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BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS
ON INHOMOGENEOUS PRODUCT LIPSCHITZ SPACES

SHAOYONG HE AND TAOTAO ZHENG

ABSTRACT. In this paper, we study the boundedness of a class of inho-
mogeneous Journé’s product singular integral operators on the inhomoge-
neous product Lipschitz spaces. The consideration of such inhomogeneous
Journé’s product singular integral operators is motivated by the study of
the multi-parameter pseudo-differential operators. The key idea used here
is to develop the Littlewood-Paley theory for the inhomogeneous prod-
uct spaces which includes the characterization of a special inhomogeneous
product Besov space and a density argument for the inhomogeneous prod-
uct Lipschitz spaces in the weak sense.

1. Introduction

Classical Calderén-Zygmund theory may be observed to center around sin-
gular integrals associated with the Hardy-Littlewood maximal operator that
commutes with the usual dilations on R”, dx = (6z1,...,dz,) for 6 > 0. This
theory has been extensively studied and is by now well understood; see for
example the monograph [36]. If we consider more general non-isotropic groups
of dilations, such as the family of product dilations defined by §(x1,...,z,) =
(6121, ..., 0n2y), 0; > 0,7 =1,...,n, then we see many non-isotropic variants
of classical theories have been developed. Understanding of the various func-
tion spaces associated with multi-parameter structures and the boundedness of
Fourier multipliers, as well as singular integral operators on such spaces, has
been greatly advanced in recent decades.

To be more precise, in [13] R. Fefferman and Stein first initiated a class of
product convolution singular integral operators which satisfy analogous condi-
tions enjoyed by the double Hilbert transform defined on R x R. They estab-
lished the LP boundedness of these singular integral operators for 1 < p < co.

Received February 17, 2021; Revised July 29, 2021; Accepted January 6, 2022.

2020 Mathematics Subject Classification. Primary 42B20; Secondary 42B25, 46E30.

Key words and phrases. Calderén-Zygmund operator, inhomogeneous product Lipschitz
space, Littlewood-Paley theory.

The first author was supported by Zhejiang Provincial Natural Science Foundation of
China (Grant No. LQ22A010018) and the second author was supported by National Natural
Science Foundation of China (Grant Nos. 11626213, 11771399).

(©2022 Korean Mathematical Society

469



470 S. HE AND T. ZHENG

Chang and R. Fefferman [1-3] developed a comprehensive theory of product
Hardy spaces initially introduced by Gundy-Stein [15], including the atomic de-
compositions and their dual spaces, namely, the product BMO spaces. Journé
in [28] introduced non-convolution product singular integral operators, estab-
lished the product T'1 theorem and proved the L>*°-BMO boundedness for such
operators. Subsequently, more and more results on LP, 1 < p < oo, bound-
edness and HP boundedness for operators in Journé’s class were obtained
[10-12,18,19,34]. As demonstrated by Journé, the remarkable boundedness
criterion of R. Fefferman [11] in two parameter case does not apply to the set-
ting of three or more parameters. To this end, Pipher [34] proved a Journé type
covering lemma in higher dimensions and established the HP(R™ x - -- x R™*)
to LP(R™ X - -- x R™) boundedness for singular integral operators in Journé’s
class by considering directly their actions on the atoms supported in arbitrary
open sets. More recently, the authors of [19] have established the necessary
and sufficient conditions of the product HP(R™ x --- x R™) boundedness of
Journé’s type singular integrals.

A more recent breakthrough is due to Miiller, Ricci and Stein [29,30]. They
introduced a new type of multi-parameter structure, called a flag structure,
and studied the LP boundedness of Marcinkiewicz multiplier operators on the
Heisenberg group. In 2001, Nagel, Ricci and Stein [31] studied a class of opera-
tors on nilpotent Lie groups given by convolution with flag kernels and applied
this theory to study the [Jp-complex on certain CR submanifolds of C™. More
recently, Nagel, Ricci and Stein [31] and Nagel, Ricci, Stein and Wainger [32,33]
developed the theory of singular integrals with flag kernels in the more general
setting of homogeneous groups. See also the recent works in [20, 22, 37].

