)285()2 84 ()2 H (0)e(—Na)da

:(/ - )52 285(c)2S4(e)2 H () e(~ Na)da

(5.1) > I(k, M, N) — |I(k,m, N)|.

When k > 17 and u = 0.833783, we can deduce from (4.27) and Proposition
3.1 that

R(k, N) > (0.0295049 — 0.58814 x 0.833783'")Pi P} L* + O(P}PIL* 1)
> 0.002PP}L*.
Now the proof of Theorem 1 is completed.

Acknowledgments. We thank the referees for their time and comments. The
author would like to express the most sincere gratitude to Professor Yingchun
Cai for his valuable advice and constant encouragement.

References

(1] P. X. Gallagher, Primes and powers of 2, Invent. Math. 29 (1975), no. 2, 125-142.
https://doi.org/10.1007/BF01390190
[2] G.H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, sixth edition,
Oxford University Press, Oxford, 2008.
[3] D. R. Heath-Brown and J.-C. Puchta, Integers represented as a sum of primes and
powers of two, Asian J. Math. 6 (2002), no. 3, 535-565. https://doi.org/10.4310/
AJM.2002.v6.n3.a7
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, second
edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. https:
//doi.org/10.1007/978-1-4757-2103-4
[5] H. Li, The number of powers of 2 in a representation of large even integers by sums of
such powers and of two primes, Acta Arith. 92 (2000), no. 3, 229-237. https://doi.
org/10.4064/aa-92-3-229-237
(6] H. Li, The number of powers of 2 in a representation of large even integers by sums
of such powers and of two primes. II, Acta Arith. 96 (2001), no. 4, 369-379. https:
//doi.org/10.4064/aa96-4-7
[7] Yu. V. Linnik, Prime numbers and powers of two, Trudy Nat. Inst. Steklov. Izdat. Akad.
Nauk SSSR, Moscow.38 (1951), 152-169.
[8] Yu. V. Linnik, Addition of prime numbers with powers of one and the same number,
Mat. Sbornik N.S. 32(74) (1953), 3-60.
[9] Z. Liu, Goldbach-Linnik type problems with unequal powers of primes, J. Number Theory
176 (2017), 439—448. https://doi.org/10.1016/j.jnt.2016.12.009
[10] J. Liu, M. Liu, and T. Wang, The number of powers of 2 in a representation of large
even integers. II, Sci. China Ser. A 41 (1998), no. 12, 1255-1271. https://doi.org/10.
1007/BF02882266
[11] Z. Liu and G. Lii, Density of two squares of primes and powers of 2, Int. J. Number
Theory 7 (2011), no. 5, 1317-1329. https://doi.org/10.1142/S1793042111004605

[4


https://doi.org/10.1007/BF01390190
https://doi.org/10.4310/AJM.2002.v6.n3.a7
https://doi.org/10.4310/AJM.2002.v6.n3.a7
https://doi.org/10.1007/978-1-4757-2103-4
https://doi.org/10.1007/978-1-4757-2103-4
https://doi.org/10.4064/aa-92-3-229-237
https://doi.org/10.4064/aa-92-3-229-237
https://doi.org/10.4064/aa96-4-7
https://doi.org/10.4064/aa96-4-7
https://doi.org/10.1016/j.jnt.2016.12.009
https://doi.org/10.1007/BF02882266
https://doi.org/10.1007/BF02882266
https://doi.org/10.1142/S1793042111004605

420 L. ZHU

[12] X. L, On unequal powers of primes and powers of 2, Ramanujan J. 50 (2019), no. 1,
111-121. https://doi.org/10.1007/s11139-018-0128-2

[13] J. Pintz and I. Z. Ruzsa, On Linnik’s approzimation to Goldbach’s problem. I, Acta
Arith. 109 (2003), no. 2, 169-194. https://doi.org/10.4064/aa109-2-6

[14] J. Pintz and I. Z. Ruzsa, On Linnik’s approzimation to Goldbach’s problem. II, Acta
Math. Hungar. 161 (2020), no. 2, 569-582. https://doi.org/10.1007/s10474-020~
01077-8

[15] D. J. Platt and T. S. Trudgian, Linnik’s approzimation to Goldbach’s conjecture, and
other problems, J. Number Theory 153 (2015), 54—62. https://doi.org/10.1016/j.
jnt.2015.01.008

[16] R. C. Vaughan, The Hardy-Littlewood Method, second edition, Cambridge Tracts in
Mathematics, 125, Cambridge University Press, Cambridge, 1997. https://doi.org/
10.1017/CB09780511470929

[17] T. Wang, On Linnik’s almost Goldbach theorem, Sci. China Ser. A 42 (1999), no. 11,
1155-1172. https://doi.org/10.1007/BF02875983

[18] L. Zhao, On the Waring-Goldbach problem for fourth and sizth powers, Proc. Lond.
Math. Soc. (3) 108 (2014), no. 6, 1593-1622. https://doi.org/10.1112/plms/pdt072

[19] X. D. Zhao, Goldbach-Linnik type problems on cubes of primes, Ramanujan J. https:
//doi.org/10.1007/s11139-020-00303-9

L1 Zuu

SCHOOL OF STATISTICS AND MATHEMATICS

SHANGHAI LIXIN UNIVERSITY OF ACCOUNTING AND FINANCE
SHANGHAI 201209, P. R. CHINA

Email address: shulunz1@163.com


https://doi.org/10.1007/s11139-018-0128-2
https://doi.org/10.4064/aa109-2-6
https://doi.org/10.1007/s10474-020-01077-8
https://doi.org/10.1007/s10474-020-01077-8
https://doi.org/10.1016/j.jnt.2015.01.008
https://doi.org/10.1016/j.jnt.2015.01.008
https://doi.org/10.1017/CBO9780511470929
https://doi.org/10.1017/CBO9780511470929
https://doi.org/10.1007/BF02875983
https://doi.org/10.1112/plms/pdt072
https://doi.org/10.1007/s11139-020-00303-9
https://doi.org/10.1007/s11139-020-00303-9

