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BOUNDEDNESS OF CALDERÓN-ZYGMUND OPERATORS

ON INHOMOGENEOUS PRODUCT LIPSCHITZ SPACES

Shaoyong He and Taotao Zheng

Abstract. In this paper, we study the boundedness of a class of inho-

mogeneous Journé’s product singular integral operators on the inhomoge-
neous product Lipschitz spaces. The consideration of such inhomogeneous

Journé’s product singular integral operators is motivated by the study of
the multi-parameter pseudo-differential operators. The key idea used here

is to develop the Littlewood-Paley theory for the inhomogeneous prod-

uct spaces which includes the characterization of a special inhomogeneous
product Besov space and a density argument for the inhomogeneous prod-

uct Lipschitz spaces in the weak sense.

1. Introduction

Classical Calderón-Zygmund theory may be observed to center around sin-
gular integrals associated with the Hardy-Littlewood maximal operator that
commutes with the usual dilations on Rn, δx = (δx1, . . . , δxn) for δ > 0. This
theory has been extensively studied and is by now well understood; see for
example the monograph [36]. If we consider more general non-isotropic groups
of dilations, such as the family of product dilations defined by δ(x1, . . . , xn) =
(δ1x1, . . . , δnxn), δi > 0, i = 1, . . . , n, then we see many non-isotropic variants
of classical theories have been developed. Understanding of the various func-
tion spaces associated with multi-parameter structures and the boundedness of
Fourier multipliers, as well as singular integral operators on such spaces, has
been greatly advanced in recent decades.

To be more precise, in [13] R. Fefferman and Stein first initiated a class of
product convolution singular integral operators which satisfy analogous condi-
tions enjoyed by the double Hilbert transform defined on R × R. They estab-
lished the Lp boundedness of these singular integral operators for 1 < p <∞.
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Chang and R. Fefferman [1–3] developed a comprehensive theory of product
Hardy spaces initially introduced by Gundy-Stein [15], including the atomic de-
compositions and their dual spaces, namely, the product BMO spaces. Journé
in [28] introduced non-convolution product singular integral operators, estab-
lished the product T1 theorem and proved the L∞-BMO boundedness for such
operators. Subsequently, more and more results on Lp, 1 < p < ∞, bound-
edness and Hp boundedness for operators in Journé’s class were obtained
[10–12, 18, 19, 34]. As demonstrated by Journé, the remarkable boundedness
criterion of R. Fefferman [11] in two parameter case does not apply to the set-
ting of three or more parameters. To this end, Pipher [34] proved a Journé type
covering lemma in higher dimensions and established the Hp(Rn1 × · · · ×Rnk)
to Lp(Rn1 × · · · ×Rnk) boundedness for singular integral operators in Journé’s
class by considering directly their actions on the atoms supported in arbitrary
open sets. More recently, the authors of [19] have established the necessary
and sufficient conditions of the product Hp(Rn1 × · · · × Rnk) boundedness of
Journé’s type singular integrals.

A more recent breakthrough is due to Müller, Ricci and Stein [29,30]. They
introduced a new type of multi-parameter structure, called a flag structure,
and studied the Lp boundedness of Marcinkiewicz multiplier operators on the
Heisenberg group. In 2001, Nagel, Ricci and Stein [31] studied a class of opera-
tors on nilpotent Lie groups given by convolution with flag kernels and applied
this theory to study the �b-complex on certain CR submanifolds of Cn. More
recently, Nagel, Ricci and Stein [31] and Nagel, Ricci, Stein and Wainger [32,33]
developed the theory of singular integrals with flag kernels in the more general
setting of homogeneous groups. See also the recent works in [20,22,37].

On the other hand, at the extreme values of p =∞, it is natural to hope that
the BMO or Lipchitz spaces boundedness of multi-parameter singular integral
operators are available. As is well-known, the classical Lipschitz spaces have
had a profound influence in harmonic analysis and partial differential equa-
tions. Han et al. [17] constructed flag Lipschitz spaces on Heisenberg groups
and prove that Marcinkiewicz multipliers are bounded on them. In addition,
multi-parameter Lipschitz spaces associated with mixed homogeneities have
been studied in Han and Han [16]. Very recently, the first author and his col-
laborators Zheng, Chen and others in [38] establish a necessary and sufficient
condition for the boundedness of Journé’s product singular integral operators
on the product Lipschitz spaces. Namely, suppose that T is a singular in-
tegral operator in Journé’s class with regularity exponent ε ∈ (0, 1]. Then

T is bounded on Λ̃α with α = (α1, α2) if and only if T11 = T21 = 0 for

0 < max{α1, α2} < ε, where Λ̃α denotes the product homogeneous Lipschitz
spaces on Rn1 × Rn2 introduced in [38]. T1(1) = T2(1) = 0 will be explained
below. For more about the Lipschitz spaces, see also [4,21,23–26,39]. A natural
question then arises: How about the multi-parameter Lipschitz spaces in the
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setting of inhomogeneous case and whether we can obtain some certain nec-
essary and sufficient condition for the boundedness of Journé’s type singular
integral operators on these spaces?

The main goal of this paper is to settle this question. More precisely, we will
investigate inhomogeneous product Lipschitz spaces via Littlewood-Paley the-
ory and establish a boundedness criterion of inhomogeneous Journé’s product
singular integral operators on the inhomogeneous product Lipschitz spaces.
The consideration of such inhomogeneous Journé’s product singular integral
operators is motivated by the study of the multi-parameter pseudo-differential
operators. Actually, all results in this paper can be extended to arbitrary
number of parameters.

In order to describe the main results in this paper, we first introduce the
inhomogeneous product Lipschitz spaces on Rn1 × Rn2 . For x1, y1 ∈ Rn1 and
x2, y2 ∈ Rn2 , we denote that

∆y1f(x1, x2) = f(x1 − y1, x2)− f(x1, x2),

∆2
y1f(x1, x2) = f(x1 − y1, x2)− 2f(x1, x2) + f(x1 + y1, x2),

and

∆y2f(x1, x2) = f(x1, x2 − y2)− f(x1, x2),

∆2
y2f(x1, x2) = f(x1, x2 − y2)− 2f(x1, x2) + f(x1, x2 + y2).

Definition 1. Let α = (α1, α2) with α1, α2 > 0. The inhomogeneous product
Lipschitz space is defined to be the space of all bounded continuous f defined
on Rn1 × Rn2 such that

(1) when 0 < α1, α2 < 1,

‖f‖Λα := ‖f‖L∞ + sup
y1 6=0

|∆y1f |
|y1|α1

+ sup
y2 6=0

|∆y2f |
|y2|α2

+ sup
y1,y2 6=0

|∆y2∆y1f |
|y1|α1 |y2|α2

<∞;

(2) when α1 = 1, 0 < α2 < 1,

‖f‖Λα := ‖f‖L∞ + sup
y1 6=0

|∆2
y1f |
|y1|

+ sup
y2 6=0

|∆y2f |
|y2|α2

+ sup
y1,y2 6=0

|∆y2∆2
y1f |

|y1||y2|α2
<∞;

(3) when 0 < α1 < 1, α2 = 1,

‖f‖Λα := ‖f‖L∞ + sup
y1 6=0

|∆y1f |
|y1|α1

+ sup
y2 6=0

|∆2
y2f |
|y2|

+ sup
y1,y2 6=0

|∆2
y2∆y1f |
|y1|α1 |v|

<∞;

(4) when α1 = α2 = 1,

‖f‖Λα := ‖f‖L∞ + sup
y1 6=0

|∆2
y1f |
|y1|

+ sup
y2 6=0

|∆2
y2f |
|y2|

+ sup
y1,y2 6=0

|∆2
y2∆2

y1f |
|y1||y2|

<∞.

When α1, α2 > 1, we write α1 = m1 + r1 and α2 = m2 + r2, where m1,m2 are
integers and 0 < r1, r2 ≤ 1 . Then f ∈ Λα means that f ∈ Cm1+m2(Rn1+n2)
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such that all partial derivatives ∂β1
x1
∂β2
x2
f with |β1| = m1, |β2| = m2 belong to

Λr for r = (r1, r2) and

‖f‖Λα :=
∑

|β1|=m1,|β2|=m2

‖∂β1
x1
∂β2
x2
f‖Λr .