On the other hand, at the extreme values of p = oo, it is natural to hope that
the BMO or Lipchitz spaces boundedness of multi-parameter singular integral
operators are available. As is well-known, the classical Lipschitz spaces have
had a profound influence in harmonic analysis and partial differential equa-
tions. Han et al. [17] constructed flag Lipschitz spaces on Heisenberg groups
and prove that Marcinkiewicz multipliers are bounded on them. In addition,
multi-parameter Lipschitz spaces associated with mixed homogeneities have
been studied in Han and Han [16]. Very recently, the first author and his col-
laborators Zheng, Chen and others in [38] establish a necessary and sufficient
condition for the boundedness of Journé’s product singular integral operators
on the product Lipschitz spaces. Namely, suppose that T is a singular in-
tegral operator in Journé’s class with regularity exponent ¢ € (0,1]. Then
T is bounded on A, with o = (a1, a9) if and only if 711 = Te1 = 0 for
0 < max{aj,as} < &, where A, denotes the product homogeneous Lipschitz
spaces on R™ x R™ introduced in [38]. T1(1) = T>(1) = 0 will be explained
below. For more about the Lipschitz spaces, see also [4,21,23-26,39]. A natural
question then arises: How about the multi-parameter Lipschitz spaces in the
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setting of inhomogeneous case and whether we can obtain some certain nec-
essary and sufficient condition for the boundedness of Journé’s type singular
integral operators on these spaces?

The main goal of this paper is to settle this question. More precisely, we will
investigate inhomogeneous product Lipschitz spaces via Littlewood-Paley the-
ory and establish a boundedness criterion of inhomogeneous Journé’s product
singular integral operators on the inhomogeneous product Lipschitz spaces.
The consideration of such inhomogeneous Journé’s product singular integral
operators is motivated by the study of the multi-parameter pseudo-differential
operators. Actually, all results in this paper can be extended to arbitrary
number of parameters.

In order to describe the main results in this paper, we first introduce the
inhomogeneous product Lipschitz spaces on R™ x R™2. For z1,y; € R™ and
To,y2 € R™, we denote that

Ay, f(z1,22) = f(z1 — Y1, 22) — f(71,72),
Azlf(xth) = f(z1 —y1,22) — 2f (21, 22) + f21 + y1, 22),

and

Ay, f(z1,22) = f(21,22 — y2) — [(21,22),
A2 fx1,@2) = flor, 22 — y2) — 2f (21, %2) + f(21, 22 + y2).
Definition 1. Let a = (aq, a3) with ag, @z > 0. The inhomogeneous product

Lipschitz space is defined to be the space of all bounded continuous f defined
on R™ x R™2 such that

(1) when 0 < a3, a9 < 1,

H.f” e H.f” ~ 4+ su |Ay1f| su ‘Ayzf‘ |Ay2Ay1f‘
A e PA LT e A AT MR
y1#£0 (Y1 y2#0 Y2 y1,y2#0 |Y1 Y2

)

(2) whenay =1,0< a2 < 1,

A2 A A, A2
s o= 1l + sup 20Tl g 1ALy BBl
w0 Uil o (12092 g gezo [Yally2]@2

(3) when 0 < oy <1, ag =1,

A A A2 A
Flan = Il + sup 2fl g Bl Bl
w0 (Y11 g0 \yzl w20 Y1 ]
(4) when oy = ay =1,
A7 f] A7, £ A7, A7 f]

[ fllaq == [Ifllze + sup + sup u
w0 il gezo (Y2l a0 \y1|\y2|

When aq,as > 1, we write oy = mq + r1 and as = my + ro, where mq, ms are
integers and 0 < r1,r9 < 1. Then f € A, means that f € C™1Tm2(RM1+n2)
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such that all partial derivatives 921052 f with |31] = mq, |B2| = ma belong to
A, for r = (r1,72) and

[flla, = > 1072052 f |, -

|B1]=m1,|B2]|=m2

We will characterize the inhomogeneous Lipschitz spaces via the Littlewood-
Paley theory. For this purpose, we first adapt some notations. Given a function
@ on R", we denote

M, = max{N € N : / o(x)zde =0, |of < N},
where N denotes the class of all natural numbers, that is, N = {0,1,2,...}. Let
©§ be a function defined on R™ satisfying

(1) @p € C°(R™) and oo (z1)dry =1,
Rn1

and let ¢2 be a function defined on R™2 satisfying

(2) ¢p € C°(R™) and | @f(2)dzs = 1.
Rn2

In what follows, we use C3°(R"™) to denote the set of all smooth functions with
compact support on R™. We also use in this note S(R™) to denote the class
of Schwartz functions in R™ and &’ its dual. Given a Schwartz function f on
R™, || flls@rn) denotes its seminorm. Motivated by the one-parameter Calderén
reproducing formula in [35], the following multi-parameter local Calderén re-
producing formula was proved in [8].

Theorem A ([8]). Assume that functions ¢} and o3 satisfy conditions (1) and
(2) respectively, and let
T

5 )

¢ (1) = pp(a1) — 27 g
and .
e 2
*(w2) = @i(w2) = 2775(5).
Then for any given integers M; > 0, i = 1,2, there exist ¥, ! € C§°(R™)
and Y3, 9? € C§°(R™2) with My > M;, i = 1,2, such that
(3) Flor, @) = Y Wi i flan, x2),
J:;k=20
where the series converges in L?(R™T72), S(R"1+n2) gnd S'(R™1+n2),

In the above local reproducing formula (3), ¥; % is constructed as follows.
For j, k > 1, let ¢} (z1) = 27" (27 1), Y7 (w2) = 2V"1p2(2F22), and set

Vi k1, w2) = ¥ (T1)V7(2), Uj0(w1,72) = ) (21)Y5 (22),
Yo,r(T1, 22) = ) (21)YR(22), oo(z1,22) = Y (T1)Y] (22).
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;1 can be constructed similarly. Moreover, as pointed out in [8,35], for any
positive integer N;, ' in Theorem A can be chosen such that M, > Ny,
i =1,2. It is noteworthy that the multi-parameter local Hardy spaces h? (R™ x
R™2) were developed in [8,9] with the local Calderén reproducing formula (3)
recently.

The first main result of this paper is the following Littlewood-Paley charac-
terization:

Theorem 1.1. f € A, with a = (aq,a2), ay,a2 > 0 if and only if f €
S(R™*"2) and

sup 2j(¥12kOé2 HQOJ:]C ES fHLoo(]Rnl XR"2) S C < 0.
J,k=>0

Furthermore,

[ £llag = sup 27012592 ||g; 5k fl| Lo (mm1 xRnz)-
J:k=20
It is known that the theory of one-parameter singular integral operators has
been generalized in two ways. First, the convolution singular integral operators
were replaced by non-convolution singular integral operators associated with a
kernel in the following sense.

Definition 2. A locally integrable function defined from the diagonal z = y
in R™ x R” is called a one-parameter Calderén-Zygmund kernel if there exist
constants C' > 0 and a regularity exponent € € (0, 1] such that

1
4 K(z,y)| < C—F,
() Kl < O
and

|z —a'|®
5 K(z,y) - K@@', y)| <C )
() Kz, y) — K(a", )| P
whenever |z — 2| < |z — y|/2, and

/e

6 K(z,y) - K(a,y) < 0L =YT
(6) (K(z,y) — K(z,y)| < P

whenever |y — y/| < |z — y|/2. The smallest such constant C' is denoted by
Kloz-

We call an operator T one-parameter Calderén-Zygmund operator if T' is a
singular integral operator associated with a one-parameter Calderén-Zygmund
kernel K(xz,y) given by

@ (rra)= [ ] @ik ey

for all f,g € C§°(R™) with suppf Nsuppg = @ and T is bounded on L?(R™).
Define ||T||cz by

ITllez = |1 Tl|z2m 22 + [Kloz-
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Then T is bounded on LP(R™) for 1 < p < oo, and is bounded from H?(R™) to
LP(R™) for 0 < p < 1 and close to 1, if ||T||cz < oo. Nevertheless, to ensure
the boundedness of T" on local Hardy spaces hP, 0 < p < 1, introduced by
Goldberg [14], a mild additional size condition

K(z,y)| < Cr———=
K 9)| < O
for some 6 > n(% — 1) might be included. Hence, this motivates us to define
the non-convolution type inhomogeneous Calderén-Zygmund operators on R™.