We will characterize the inhomogeneous Lipschitz spaces via the Littlewood-
Paley theory. For this purpose, we first adapt some notations. Given a function
ϕ on Rn, we denote

Mϕ = max{N ∈ N :

∫
Rn
ϕ(x)xαdx = 0, |α| ≤ N},

where N denotes the class of all natural numbers, that is, N = {0, 1, 2, . . .}. Let
ϕ1

0 be a function defined on Rn1 satisfying

(1) ϕ1
0 ∈ C∞0 (Rn1) and

∫
Rn1

ϕ1
0(x1)dx1 = 1,

and let ϕ2
0 be a function defined on Rn2 satisfying

(2) ϕ2
0 ∈ C∞0 (Rn2) and

∫
Rn2

ϕ2
0(x2)dx2 = 1.

In what follows, we use C∞0 (Rn) to denote the set of all smooth functions with
compact support on Rn. We also use in this note S(Rn) to denote the class
of Schwartz functions in Rn and S ′ its dual. Given a Schwartz function f on
Rn, ‖f‖S(Rn) denotes its seminorm. Motivated by the one-parameter Calderón
reproducing formula in [35], the following multi-parameter local Calderón re-
producing formula was proved in [8].

Theorem A ([8]). Assume that functions ϕ1
0 and ϕ2

0 satisfy conditions (1) and
(2) respectively, and let

ϕ1(x1) = ϕ1
0(x1)− 2−n1ϕ1

0(
x1

2
)

and
ϕ2(x2) = ϕ2

0(x2)− 2−x2ϕ2
0(
x2

2
).

Then for any given integers Mi ≥ 0, i = 1, 2, there exist ψ1
0 , ψ

1 ∈ C∞0 (Rn1)
and ψ2

0 , ψ
2 ∈ C∞0 (Rn2) with Mψi ≥Mi, i = 1, 2, such that

(3) f(x1, x2) =
∑
j,k≥0

ψj,k ∗ ϕj,k ∗ f(x1, x2),

where the series converges in L2(Rn1+n2), S(Rn1+n2) and S ′(Rn1+n2).

In the above local reproducing formula (3), ψj,k is constructed as follows.
For j, k ≥ 1, let ψ1

j (x1) = 2jnψ1(2jx1), ψ2
k(x2) = 2kmψ2(2kx2), and set

ψj,k(x1, x2) = ψ1
j (x1)ψ2

k(x2), ψj,0(x1, x2) = ψ1
j (x1)ψ2

0(x2),

ψ0,k(x1, x2) = ψ1
0(x1)ψ2

k(x2), ψ0,0(x1, x2) = ψ1
0(x1)ψ2

0(x2).
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ϕj,k can be constructed similarly. Moreover, as pointed out in [8, 35], for any
positive integer Ni, ϕ

i in Theorem A can be chosen such that Mϕi ≥ Ni,
i = 1, 2. It is noteworthy that the multi-parameter local Hardy spaces hp(Rn1×
Rn2) were developed in [8, 9] with the local Calderón reproducing formula (3)
recently.

The first main result of this paper is the following Littlewood-Paley charac-
terization:

Theorem 1.1. f ∈ Λα with α = (α1, α2), α1, α2 > 0 if and only if f ∈
S(Rn1+n2) and

sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞(Rn1×Rn2 ) ≤ C <∞.

Furthermore,

‖f‖Λα ≈ sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞(Rn1×Rn2 ).

It is known that the theory of one-parameter singular integral operators has
been generalized in two ways. First, the convolution singular integral operators
were replaced by non-convolution singular integral operators associated with a
kernel in the following sense.

Definition 2. A locally integrable function defined from the diagonal x = y
in Rn × Rn is called a one-parameter Calderón-Zygmund kernel if there exist
constants C > 0 and a regularity exponent ε ∈ (0, 1] such that

(4) |K(x, y)| ≤ C 1

|x− y|n
,

and

(5) |K(x, y)−K(x′, y)| ≤ C |x− x
′|ε

|x− y|n+ε
,

whenever |x− x′| ≤ |x− y|/2, and

(6) |K(x, y)−K(x, y′)| ≤ C |y − y
′|ε

|x− y|n+ε
,

whenever |y − y′| ≤ |x − y|/2. The smallest such constant C is denoted by
|K|CZ .

We call an operator T one-parameter Calderón-Zygmund operator if T is a
singular integral operator associated with a one-parameter Calderón-Zygmund
kernel K(x, y) given by

(7)
〈
Tf, g

〉
=

∫
Rn

∫
Rn
g(x)K(x, y)f(y)dxdy

for all f, g ∈ C∞0 (Rn) with suppf ∩ suppg = ∅ and T is bounded on L2(Rn).
Define ‖T‖CZ by

‖T‖CZ = ‖T‖L2 7→L2 + |K|CZ .
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Then T is bounded on Lp(Rn) for 1 < p <∞, and is bounded from Hp(Rn) to
Lp(Rn) for 0 < p ≤ 1 and close to 1, if ‖T‖CZ < ∞. Nevertheless, to ensure
the boundedness of T on local Hardy spaces hp, 0 < p < 1, introduced by
Goldberg [14], a mild additional size condition

|K(x, y)| ≤ C 1

|x− y|n+δ

for some δ > n( 1
p − 1) might be included. Hence, this motivates us to define

the non-convolution type inhomogeneous Calderón-Zygmund operators on Rn.

Definition 3. A locally integrable function defined away from the diagonal
x = y in Rn×Rn is called a one-parameter inhomogeneous Calderón-Zygmund
kernel with regularity exponent ε ∈ (0, 1] if there exist constants C > 0 and
δ > 0 such that in addition to (4), (5), (6), K also satisfies the following

(8) |K(x, y)| ≤ C

|x− y|n+δ
, if |x− y| ≥ 1.

The smallest such constant C in (4), (5), (6) and (8) is still denoted by |K|CZ .

We say that an operator T is a one-parameter inhomogeneous Calderón-
Zygmund operator if T is a singular integral operator associated with a one-
parameter inhomogeneous Calderón-Zygmund kernel K(x, y) given by (7) for
all f, g ∈ C∞0 (Rn) with disjoint supports and T is bounded on L2(Rn). In
addition, the norm of T is still defined by ‖T‖CZ = ‖T‖L2 7→L2 + |K|CZ . It is
well-known that an inhomogeneous Calderón-Zygmund operator is bounded on
hp(Rn) if T ∗(1) = 0 for p near 1. Here T ∗(1) = 0 means that 〈1, T (ψ)〉 = 0 for
all ψ ∈ C∞0,0(Rn) defined below.

Secondly, the classical Calderón-Zygmund operators were also extended in
another direction to product singular integral operators on the space Rn1 ×
Rn2 along with two-parameter family of dilations δ : x → (δ1x1, δ2x2), x =
(x1, x2) ∈ Rn1 × Rn2 , where δ = (δ1, δ2), δ1, δ2 > 0. After Journé introduced
the non-convolution product singular integral operator in [28], there are many
significant works involving the boundedness of product singular integral op-
erators on various function spaces. We now introduce the singular integral
operator in the inhomogeneous Journé class on Rn1 × Rn2 suitable for our
inhomogeneous product Lipschitz spaces.

Definition 4. A singular integral operator T is said to be in inhomogeneous
Journé class on Rn1 × Rn2 with regularity exponents ε ∈ (0, 1] and δ > 0 if

T (f)(x1, x2) =

∫
Rn1×Rn2

K(x1, x2, y1, y2)f(y1, y2)dy1dy2,

where (x1, x2) is outside the support of the function f , where the kernel K
satisfies the following conditions:
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For fixed x1, y1 ∈ Rn1 , set K̃1(x1, y1) to be the singular integral operator
acting on functions on Rn2 with the kernel

K̃1(x1, y1)(x2, y2) = K(x1, x2, y1, y2),

and similarly,

K̃2(x2, y2)(x1, y1) = K(x1, x2, y1, y2),

then there exists a constant C > 0 such that
(i) T is bounded on L2(Rn1+n2).
(ii)

(9) ‖K̃1(x1, y1)‖CZ ≤ C min{|x1 − y1|−n1 , |x1 − y1|−(n1+δ)};

(10)

‖K̃1(x1, y1)− K̃1(x1, y
′
1)‖CZ ≤ C|y1 − y′1|ε|x1 − y1|−(n1+ε)

for |y1 − y′1| ≤ |x1 − y1|/2;

‖K̃1(x1, y1)− K̃1(x′1, y1)‖CZ ≤ C|x1 − x′1|ε|x1 − y1|−(n1+ε)

for |x1 − x′1| ≤ |x1 − y1|/2.