Definition 3. A locally integrable function defined away from the diagonal
x =y in R™ x R" is called a one-parameter inhomogeneous Calderén-Zygmund
kernel with regularity exponent ¢ € (0, 1] if there exist constants C' > 0 and
d > 0 such that in addition to (4), (5), (6), K also satisfies the following

C .
(8) IK(z,y)| < EEE=E if |z —yl = 1.

The smallest such constant C' in (4), (5), (6) and (8) is still denoted by |K|cz.

We say that an operator T is a one-parameter inhomogeneous Calderon-
Zygmund operator if T is a singular integral operator associated with a one-
parameter inhomogeneous Calderén-Zygmund kernel K(x,y) given by (7) for
all f,g € C§°(R™) with disjoint supports and T is bounded on L?*(R"™). In
addition, the norm of T is still defined by || T|cz = ||T||z2r2 + |Kloz. It is
well-known that an inhomogeneous Calderén-Zygmund operator is bounded on
h?(R™) if T*(1) = 0 for p near 1. Here T*(1) = 0 means that (1,7(¢)) = 0 for
all 9 € C§5(R™) defined below.

Secondly, the classical Calderén-Zygmund operators were also extended in
another direction to product singular integral operators on the space R™ Xx
R™ along with two-parameter family of dilations 6 : = — (121, 0222), x =
(z1,22) € R™ x R™  where § = (d1,02), d1,02 > 0. After Journé introduced
the non-convolution product singular integral operator in [28], there are many
significant works involving the boundedness of product singular integral op-
erators on various function spaces. We now introduce the singular integral
operator in the inhomogeneous Journé class on R™* x R™2 suitable for our
inhomogeneous product Lipschitz spaces.

Definition 4. A singular integral operator 7' is said to be in inhomogeneous
Journé class on R™ x R™2 with regularity exponents ¢ € (0,1] and § > 0 if

T(f)(z1,22) = / Kz, 22, y1,y2) f (Y1, y2)dy1dya,
R™1 xR"2

where (z1,22) is outside the support of the function f, where the kernel K
satisfies the following conditions:
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For fixed z1,11 € R™, set I@(wl,yl) to be the singular integral operator
acting on functions on R™ with the kernel

K (21, 91) (2, y2) = K(x1, 22,91, y2),

and similarly,

K2 (22,y2) (w1, 91) = K(z1, 22,91, 2),
then there exists a constant C' > 0 such that
(i) T is bounded on L2(R™:+"2),

(i)
(9) 1K @1, m) ez < Cminflas — g~ oy — g =+
IK (21, 91) = K (@1, 0) oz < Clyr — i ey — a9
(10) for |y1 — 4] < e —y1]/2;
1K (1, 90) — K@ w)llez < Clay — a2} Flay — g =00+
for |z1 — 27| < |1 — y1]/2.
(iii)
(11) IK? (22, y2) ez < Cmin{lzs — ya| "2, @5 — yo| =2+

K% (9, y2) — K2(22,95)|lcz < Clyz — yb|*|xa — yo| =279

- for [y2 — yb| < |2 — y2|/2;
1K2(22,92) — K2(ah. v2)llez < Clea — whFlea — ol =02+

for |zo — xh| < |72 — y2|/2.
Following Journé in [28], we define the operator T by the following

(92, (91, T1 f1) f2) = (91 ® g2, T f1 @ fa)

for fi,g91 € C§°(R™) and fa,92 € C§° (R™). Observe that when g3 €
CeoR™) ={g € C*(R™) : [g =0}, fi € C°(R™), the bounded C>*(R™)
functions, the inner product (g1,77 f1) is well-defined. Moreover, (g1, 71 f1) is
a Calderén-Zygmund singular integral operator on R™2 with kernel

(91: 1 f1) (w2,92) = <91,’€2 (w2,92) f1>-

One defines (ga, Tz f2) similarly for g» € C§G(R"™2) and fo € Cp°(R™). Using
these definitions, we can give a meaning of the notation 77(1) = 0. More
precisely, 77(1) = 0 is equivalent to

(91, (g2, To f2)1) = (g1 ® g2, T1 ® fo) = 0)

for all g1 € CFH(R™) and all fy, g2 € C5°(R™2), that is, for g1 € CFH(R™),
g2 € Cg9(R™2), and almost everywhere yo € R"?,

/9($1)9($2)’C($1,wz,y17y2)d$1d$2dy1 =0.
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Which T7(1) = 0 means (g2, T2 f2)*1 = 0 in the same conditions. Exchanging
the role of indices one can obtain the meaning of T5(1) = 0 and T3 (1) = 0.

It should be pointed that the singular integral operators in the inhomo-
geneous Journé’s class are consistent with the one-parameter inhomogeneous
Calderén-Zygmund operators considered by Goldberg [14] while a mild addi-
tional size condition was needed to guarantee their boundedness on the local
Hardy spaces h?(R™). Moreover, the boundedness of inhomogeneous Journé’s
type singular integral operators on the multi-parameter local Hardy spaces from
hP(R™ x R™2) to hP(R™ x R™2) and from hP(R™ x R™2) to LP(R™ x R"2) are
established in [7,8]. However, so far, it is not clear that whether the dual of
multi-parameter local Hardy spaces h?(R™ x R"2) is the inhomogeneous prod-
uct Lipschitz spaces A, with oy = n1(1/p—1), @a = na(1/p—1). Therefore, the
boundedness on inhomogeneous product Lipschitz spaces can not be obtained
by using the duality argument directly as in the classical setting. This mo-
tivates us to study the boundedness of inhomogeneous Journé’s type singular
integral operators on the inhomogeneous product Lipschitz spaces.

Our last main results are the following boundedness on inhomogeneous prod-
uct Lipschitz spaces of singular integral operators in inhomogeneous Journé’s
class.

Theorem 1.2. Let T be a singular integral operator in inhomogeneous Journé’s
class with regularity exponent € € (0,1] and 6 > 0. If T1(1) = Ta(1) = 0 and
the kernel IC of T' satisfies the half smoothness conditions (9), (10), (11), (12),
then T is bounded on A, with a = (a1, ) for max{ay,as} < e.

Note that the hypothesis of Theorem 1.2 may not necessity (see Remark
3.9 in Section 3). However, the inhomogeneous Journé type singular integral
operators are contained in the Journé’s product singular integral operators.
As a consequence of Theorem 1.2 and a necessary and sufficient condition for
the boundedness of Journé’s product singular integral operators on product
Lipschitz spaces obtained in [38], we get that T7(1) = T>(1) = 0 if and only
if T are bounded both on inhomogeneous product Lipschitz spaces A, and
homogeneous product Lipschitz spaces A, for max{a;, as} < & simultaneously,
where T is a singular integral operator in inhomogeneous Journé’s class with
regularity exponent ¢ € (0,1] and 6 > 0.

On the other hand, the bi-parameter singular integral operators in the in-
homogeneous Journé’s class are suitable for the study of bi-parameter pseudo-
differential operators. See [5,27] for one-parameter pseudo-differential operator
and multi-parameter pseudo-differential operator. It has been shown by Chen,
Ding and Lu in [5] that the inhomogeneous Journé’s class of bi-parameter
singular integral operators considered this paper concludes a special kind of
bi-parameter pseudo-differential operators. Therefore, our main theorem is
strictly more applicable for applications to partial differential equations with
variable coefficients. Next, although some ideas of our methods are taken from
[16,38], observe that the functions ¢} and 1§, i = 1,2, in the local reproducing
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formula (3), do not have any vanishing moments unlike those functions in the
multi-parameter Calderén reproducing formula. The lack of the vanishing mo-
ments makes the boundedness more complicated than the homogeneous case
in [38]. Hence, we must obtain some nontrivial estimates in our proof. In
addition, the range of the index a; and s in this paper are wider than [38].
Moreover, the smoothness conditions for the variable y = (y1,y2) of the kernel
K in Theorem 1.2 are not needed, which is weaker than the conditions in [38].
Finally, it is not clear that the dual of hP(R™ x R™2) is the inhomogeneous
product Lipschitz spaces A, with a; = n1(1/p—1), ag = na(1/p—1). To avoid
using this, we find a special inhomogeneous Besov spaces as the substitute of
hP spaces.

This paper is organized as follows. In Section 2, we will give the proof of
Theorem 1.1. Theorem 1.2 will be proved in Section 3.

Throughout this paper, the letter C stands for a positive constant which is
independent of the essential variables, but whose value may vary from line to
line. We use the notation A ~ B to denote that there exists a positive constant
C such that C7'B < A < CB. Let j A j' be the minimum of j and j'.