(iii)

(11) ‖K̃2(x2, y2)‖CZ ≤ C min{|x2 − y2|−n2 , |x2 − y2|−(n2+δ)};

(12)

‖K̃2(x2, y2)− K̃2(x2, y
′
2)‖CZ ≤ C|y2 − y′2|ε|x2 − y2|−(n2+ε)

for |y2 − y′2| ≤ |x2 − y2|/2;

‖K̃2(x2, y2)− K̃2(x′2, y2)‖CZ ≤ C|x2 − x′2|ε|x2 − y2|−(n2+ε)

for |x2 − x′2| ≤ |x2 − y2|/2.

Following Journé in [28], we define the operator T1 by the following

〈g2, 〈g1, T1f1〉 f2〉 = 〈g1 ⊗ g2, T f1 ⊗ f2〉

for f1, g1 ∈ C∞0 (Rn1) and f2, g2 ∈ C∞0 (Rn2). Observe that when g1 ∈
C∞0,0(Rn1) = {g ∈ C∞0 (Rn1) :

∫
g = 0}, f1 ∈ C∞b (Rn1), the bounded C∞(Rn1)

functions, the inner product 〈g1, T1f1〉 is well-defined. Moreover, 〈g1, T1f1〉 is
a Calderón-Zygmund singular integral operator on Rn2 with kernel

〈g1, T1f1〉 (x2, y2) =
〈
g1, K̃2 (x2, y2) f1

〉
.

One defines 〈g2, T2f2〉 similarly for g2 ∈ C∞0,0(Rn2) and f2 ∈ C∞b (Rn1). Using
these definitions, we can give a meaning of the notation T1(1) = 0. More
precisely, T1(1) = 0 is equivalent to

〈g1, 〈g2, T2f2〉1〉 = 〈g1 ⊗ g2, T1⊗ f2〉 = 0〉
for all g1 ∈ C∞0,0(Rn1) and all f2, g2 ∈ C∞0 (Rn2), that is, for g1 ∈ C∞0,0(Rn1),
g2 ∈ C∞0,0(Rn2), and almost everywhere y2 ∈ Rn2 ,∫

g(x1)g(x2)K(x1, x2, y1, y2)dx1dx2dy1 = 0.
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Which T ∗1 (1) = 0 means 〈g2, T2f2〉∗1 = 0 in the same conditions. Exchanging
the role of indices one can obtain the meaning of T2(1) = 0 and T ∗2 (1) = 0.

It should be pointed that the singular integral operators in the inhomo-
geneous Journé’s class are consistent with the one-parameter inhomogeneous
Calderón-Zygmund operators considered by Goldberg [14] while a mild addi-
tional size condition was needed to guarantee their boundedness on the local
Hardy spaces hp(Rn). Moreover, the boundedness of inhomogeneous Journé’s
type singular integral operators on the multi-parameter local Hardy spaces from
hp(Rn1 ×Rn2) to hp(Rn1 ×Rn2) and from hp(Rn1 ×Rn2) to Lp(Rn1 ×Rn2) are
established in [7, 8]. However, so far, it is not clear that whether the dual of
multi-parameter local Hardy spaces hp(Rn1 ×Rn2) is the inhomogeneous prod-
uct Lipschitz spaces Λα with α1 = n1(1/p−1), α2 = n2(1/p−1). Therefore, the
boundedness on inhomogeneous product Lipschitz spaces can not be obtained
by using the duality argument directly as in the classical setting. This mo-
tivates us to study the boundedness of inhomogeneous Journé’s type singular
integral operators on the inhomogeneous product Lipschitz spaces.

Our last main results are the following boundedness on inhomogeneous prod-
uct Lipschitz spaces of singular integral operators in inhomogeneous Journé’s
class.

Theorem 1.2. Let T be a singular integral operator in inhomogeneous Journé’s
class with regularity exponent ε ∈ (0, 1] and δ > 0. If T1(1) = T2(1) = 0 and
the kernel K of T satisfies the half smoothness conditions (9), (10), (11), (12),
then T is bounded on Λα with α = (α1, α2) for max{α1, α2} < ε.

Note that the hypothesis of Theorem 1.2 may not necessity (see Remark
3.9 in Section 3). However, the inhomogeneous Journé type singular integral
operators are contained in the Journé’s product singular integral operators.
As a consequence of Theorem 1.2 and a necessary and sufficient condition for
the boundedness of Journé’s product singular integral operators on product
Lipschitz spaces obtained in [38], we get that T1(1) = T2(1) = 0 if and only
if T are bounded both on inhomogeneous product Lipschitz spaces Λα and
homogeneous product Lipschitz spaces Λ̃α for max{α1, α2} < ε simultaneously,
where T is a singular integral operator in inhomogeneous Journé’s class with
regularity exponent ε ∈ (0, 1] and δ > 0.

On the other hand, the bi-parameter singular integral operators in the in-
homogeneous Journé’s class are suitable for the study of bi-parameter pseudo-
differential operators. See [5,27] for one-parameter pseudo-differential operator
and multi-parameter pseudo-differential operator. It has been shown by Chen,
Ding and Lu in [5] that the inhomogeneous Journé’s class of bi-parameter
singular integral operators considered this paper concludes a special kind of
bi-parameter pseudo-differential operators. Therefore, our main theorem is
strictly more applicable for applications to partial differential equations with
variable coefficients. Next, although some ideas of our methods are taken from
[16,38], observe that the functions ϕi0 and ψi0, i = 1, 2, in the local reproducing
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formula (3), do not have any vanishing moments unlike those functions in the
multi-parameter Calderón reproducing formula. The lack of the vanishing mo-
ments makes the boundedness more complicated than the homogeneous case
in [38]. Hence, we must obtain some nontrivial estimates in our proof. In
addition, the range of the index α1 and α2 in this paper are wider than [38].
Moreover, the smoothness conditions for the variable y = (y1, y2) of the kernel
K in Theorem 1.2 are not needed, which is weaker than the conditions in [38].
Finally, it is not clear that the dual of hp(Rn1 × Rn2) is the inhomogeneous
product Lipschitz spaces Λα with α1 = n1(1/p−1), α2 = n2(1/p−1). To avoid
using this, we find a special inhomogeneous Besov spaces as the substitute of
hp spaces.

This paper is organized as follows. In Section 2, we will give the proof of
Theorem 1.1. Theorem 1.2 will be proved in Section 3.

Throughout this paper, the letter C stands for a positive constant which is
independent of the essential variables, but whose value may vary from line to
line. We use the notation A ≈ B to denote that there exists a positive constant
C such that C−1B ≤ A ≤ CB. Let j ∧ j′ be the minimum of j and j′.

2. Proof of Theorem 1.1

Without the loss of generality, we assume that ϕi0, ϕ
i, ψi0, ψ

i, i = 1, 2, are
radial functions. We first prove that if f ∈ Λα with 0 < α1, α1 < 1, then
f ∈ S ′(Rn1+n2). To do this, for each g ∈ S(Rn1+n2), by the local Calderón
reproducing formula (3), we have

g(x1, x2) =
∑
j,k≥0

ψj,k ∗ ϕj,k ∗ g(x1, x2),

where the series converges in S(Rn1+n2). Therefore, for f ∈ Λα with 0 <
α1, α1 < 1, it suffices to show that

∑
j,k≥0

〈
f, ψj,k ∗ϕj,k ∗ g

〉
is well-defined for

g ∈ S(Rn1+n2). To this end, for all j, k ≥ 0, we estimate
〈
ϕj,k ∗ f, ψj,k ∗ g

〉
as

follows.
Case 1: j = k = 0.

|ϕ0,0 ∗ f(x1, x2)| =
∣∣∣ ∫∫

Rn1×Rn2

ϕ1
0(u)ϕ2

0(v)f(x1 − u, x2 − v)dudv
∣∣∣

≤ C‖f‖L∞ ≤ C‖f‖Λα .