2. Proof of Theorem 1.1

Without the loss of generality, we assume that o}, o, 1§, ¥% i = 1,2, are
radial functions. We first prove that if f € A, with 0 < «a3,a7 < 1, then
f € §'(Rm*"2). To do this, for each g € S(R™*"2) by the local Calderén
reproducing formula (3), we have

g(z1,22) = Z Yk * @ik * g(x1,2),
J,k=>0

where the series converges in S(R™*"2). Therefore, for f € A, with 0 <
a1, a1 < 1, it suffices to show that Zj,k>0 <f, Yk *Pjk *g> is well-defined for

g € S(R™F"2). To this end, for all j,k > 0, we estimate (@; * f, ¥k * g) as
follows.
Case 1: j =k =0.
oo < fanad) =| [ ebwede)re - o - o)duds
R™1 xRR™2
< Cllfllze < Clflla,-

This implies that

[{0,0 * [+ 0,0 % g)| < C| f]

Case 2: j > 1, k=0.
By the cancellation condition on npjl-, we have

Aallglls-

0% f(e1,02) = / / P GB(W) (@1 — 72 — v)dudy
R™1 XR"2
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= // 90; (u) (V) Ay f (21, T2 — v)dudv.
R™1 xR"2
The fact f € A, and the size condition of gojl give us that
o 27 2
[esox fana)| <Cl, [[ ™ Gl duds
< 0279 flla, -
Therefore, we obtain that
()0 % fribj0 x g)| < C277°| f|
Case 3: j =0,k > 1.
Repeating the similar argument as the Case 3, we get
(o, * fr 0 * g)| < C27F| flla. llglls-

Case 4: j>1, k> 1.
Applying the cancellation conditions on both ¢} and ¢, we have

Aall¥50 % gllLrgranay < C277° | Flla. llglls.

s o)l =| [ el - urs = o)dud]
S} (O (G-I CE

< Cl oty [ Tebueho)Juf ol dudo
R’Vll XR’V??
< camighe iy,
which yields
(s * fogn * )l < C277 2782 |5 llg]ls.-

Combing these four cases, we obtain that
(i * fr b * g)| < C27701 27002 f]

and thus, < 1, g> is well defined. In addition, we also obtain

sup 2ja12ka2||s0j,k * fllLe < C| flla
J k>0

Adllglls

for 0 < ag,as < 1.

When a7 =1, 0 < ag < 1, we only need to consider the cases where j > 1,
k = 0 and j,k > 1 since the other two cases are similar. Indeed, if j > 1,
k = 0, applying the cancellation condition on ga; and noting that <p} is a radial
function, we have

lj0 % f(z1,22)]

B ‘ //]R’"l xR™2 90; (U)QDg(v)[f(xl —u, 2 —v) — f(z1,22 — U)}dudv
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=3l @O+ )~ 2 wrmn) + o~ wa — o)dud

27k
<l [[ g el duds
< C277| f|l A
Hence,

[(j.0 % 050 x g)] < C277[| fllaa llglls-
If j,k > 1, then

gpj,k * f(a"l)xQ)

%//]R" an @yl(u)@i(v)[f($1 —u, x5 —v) + f(z1 + u, 22 — v)]dudv

%//Rnlxm @ ()i (V) (A AL f) (21, z2)dudv.

The last equality follows from the cancellation conditions on both ¢} and ¢j.
Then

ljk * f(z1,22)] < Ol fl|Lip(ar,az) // o} (Wi (v) [Jul[v]*? dudv
R™1 xR™2
< 0279278 fa,,
which implies
(s * fotbin = )l < C27727%2 | flla,llglls-
Thus, < 1, g> is well defined and

sup 2ja12ka2||gﬁj7k * fllLe < Cllflla,
3,k20

fora; =1,0< ag < 1.
All other cases where 0 < a1 < 1, s = 1 or a3 = as = 1 can be handled
similarly. For the case where ay, ag > 1Awith a1 =mq +71 and s = mg + 19
. = o1(6) =5 229
with 0 < ri,m9 < 1, set pj(§) = Torigyrr and o2(n) = %, where
|B1| = mu, |Ba2| = mg, then
Dik - aﬂlaﬁzw * * f = ( )mﬁ-mzw 5 *3618’82]”

where ¢; 1 = ‘Pj‘Pk- Note that 2/m12km25. , satisfy the similar smoothness,
size and cancellation conditions as ¢; ;. Therefore, repeating the similar proof
gives that

@ik * flloee = (2771 27km (20m12km2 5, 1) 5 9107 f || oo
< C2~ Jm12 k:m22 ]T12 1€7’2||a,31a[‘hj’HLip(Tl7
= 0277 27R f,.

r2)
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That is
sup 2ja12ka2||50j,k * fllLe < Clf|la.
J k>0

for aq, 0 > 1.
To prove the converse implication of Theorem 1.1, we first show that for
every f € §&'(R™+"2) gatisfying

sup 27012592 | % f| e < C
J,k>0

coincides with a bounded continuous function. Recalling the local Calderén
reproducing formula (3), f(z1,z2) = Zj,kzo Yix* @ik * f(z,22) in &, we
have
sk % ik * f@1, 22)] < lljn * fllellspllo
< G279k (sup 2712592 |k x f ).
J:k=>0

Thus, the series ZMZO Yk * @ik * f(x1,22) converges uniformly in zq,xo.
Since ¥k * @jk * f is continuous in R™ "2 then the sum function f is also
continuous in R™**"2, Moreover,

I£llzee < C sup 2701252 [ 5 5 f | .
J,k=>0
Now we estimate ||f|la, as follows. We first consider the case where 0 <
a1, a9 < 1, and then show that
[f@1 —w,22) = (21, 22)| < Clul® sup 27%1272(|ip; 4 f| oo
3,k>0
To do this, write

|f(z1 —u,22) — f(z1,72)]
Z //R o [ k(1 —u—w, 0 —v) —Pj k(1 — w, 22 — V)]jk * f(w,v)dwdv

J,k>0
sup 271250, 4 x flpw 3 27T ke
J,k>0 0

* //]RTH xR"2 Hd)]l (131 U= U)) - wjl (1'1 - w)]||¢]§($2 - 'U)|d’UJd’U

IN

Therefore, we only need to consider the case where |u| < 1. Let ny be the
unique nonnegative integer such that 2™~ < |u| < 27™! and set

A= sup 2/1okaz s, * fllzoe-
J,k>0

Then we have

|f(x1 — u, w2) — f(21,22)]
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<A(S et [ e - uw) - e - o)l - o)ldeds
]:0 k:O R"‘l Xan
+ Z ZQ*ja12—k‘az // |[¢]1(1-1 —u— w) - 1[1]1(11 — ’(1))]“’(/}}%(.’1’}2 - v)|dwdv)
j=m1 k=0 R™1 xR™2
=1+11.

For I, applying the following smoothness estimates of ¢j(~1) (see Lemma 4 in
[6]), i.e., for z1,u € R™,

[0 (@1 — ) — ) (21))]
13 —j —J
(13) gcmin<1 “|>{ 2 2’

1277 ) |@T + o — ) T @ A )

we have

mi o
1<CAY Y 2—1'&12—’“*2@]_ < CA2M =)y < CAlul*.
j=0k=0
For 11, the size conditions on w](}) and w}(f) imply

IT<CA Y Y 27imgthes < CA2™™ < CAJul*.

j:m1 k=0
Thus, we obtain that for any u # 0, (21, x2) € R"1 172,
Au b ]
M <C sup 2ja12ka2”¢j7k % f||Loo.
|ulo 4,k>0
Similarly, for any v # 0, (z1,22) € R™ "2 there holds
A .
SolLT2) < 0 gup 29292 % f
|2 4,k>0
Finally, we prove that
|AAf (21, 72)]
= [f(x1 —u, 22 —v) = f(21,22 — v) — f(21 — w,22) + f(21,22)]

< Clul*|v|*? sup 2ja12ka2||gpj7k * fllpee-
J,k>0

We only consider the case where |u| < 1 and |v| < 1 since the other cases are
similar and easier. Let mj, mo be the unique nonnegative integer such that
27l <yl < 27™ and 27™271 < |u| < 272, In fact,

|A1)Auf($l7 1’2)|

Z // [Wjn(@r —u—u 2o —v—0") =Y p(z1 — v,z —v =)

J,k=0
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—Yip(@r —u—u,zy — V) + Y p(zr — v me — V)] f(u, V) du'dv’

0o ma mi mo

<A(X Y +X S ey S ) [f e

j=mi k=ms j=0k=my j=mik=0 j=0k=0
X ’1/);-(951 —u—u')— 1/)31.(301 — u’)Hw%(xQ —v—v') =i (xy — U’)‘du’dv'
= A(B1 + Bz + B3 + Ba).