This implies that

|
〈
ϕ0,0 ∗ f, ψ0,0 ∗ g

〉
| ≤ C‖f‖Λα‖g‖S .

Case 2: j ≥ 1, k = 0.
By the cancellation condition on ϕ1

j , we have

ϕj,0 ∗ f(x1, x2) =

∫∫
Rn1×Rn2

ϕ1
j (u)ϕ2

0(v)f(x1 − u, x2 − v)dudv
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=

∫∫
Rn1×Rn2

ϕ1
j (u)ϕ2

0(v)∆uf(x1, x2 − v)dudv.

The fact f ∈ Λα and the size condition of ϕ1
j give us that∣∣ϕj,0 ∗ f(x1, x2)

∣∣ ≤ C‖f‖Λα ∫∫
Rn1×Rn2

|u|α1
2−j

(2−j + |u|)n+1
|ϕ2

0(v)|dudv

≤ C2−jα1‖f‖Λα .

Therefore, we obtain that

|
〈
ϕj,0 ∗ f, ψj,0 ∗ g

〉
| ≤ C2−jα1‖f‖Λα‖ψj,0 ∗ g‖L1(Rn1+n2 ) ≤ C2−jα1‖f‖Λα‖g‖S .

Case 3: j = 0, k ≥ 1.
Repeating the similar argument as the Case 3, we get

|
〈
ϕ0,k ∗ f, ψ0,k ∗ g

〉
| ≤ C2−kα2‖f‖Λα‖g‖S .

Case 4: j ≥ 1, k ≥ 1.
Applying the cancellation conditions on both ϕ1

j and ϕ2
k, we have

|ϕj,k ∗ f(x1, x2)| =
∣∣∣ ∫∫

Rn1×Rn2

ϕ1
j (u)ϕ2

k(v)f(x1 − u, x2 − v)dudv
∣∣∣

=
∣∣∣ ∫∫

Rn1×Rn2

ϕ1
j (u)ϕ2

k(v)(∆v∆uf)(x1, x2)dudv
∣∣∣

≤ C‖f‖Lip(α1,α2)

∫∫
Rn1×Rn2

|ϕ1
j (u)ϕ2

k(v)
∣∣∣|u|α1 |v|α2dudv

≤ C2−jα12−kα2‖f‖Λα ,

which yields

|
〈
ϕj,k ∗ f, ψj,k ∗ g

〉
| ≤ C2−jα12−kα2‖f‖Λα‖g‖S .

Combing these four cases, we obtain that

|
〈
ϕj,k ∗ f, ψj,k ∗ g

〉
| ≤ C2−jα12−kα2‖f‖Λα‖g‖S

and thus,
〈
f, g
〉

is well defined. In addition, we also obtain

sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞ ≤ C‖f‖Λα

for 0 < α1, α2 < 1.
When α1 = 1, 0 < α2 < 1, we only need to consider the cases where j ≥ 1,

k = 0 and j, k ≥ 1 since the other two cases are similar. Indeed, if j ≥ 1,
k = 0, applying the cancellation condition on ϕ1

j and noting that ϕ1
j is a radial

function, we have

|ϕj,0 ∗ f(x1, x2)|

=
∣∣∣ ∫∫

Rn1×Rn2

ϕ1
j (u)ϕ2

0(v)[f(x1 − u, x2 − v)− f(x1, x2 − v)]dudv
∣∣∣
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=
1

2

∣∣∣∫∫
Rn1×Rn2

ϕ1
j (u)ϕ2

0(v)[f(x1 + u, x2)− 2f(x1, x2) + f(x1 − u, x2 − v)]dudv
∣∣∣

≤ C‖f‖Λα
∫∫

Rn1×Rn2

|u| 2−jL

(2−j + |u|)n+L
|ϕ2

0(v)|dudv

≤ C2−j‖f‖Λα .

Hence,

|
〈
ϕj,0 ∗ f, ψj,0 ∗ g

〉
| ≤ C2−j‖f‖Λα‖g‖S .

If j, k ≥ 1, then

ϕj,k ∗ f(x1, x2)

=
1

2

∫∫
Rn1×Rn2

ϕ1
j (u)ϕ2

k(v)[f(x1 − u, x2 − v) + f(x1 + u, x2 − v)]dudv

=
1

2

∫∫
Rn1×Rn2

ϕ1
j (u)ϕ2

k(v)(∆v∆
2
uf)(x1, x2)dudv.

The last equality follows from the cancellation conditions on both ϕ1
j and ϕ2

k.
Then

|ϕj,k ∗ f(x1, x2)| ≤ C‖f‖Lip(α1,α2)

∫∫
Rn1×Rn2

|ϕ1
j (u)ϕ2

k(v)||u||v|α2dudv

≤ C2−j2−kα2‖f‖Λα ,

which implies

|
〈
ϕj,k ∗ f, ψj,k ∗ g

〉
| ≤ C2−j2−kα2‖f‖Λα‖g‖S .

Thus,
〈
f, g
〉

is well defined and

sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞ ≤ C‖f‖Λα

for α1 = 1, 0 < α2 < 1.
All other cases where 0 < α1 < 1, α2 = 1 or α1 = α2 = 1 can be handled

similarly. For the case where α1, α2 > 1 with α1 = m1 + r1 and α2 = m2 + r2

with 0 < r1, r2 ≤ 1, set ̂̃ϕ1
j (ξ) =

ϕ̂1
j (ξ)

(−2πiξ)β1
and ̂̃ϕ2

k(η) =
ϕ̂2
k(ξ)

(−2πiη)β2
, where

|β1| = m1, |β2| = m2, then

ϕj,k ∗ f = ∂β1∂β2 ϕ̃j,k ∗ f = (−1)m1+m2 ϕ̃j,k ∗ ∂β1∂β2f,

where ϕ̃j,k = ϕ̃1
j ϕ̃

2
k. Note that 2jm12km2 ϕ̃j,k satisfy the similar smoothness,

size and cancellation conditions as ϕj,k. Therefore, repeating the similar proof
gives that

‖ϕj,k ∗ f‖L∞ = ‖2−jm12−km2(2jm12km2 ϕ̃j,k) ∗ ∂β1∂β2f‖L∞

≤ C2−jm12−km22−jr12−kr2‖∂β1∂β2f‖Lip(r1,r2)

= C2−jα12−kα2‖f‖Λα .
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That is

sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞ ≤ C‖f‖Λα

for α1, α2 > 1.
To prove the converse implication of Theorem 1.1, we first show that for

every f ∈ S ′(Rn1+n2) satisfying

sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞ ≤ C

coincides with a bounded continuous function. Recalling the local Calderón
reproducing formula (3), f(x1, x2) =

∑
j,k≥0 ψj,k ∗ ϕj,k ∗ f(x1, x2) in S ′, we

have

|ψj,k ∗ ϕj,k ∗ f(x1, x2)| ≤ ‖ϕj,k ∗ f‖L∞‖ψj,k‖L1

≤ C2−jα12−kα2( sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞).

Thus, the series
∑
j,k≥0 ψj,k ∗ ϕj,k ∗ f(x1, x2) converges uniformly in x1, x2.

Since ψj,k ∗ ϕj,k ∗ f is continuous in Rn1+n2 , then the sum function f is also
continuous in Rn1+n2 . Moreover,

‖f‖L∞ ≤ C sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞ .

Now we estimate ‖f‖Λα as follows. We first consider the case where 0 <
α1, α2 < 1, and then show that

|f(x1 − u, x2)− f(x1, x2)| ≤ C|u|α1 sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞ .

To do this, write

|f(x1 − u, x2)− f(x1, x2)|

=
∣∣∣ ∑
j,k≥0

∫∫
Rn1×Rn2

[ψj,k(x1 − u− w, x2 − v)− ψj,k(x1 − w, x2 − v)]ϕj,k ∗ f(w, v)dwdv

∣∣∣
≤ sup

j,k≥0
2jα12kα2‖ϕj,k ∗ f‖L∞

∑
j,k≥0

2−jα12−kα2

×
∫∫

Rn1×Rn2

|[ψ1
j (x1 − u− w)− ψ1

j (x1 − w)]||ψ2
k(x2 − v)|dwdv.

Therefore, we only need to consider the case where |u| < 1. Let n1 be the
unique nonnegative integer such that 2−m1−1 ≤ |u| < 2−m1 and set

A := sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞ .

Then we have

|f(x1 − u, x2)− f(x1, x2)|
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≤ A
(m1∑
j=0

∞∑
k=0

2−jα12−kα2

∫∫
Rn1×Rn2

|[ψ1
j (x1 − u− w)− ψ1

j (x1 − w)]||ψ2
k(x2 − v)|dwdv

+
∞∑

j=m1

∞∑
k=0

2−jα12−kα2

∫∫
Rn1×Rn2

|[ψ1
j (x1 − u− w)− ψ1

j (x1 − w)]||ψ2
k(x2 − v)|dwdv

)
:= I + II.

For I, applying the following smoothness estimates of ψ
(1)
j (see Lemma 4 in

[6]), i.e., for x1, u ∈ Rn1 ,∣∣ψ(1)
j (x1 − u)− ψ(1)

j (x1)
∣∣

≤ C min

(
1,
|u|
2−j

)[
2−j

(2−j + |x1 − u|)n+1
+

2−j

(2−j + |x1|)n+1

]
,

(13)

we have

I ≤ CA
m1∑
j=0

∞∑
k=0

2−jα12−kα2
|u|
2−j
≤ CA2m1(1−α1)|u| ≤ CA|u|α1 .

For II, the size conditions on ψ
(1)
j and ψ

(2)
k imply

II ≤ CA
∞∑

j=m1

∞∑
k=0

2−jα12−kα2 ≤ CA2−m1α1 ≤ CA|u|α1 .

Thus, we obtain that for any u 6= 0, (x1, x2) ∈ Rn1+n2 ,

∆uf(x1, x2)

|u|α1
≤ C sup

j,k≥0
2jα12kα2‖ϕj,k ∗ f‖L∞ .

Similarly, for any v 6= 0, (x1, x2) ∈ Rn1+n2 , there holds

∆vf(x1, x2)

|v|α2
≤ C sup

j,k≥0
2jα12kα2‖ϕj,k ∗ f‖L∞ .

Finally, we prove that

|∆v∆uf(x1, x2)|
= |f(x1 − u, x2 − v)− f(x1, x2 − v)− f(x1 − u, x2) + f(x1, x2)|

≤ C|u|α1 |v|α2 sup
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L∞ .

We only consider the case where |u| < 1 and |v| < 1 since the other cases are
similar and easier. Let m1, m2 be the unique nonnegative integer such that
2−m1−1 ≤ |u| < 2−m1 and 2−m2−1 ≤ |u| < 2−m2 . In fact,

|∆v∆uf(x1, x2)|

=

∣∣∣∣ ∑
j,k≥0

∫∫
Rn1×Rn2

[
ψj,k(x1 − u− u′, x2 − v − v′)− ψj,k(x1 − u′, x2 − v − v′)
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− ψj,k(x1 − u− u′, x2 − v′) + ψj,k(x1 − u′, x2 − v′)
]
ϕj,k ∗ f(u′, v′)du′dv′

∣∣∣∣
≤ A

( ∞∑
j=m1

∞∑
k=m2

+

m1∑
j=0

∞∑
k=m2

+

∞∑
j=m1

m2∑
k=0

+

m1∑
j=0

m2∑
k=0

)∫∫
Rn1×Rn2

2−jα12−kα2

×
∣∣ψ1
j (x1 − u− u′)− ψ1

j (x1 − u′)
∣∣∣∣ψ2

k(x2 − v − v′)− ψ2
k(x2 − v′)

∣∣du′dv′
:= A(B1 +B2 +B3 +B4).

To deal with the first term, applying the size conditions on both ψ1
j and ψ2

k

yields that

B1 ≤
∞∑

j=m1

∞∑
k=m2

2−jα12−kα2 ≤ C2−m1α12−m2α2 ≤ C|u|α1 |v|α2 .

For the second part, applying the smooth condition on ψ1
j , i.e., (13), and

the size condition on ψ2
k implies that

B2 ≤ C
m1∑
j=0

∞∑
k=m2

2−jα12−kα2
|u|
2−j
≤ C2m1(1−α1)2−m2α2 |u| ≤ C|u|α1 |v|α2 .

The estimate for third term B3 is similar to the estimate for B2. Finally, to
handle with the last term, applying the smoothness conditions on both ψ1

j and

ψ2
k, we get

B4 ≤ C
m1∑
j=0

m2∑
k=0

2−jα12−kα2
|u|
2−j

|v|
2−k

≤ C2n1(1−α1)2n2(1−α2)|u||v| ≤ C|u|α1 |v|α2 .

Combing these estimates yields that

|∆v∆uf(x1, x2)| ≤ CA|u|α1 |v|α2 .

Repeating a similar calculation, we can handle the other cases where α1 = 1,
0 < α2 < 1, 0 < α1 < 1, α2 = 1 and α1 = α2 = 1. Lastly, when 1 < α1 =
m1 + r1, 1 < α2 = m2 + r2 with 0 < r1, r2 ≤ 1, observe that

∆v∆u∂
β1∂β2f(x1, x2)

=
∑
j,k≥0

∫∫
Rn×Rm

[∂β1ψ
(1)
j (x1 − u′)− ∂β1ψ

(1)
j (x1 − u′ − u)]

× [∂β2ψ
(2)
k (x2 − v′)− ∂β2ψ

(2)
k (x2 − v′ − v)]ϕj,k ∗ f(u′, v′)dudv

for |β1| = m1 and |β2| = m2. Again observe that the properties of ∂β1ψ
(1)
j

and ∂β2ψ
(2)
k are similar to 2jm1ψ

(1)
j and 2km2ψ

(2)
k , respectively, and hence the

estimate for this case is the same as the proof for the case where 0 < α1, α2 ≤ 1.
Therefore, the proof of Theorem 1.1 is completed.
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3. Proof of Theorem 1.2

Before we present the details of the proof of Theorem 1.2, we introduce the
definition of inhomogeneous product Besov spaces and some lemmas.

Definition 5. Let α = (α1, α2) with α1, α2 ∈ R. Suppose that ϕ1
0, ϕ2

0 satisfy
conditions (1) and (2), respectively, and set ϕ1(x1) = ϕ1

0(x1)−2−n1ϕ1
0(x1

2 ) and

ϕ2(x2) = ϕ2
0(x2)− 2−n2ϕ2

0(x2

2 ). Then the inhomogeneous product Besov space

Bα,11 (Rn1 × Rn2) is defined by the collection of all f ∈ S ′(Rn1+n2) such that

‖f‖Bα,11
=
∑
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L1(Rn1+n2 ) <∞,

where the construction of ϕj,k is the same as before.

To see that this space is well defined, we need to show that the above defini-
tion is independent of the choice of the functions ϕ1

0 and ϕ2
0. This will directly

follow from the following lemma.

Lemma 3.1. Let α1, α2 ∈ R. Suppose that ψ1
0, ψ2

0 satisfy conditions (1) and
(2), respectively. Set ψ1(x1) = ψ1

0(x1) − 2−n1ψ1
0(x1

2 ) and ψ2(x2) = ψ2
0(x2) −

2−n2ψ2
0(x2

2 ). Then∑
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L1(Rn1+n2 ) ≈
∑
j,k≥0

2jα12kα2‖ψj,k ∗ f‖L1(Rn1+n2 )

for every f ∈ S ′(Rn1+n2).

Proof. For ψ1
0 ∈ C∞0 (Rn1), ψ2

0 ∈ C∞0 (Rn2) with
∫
ψi0 = 1, i = 1, 2, by Theorem

A, we can take φi0, φi with large Mφi , i = 1, 2, such that

f(x1, x2) =
∑
j,k≥0

φj,k ∗ ψj,k ∗ f(x1, x2).

Hence

|ϕj,k ∗ f(x1, x2)|

≤
∞∑
j′=0

∞∑
k′=0

∫∫
Rn1×Rn2

|ϕj,k ∗ φj′,k′(x1 − u, x2 − v)||ψj′,k′ ∗ f(u, v)|dudv.

By the well-known almost orthogonality estimate,

|φj,k ∗ ϕj′k′(x1, x2)|

≤ C2−|j−j
′|L12−|k−k

′|L2
2−(j∧j′)M1

(2−(j∧j′) + |x1|)n1+M1

2−(k∧k′)M2

(2−(k∧k′) + |x2|)n2+M2

for any large positive integers Li and Mi, i = 1, 2. It is easy to verify that∑
j,k≥0

2jα12kα2‖ϕj,k ∗ f‖L1(Rn1+n2 ) ≤ C
∑
j,k≥0

2jα12kα2‖ψj,k ∗ f‖L1(Rn1+n2 ) <∞.

The converse inequality follows by symmetry. �
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Lemma 3.2. Under the same assumptions of Definition 5, S(Rn1+n2) is dense

in Bα,11 (Rn1×Rn2) with respect to the norm of Bα,11 (Rn1×Rn2). Consequently,

L2 ∩Bα,11 is dense in Bα,11 (Rn1 × Rn2).

Proof. Firstly, if f ∈ S(Rn1+n2), by the well-known almost orthogonality esti-
mate,

|ϕj,k ∗ f(x1, x2)| ≤ C2−jL12−kL2
1

(1 + |x1|)n1+M1

1

(1 + |x2|)n2+M2

for any large positive integers Li and Mi, i = 1, 2, then

‖f‖Bα,11 (Rn1×Rn2 ) ≤ C
∫∫

Rn1×Rn2

1

(1 + |x1|)n1+M1

1

(1 + |x2|)n2+M2
dx1dx2

≤ C,

if we choose Li > αi, i = 1, 2. This means f ∈ Bα,11 (Rn1 × Rn2).

Let f ∈ Bα,11 (Rn1 × Rn2). For any fixed N > 0, set

E = {(j, k) : 0 ≤ j ≤ N, 0 ≤ k ≤ N}

and

fN (x1, x2) =
∑

(j,k)∈E

ψj,k ∗ ϕj,k ∗ f(x1, x2),

where ψj,k and ϕj,k are the same as in Theorem A. It is easy to see that
fN ∈ S(Rn1+n2). Repeating the similar proof of Lemma 3.1, we can conclude
that

‖fN‖Bα,11 (Rn1×Rn2 ) ≤ C‖f‖Bα,11 (Rn1×Rn2 ).

On the other hand,∣∣ϕj′,k′ ∗ (f − fN)(x1, x2

)∣∣
≤

∑
(j,k)∈Ec

C

∫∫
Rn1×Rn2

|ϕj′,k′ ∗ ψj,k(x− u, y − v)||ϕj,k ∗ f(u, v)|dudv,

then one can repeat the similar proof of Lemma 3.1 again to get

‖f − fN‖Bα,11 (Rn1×Rn2 )

≤ C
∑

(j,k)∈Ec
2jα12kα2‖ϕj,k ∗ f‖L1(Rn1×Rn2 ) → 0 as N →∞.

Hence the proof is finished. �

Lemma 3.3. If f ∈ Λα, g ∈ B−α,11 (Rn1 × Rn2), then∣∣〈f, g〉∣∣ ≤ C‖f‖Λα ‖g‖B−α,11 (Rn1×Rn2 ).



BOUNDEDNESS OF CALDERÓN-ZYGMUND OPERATORS ON ... 485

Proof. By a dense argument in Lemma 3.2, we only need to prove the lemma
for g ∈ S. Using the local Calderón reproducing formula (3), we have∣∣〈f, g〉∣∣
≤
∑
j,k≥0

∫∫
Rn1×Rn2

|ψj,k ∗ f(x1, x2)||ϕj,k ∗ g(x1, x2)|dx1dx2

≤
∑
j,k≥0

2−jα12−kα2

∫∫
Rn1×Rn2

2jα12kα2 |ψj,k ∗ f(x1, x2)||ϕj,k ∗ g(x1, x2)|dx1dx2

≤ C‖f‖Λα ‖g‖B−α,11 (Rn1×Rn2 ). �

Now we show the following so-called weak density argument for Λα which
will play a crucial role in the proof of Theorem 1.2.

Lemma 3.4. For any f ∈ Λα, there exists a sequence {fN} ⊂ L2(Rn1+n2)∩Λα
satisfying

‖fN‖Λα ≤ C‖f‖Λα ,
and

lim
N→∞

〈
fN , g

〉
=
〈
f, g
〉

for any g ∈ B−α,11 (Rn1 × Rn2).

Proof. Suppose f ∈ Λα. Note that the local Calderón reproducing formula

f(x1, x2) =
∑
j,k≥0

ψj,k ∗ ϕj,k ∗ f(x1, x2)(14)

holds in the sense of distributions. For any fixed N > 0, denote

E = {(j, k) : 0 ≤ j ≤ N, 0 ≤ k ≤ N}
and

fN (x1, x2) =
∑

(j,k)∈E

ψj,k ∗ ϕj,k ∗ f(x1, x2).(15)

Obviously, fN ∈ L2(Rn1+n2). Repeating the same proof as the one in Lemma
3.1 yields

|ϕj,k ∗ fN (x, y)| ≤ C2−jα12−kα2‖f‖Λα .
Therefore, by Theorem 1.1, it follows that

‖fN‖Λα ≈ sup
j,k≥0

2jα12kα2‖ϕj,k ∗ fN‖L∞(Rn1×Rn2 ) ≤ C‖f‖Λα .

For any g ∈ S(Rn1+n2), the local Calderón reproducing formula (14) yields

〈f − fN , g〉 =
〈
f, g − gN

〉
.

By Lemma 3.2, the function∑
(j,k)∈Ec

ψj,k ∗ ϕj,k ∗ g(x1, x2)
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belongs to B−α,11 (Rn1 ×Rn2) and its B−α,11 (Rn1 ×Rn2) norm tends to zero as
N →∞. Thus, Lemma 3.3 implies that

|〈f − fN , g〉| ≤ C‖f‖Λα‖g − gN‖Ḃ−α,11
→ 0

asN tends to infinity. Since S(Rn1+n2) is dense inB−α,11 (Rn1×Rn2), a standard
limiting argument concludes the proof of Lemma 3.4. �

Next, we need to estimate the kernel of the operator ϕj,kTψj′,k′ , which will
denoted by ϕj,k ∗T

(
ψj′,k′(·−y1, ·−y2)

)
(x1, x2). For this goal, we need to recall

some basic definitions and notations. For 0 < η < 1, let Cη0 (Rn) denote the
space of continuous functions f with compact support such that

‖f‖Lipη(Rn) = sup
x 6=y

|f(x)− f(y)|
|x− y|η

<∞.

Notice that if ψ ∈ S(Rn) with supp ψ ⊂ B(0, r), where B(0, r) denotes the
Euclidean ball centered at the origin with radius r, then one can check that

‖ψ‖Lipη(Rn) <∞,

and for any j ∈ Z,

‖ψj‖Lipη(Rn) ≤ C2jn+jη.

A linear one parameter operator T from Cη0 (Rn) to (Cη0 (Rn))′ is said to satisfy
the weak boundedness property if

|〈f, T (g)〉| ≤ Crn+2η‖f‖Lipη(Rn)‖g‖Lipη(Rn)

for any f, g ∈ Cη0 (Rn) with supports in B(0, r). It is easy to check that L2

boundedness of T implies that T satisfies the weak boundedness property.
This property can be easily generalized to multi-parameter operators.

Lemma 3.5. Let S be a one-parameter inhomogeneous Calderón-Zygmund
operator on Rn with regularity exponent ε ∈ (0, 1] and δ > 0 associated with a
kernel S(u, v). Then for any ϕ0, ϕ, ψ0, ψ ∈ C∞0 (Rn) with zero integral of ϕ,ψ
and nonzero integral of ϕ0, ψ0, the following orthogonal estimate holds

|ϕjSψj′(x1, x2)| =
∣∣∣ ∫∫

R2n

ϕj(x− u)S(u, v)ψj′(v − y)dudv
∣∣∣

≤ C(1 + |j − j′|)(2−(j−j′)ε ∧ 1)
2−(j′∧j)ε′

(2−(j′∧j) + |x− y|)n+ε′
(16)

provided S(1) = 0, where ε′ = min{ε, δ} and ϕj is ϕ0 if j = 0, otherwise the
dilations of ϕ, and ψ′j is interpreted similarly. Moreover, the corresponding
constant depends only ‖S‖CZ .

Proof. For simplicity, we assume that the supports of ϕ0, ϕ, ψ0, ψ are all con-
tained in the unit ball. Firstly, we prove the estimate (16) in the case where
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j ≥ j′ and |x−y| ≤ 10·2−j′ . Note that if j = 0, then j′ = 0, the L2-boundedness
of S gives that

|ϕjSψj′(x1, x2)| = |〈ϕ0(x− ·), S(ψ0(· − y))〉| ≤ C.
Therefore, we assume j > 0. Since S(1) = 0, we get

ϕjSψj′(x1, x2) =

∫∫
R2n

ϕj(x− u)S(u, v)ψj′(v − y)dudv

=

∫∫
R2n

ϕj(x− u)S(u, v)[ψj′(v − y)− ψj′(x− y)]dudv.

Let ρ0 be a smooth function on Rn supported on B(0, 4), identically equal to
1 on B(0, 2). Set ρ1 = 1− ρ0. Then

ϕjSψj′(x1, x2)

=

∫∫
R2n

ϕj(x− u)S(u, v)[ψj′(v − y)− ψj′(x− y)]ρ0(2j(v − x))dudv

+

∫∫
R2n

ϕj(x− u)S(u, v)[ψj′(v − y)− ψj′(x− y)]ρ1(2j(v − x))dudv

:= I + II.

Therefore, by the weak boundedness of S on Rn, we have

|I| ≤ C2−j(n+2η)
∥∥ϕj(x−·)∥∥Lipη(Rn)

∥∥(ψj′(·−y)−ψj′(x−y))ρ0(2j(·−x))
∥∥

Lipη(Rn)
.

The following well known estimates (see the Appendix in [7])∥∥ϕj(x− ·)∥∥Lipη(Rn)
≤ C2jn+jη

and ∥∥(ψj′(· − y)− ψj′(x− y))ρ0(2j(· − x))
∥∥

Lipη(Rn)
≤ C2−(j−j′)2j

′n2jη

imply

|I| ≤ C2−(j−j′)2j
′n.

For the term II, using
∫
ϕ = 0, one has

II =

∫∫
R2n

ϕj(x−u)[S(u, v)−S(x, v)][ψj′(v−y)−ψj′(x−y)]ρ0(2j(v−x))dudv.

Using the smoothness of S(u, v) in u, together with

|ψj′(v − y)− ψj′(x− y)| ≤ C
(

|v − x|
2−j′ + |v − x|

)ε
2j
′n

for any ε ∈ (0, 1], we obtain

|II| ≤ C
∫∫
|v−x|≥2·2−j

|ϕj(x− u)| |x− u|
ε

|v − x|n+ε

(
|v − x|

2−j′ + |v − x|

)ε
2j
′ndudv

≤ C2−jε2j
′n

∫∫
|v−x|≥2·2−j′

1

|v − x|n+ε
dudv
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+ C2−(j−j′)ε2j
′n

∫∫
2·2−j≤|v−x|<2·2−j′

|v − x|−ndudv

≤ C(1 + (j − j′))2−(j−j′)ε2j
′n

≤ C(1 + (j − j′))2−(j−j′)ε 2−j
′ε

(2−j′ + |x− y|)n+ε
.

Now we deal with the case where |x − y| > 10 · 2−j′ . If j = 0, then j′ = 0,
using the size condition of S(u, v), we get∣∣∣ ∫∫

R2n

ϕ0(x− u)S(u, v)ψ0(v − y)dudv
∣∣∣

≤ C

∫∫
R2n

|ϕj(x− u)| 1

|u− v|n+δ
|ψj′(v − y)|dudv

≤ C
1

|x− y|n+δ
.

The last inequality follows from |u − v| ≈ |x − y|. For j > 0, the cancellation
condition of ϕ yields∣∣∣ ∫∫

R2n

ϕj(x− u)S(u, v)ψj′(v − y)dudv
∣∣∣

≤
∣∣∣ ∫∫

R2n

ϕj(x− u)[S(u, v)− S(x, v)]ψj′(v − y)dudv
∣∣∣

≤ C

∫∫
R2n

|ϕj(x− u)| |x− u|
ε

|x− v|n+ε
|ψj′(v − y)|dudv

≤ C
2−jε

|x− y|n+ε
= C2−(j−j′)ε 2−j

′ε

(2−j′ + |x− y|)n+ε
.

This proves (16) for this case where j ≥ j′ and |x − y| ≤ 10 · 2−j′ , j ≥ j′ and

|x − y| > 10 · 2−j′ . The two remaining cases: j < j′ and |x − y| ≤ 10 · 2−j ,
j < j′ and |x− y| > 10 · 2−j , are similar but easier. �

Lemma 3.6. Let T be a singular integral operator in inhomogeneous Journé’s
class on Rn1 × Rn2 with regularity exponent ε ∈ (0, 1] and δ > 0. If T1(1) =
T2(1) = 0, then we have the almost orthogonality estimate∣∣ϕj,k ∗ T (ψj′,k′(· − y1, · − y2)

)
(x1, x2)

∣∣
=

∣∣∣∣ ∫∫
Rn1×Rn2

ϕj,k(x1 − u1, x2 − u2)

∫∫
Rn1×Rn2

K(u1, u2, v1, v2)

× ψj′,k′(v1 − y1, v2 − y2)du1dv1du2dv2

∣∣∣∣
≤ C(1 + |j − j′|)(1 + |k − k′|)(2−(j−j′)ε ∧ 1)(2−(k−k′)ε ∧ 1)

× 2−(j′∧j)ε′

(2−(j′∧j) + |x1 − y1|)n1+ε′

2−(k′∧k)ε′

(2−(k′∧k) + |x2 − y2|)n2+ε′
,

(17)
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where ε′ = min{ε, δ}.

Proof. Set

K2(u2, v2) =

∫∫
R2n1

ϕ1
j (x1 − u1)K̃2(u2, v2)(u1, v1)ψ1

j′(v1 − y1)du1dv1,

where K̃2(u2, v2)(u1, v1) = K(u1, u2, v1, v2) is a one-parameter inhomogeneous
Calderón-Zygmund kernel on Rn1×Rn1 with regularity exponent ε ∈ (0, 1] and
δ > 0 such that

‖K̃2(u2, v2)‖CZ ≤ C min{ 1

|u2 − v2|n2
,

1

|u2 − v2|n2+δ
}

for fixed u2, v2. Since T1(1) = 0, by Lemma 3.5 we get

|K2(u2, v2)|

≤ C‖K̃2(u2, v2)‖CZ(1 + |j − j′|)(2−(j−j′)ε′ ∧ 1)
2−(j′∧j)ε′

(2−(j′∧j) + |x1 − y1|)n+ε′

≤ C min

{
1

|u2 − v2|n2
,

1

|u2 − v2|n2+δ

}
(1 + |j − j′|)(2−(j−j′)ε′ ∧ 1)

× 2−(j′∧j)ε′

(2−(j′∧j) + |x1 − y1|)n1+ε′
.

Similarly, for |u2 − u′2| ≤
|u1−v2|

2 ,

|K2(u2, v2)−K2(u′2, v2)|

=
∣∣∣ ∫∫

R2n1

ϕ1
j (x1 − u1)[K̃2(u2, v2)(u1, v1)− K̃2(u′2, v2)(u1, v1)]

× ψ1
j′(v1 − y1, v2 − y2)du1dv1

∣∣∣
≤ C‖K̃2(u2, v2)− K̃2(u′2, v2)‖CZ(1 + |j − j′|)(2−(j−j′)ε′ ∧ 1)

× 2−(j′∧j)ε′

(2−(j′∧j) + |x1 − y1|)n1+ε′

≤ C
|u2 − u′2|ε

|u2 − v2|n2+ε
(1 + |j − j′|)(2−(j−j′)ε′ ∧ 1)

2−(j′∧j)ε′

(2−(j′∧j) + |x1 − y1|)n1+ε′
,

and for |v2 − v′2| ≤
|u2−v2|

2 ,

|K2(u2, v2)−K2(u2 − v′2)|

≤ C
|v2 − v′2|ε

|u2 − v2|n2+ε
(1 + |j − j′|)(2−(j−j′)ε′ ∧ 1)

2−(j′∧j)ε′

(2−(j′∧j) + |x1 − y1|)n1+ε′
.

The above three estimates imply K2(u2, v2) is a one-parameter inhomogeneous
Calderón-Zygmund kernel on Rn2×Rn2 with regularity exponent ε ∈ (0, 1] and
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δ > 0, and

(18) ‖K2‖CZ ≤ C(1 + |j − j′|)(2−(j−j′)ε′ ∧ 1)
2−(j′∧j)ε′

(2−(j′∧j) + |x1 − y1|)n1+ε′
.

Applying Lemma 3.5 again and the condition (18) of the kernel K2(u2, v2) gives
the desire estimate (17). �

Repeating the same method of Lemma 3.6, we can obtain the following
result.

Lemma 3.7. Let T be a singular integral operator in inhomogeneous Journé’s
class on Rn1 × Rn2 with regularity exponent ε ∈ (0, 1] and δ > 0. If T ∗1 (1) =
T ∗2 (1) = 0, then we have the almost orthogonality estimate∣∣ϕj,k ∗ T (ψj′,k′(· − y1, · − y2)

)
(x1, x2)

∣∣
≤ C(1 + |j − j′|)(1 + |k − k′|)(2−(j′−j)ε ∧ 1)(2−(k′−k)ε ∧ 1)

× 2−(j∧j′)ε′

(2−(j∧j′) + |x1 − y1|)n1+ε′

2−(k∧k′)ε′

(2−(k∧k′) + |x2 − y2|)n2+ε′
,

(19)

where ε′ = min{ε, δ}.

As a consequence of Lemmas 3.6 and 3.7, one can easily get the following
boundedness.

Lemma 3.8. Suppose that T is a singular integral operator in inhomogeneous
Journé’s class with regularity exponents ε ∈ (0, 1] and δ > 0. Then

(1) T is bounded on Bα,11 (Rn1 ×Rn2) if 0 < max{α1, α2} < ε and T1(1) =
T2(1) = 0.

(2) T is bounded on B−α,11 (Rn1 × Rn2) if −ε < min{α1, α2} < 0 and
T ∗1 (1) = T ∗2 (1) = 0.

Proof. Here we only give the details of the first item, since the second is the
same. For f ∈ L2(Rn1+n2)∩Bα,11 (Rn1×Rn2), by the local Calderón reproducing
formula (3) and Lemma 3.6, we have

‖Tf‖Bα,11 (Rn1+n2 )

=
∑
j,k≥0

2jα12kα2‖ϕj,k ∗ Tf‖L1(Rn1+n2 )

≤
∑
j,k≥0

2jα12kα2

∑
j′,k′≥0

∫∫
Rn1×Rn2

∫∫
Rn1×Rn2

|ϕj,kTψj′,k′(x1, x2, y1, y2)|

× |ϕj′,k′ ∗ f(y1, y2)|dx1dx2dy1dy2

≤ C
∑

j′,k′≥0

∑
j,k≥0

2jα12kα2(1 + |j − j′|)(1 + |k − k′|)(2−(j−j′)ε ∧ 1)

× (2−(k−k′)ε ∧ 1)

∫∫
Rn1×Rn2

∫∫
Rn1×Rn2

2−(j∧j′)ε′

(2−(j∧j′) + |x1 − y1|)(n+ε′)
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× 2−(k∧k′)ε′

(2−(k∧k′) + |x2 − y2|)(m+ε′)
|ϕj′,k′ ∗ f(y1, y2)|dx1dx2dy1dy2

≤ C
∑

j′,k′≥0

∑
j,k≥0

2(j−j′)α12(k−k′)α2(1 + |j − j′|)(1 + |k − k′|)(2−(j−j′)ε ∧ 1)

× (2−(k−k′)ε ∧ 1)

∫∫
Rn1×Rn2

2j
′α12k

′α2 |ϕj′,k′ ∗ f(y1, y2)|dy1dy2

≤ C‖f‖Bα,11 (Rn×Rm).

The last inequality follows from∑
j,k≥0

2(j−j′)α12(k−k′)α2(1 + |j − j′|)(1 + |k − k′|)(2−(j−j′)ε′ ∧ 1)(2−(k−k′)ε′ ∧ 1) ≤ C

if max{α1, α2} < ε. Then a limiting argument yields Lemma 3.8. �

We now turn to prove Theorem 1.2.

Proof of Theorem 1.2. We first claim that for any f ∈ L2(Rn1+n2) ∩ Λα,

‖Tf‖Λα ≤ C‖f‖Λα .(20)

To see this, it suffices to show that

sup
j,k≥0

2jα12kα2‖ϕj,k ∗ Tf‖L∞(Rn1+n2 ) ≤ C‖f‖Λα .(21)

Repeating the same argument as the proof of Lemma 3.8, we obtain that

2jα12kα2 |ϕj,k ∗ Tf(x1, x2)| ≤ C‖f‖Λα .
Plugging this estimate into (21) yields (20).

Next, we extend T to Lip(α1, α2) as follows. Given f ∈ Λα, by Lemma 3.4,
there is a sequence {fN} ⊂ L2(Rn1+n2) ∩ Λα such that{

{fN} ⊂ L2(Rn1+n2) ∩ Λα,

lim
N→∞

〈
fN , g

〉
=
〈
f, g
〉

for any g ∈ B−α,11 (Rn1 × Rn2).

We thus define〈
Tf, g

〉
= lim
N→∞

〈
TfN , g

〉
, g ∈ B−α,11 (Rn1 × Rn2).

To see the existence of the limit, we write
〈
T (fN − fN ′), g

〉
=
〈
fN − fN ′ , T ∗g

〉
.

By Lemma 3.8, T ∗ is bounded on B−α,11 (Rn1 × Rn2), and thus

T ∗g ∈ B−α,11 (Rn1 × Rn2).

Therefore, by Lemma 3.4,
〈
fN − fN ′ , T ∗g

〉
tends to zero as N,N ′ → ∞. It is

also easy to check that the definition of Tf is independent of the choice of the
sequence fN satisfying the conditions in Lemma 3.4.

For f ∈ Λα, by the definition of Tf and the boundedness of T on L2(Rn1+n2)
∩Λα,

‖Tf‖Λα ≤ C sup
j,k≥0

2jα12kα2‖ϕj,k ∗ Tf‖L∞(Rn1+n2 )
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≤ C lim inf
N→∞

sup
j,k≥0

2jα12kα2‖ϕj,k ∗ TfN‖L∞(Rn1+n2 )

≤ C lim inf
N→∞

‖TfN‖Λα
≤ C lim inf

N→∞
‖fN‖Λα ≤ C‖f‖Λα ,

which concludes the proof of Theorem 1.2. �

Remark 3.9. The sufficient condition T1(1) = T2(1) = 0 of Theorem 1.2 might
not be necessary. Suppose that T is bounded on Λα. Take f2 ∈ C∞0 (Rn2), we
note that ‖1⊗ f2‖Λα 6= 0. The boundedness of T yields that ‖T1⊗ f2‖Λα may
be not equal to zero in general. That is

〈g1 ⊗ g2, T1⊗ f2〉 6= 0

for all g1 ∈ C∞0,0(Rn1) and g2, f2 ∈ C∞0 (Rn2). By our definition, T1(1) 6= 0.
T2(1) follows similarly.
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