To deal with the first term, applying the size conditions on both ¢} and )}
yields that

Bi< Y 3 grieigther < ggmmiaigTmans < Clyforjy|oe,

j:m1 k:mz

For the second part, applying the smooth condition on 1/1]1, ie., (13), and
the size condition on wi implies that

mi o0
Cjaro—kas U 1— -
By<CY» Y 2792 o < Comii—aa)g=maaz |y < Oy|* |v|,
j:O k):mz

The estimate for third term Bg is similar to the estimate for By. Finally, to
handle with the last term, applying the smoothness conditions on both z/J]l and
1/),%, we get

m1 mo

B Yy grimartes I < omOmegntizeulo] < Cluf ol
j=0 k=0

Combing these estimates yields that
[ Ay A f (21, m2)] < CAJul™ [v]*2.

Repeating a similar calculation, we can handle the other cases where a; = 1,
0<as<1,0<a; <1,as =1and a;g = ag = 1. Lastly, when 1 < ay =
my+ 11, 1 < ag =mg+ 19 with 0 < 71,79 <1, observe that

Ay AP 0P f (21, 20)
= [ e ) e el )
R xR™

J:k=>0

x [0 (g —v") — 8529 (w0 — 0" — V)|pjp * f(u! 0 dudv

for |B1| = my and |B2] = mo. Again observe that the properties of Bﬁle(l)

and 3ﬁ2w,(€2) are similar to 2jm1¢§1) and 2km21/),(€2), respectively, and hence the
estimate for this case is the same as the proof for the case where 0 < ay, s < 1.
Therefore, the proof of Theorem 1.1 is completed.
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3. Proof of Theorem 1.2

Before we present the details of the proof of Theorem 1.2, we introduce the
definition of inhomogeneous product Besov spaces and some lemmas.

Definition 5. Let a = (a1, ) with oy, a € R. Suppose that ¢}, 3 satisfy
conditions (1) and (2), respectively, and set ¢! (z1) = ¢f(x1) =27 " ¢§(%) and
©?(x2) = @§(x2) —27"2¢3(%). Then the inhomogeneous product Besov space
B&H(R™ x R™) is defined by the collection of all f € S'(R™*"2) such that
”fHBfl = Z 2ja12ka2||<pj7k * f||L1(Rn1+n2) < 00,
§,k>0

where the construction of ¢; \ is the same as before.

To see that this space is well defined, we need to show that the above defini-

tion is independent of the choice of the functions ¢} and ¢2. This will directly
follow from the following lemma.

Lemma 3.1. Let oy, a2 € R. Suppose that 1§, 132 satisfy conditions (1) and
(2), respectively. Set ' (x1) = ¢g(z1) — 27" 5(%) and P?(x2) = Y§(22) —
2723 (%2). Then

Z 2joz12koz2|‘<pj7k * f||L1(Rn1+n2) R Z 2ja12ka2”¢j,k * fHLl(RMJrnz)
k>0 §,k>0
for every f € &' (R™1+n2),

Proof. For ¢} € C§°(R™), 3 € C§°(R™2) with [¢§ =1, i = 1,2, by Theorem
A, we can take ¢}, ¢ with large Myi, 1 = 1,2, such that

fla,wa) = Y @ik xjx* fz1,22).
Jk=0

Hence

lojr* f(21,72)]

<Y / / 0k % bk (21— 1,2 — W)l i+ (1, 0) s,
R™1 xR™2

§7=0 k'=0
By the well-known almost orthogonality estimate,
|Djk * i (21, T2)|
9—(iNG") My 9—(kAK') M2

(2=GN") 4 |y ])a+Me (2= (RAKY) 4 |y )2+ M2

< 09-1i—i'|Lig—Ik='|L2

for any large positive integers L; and M;, ¢« = 1,2. It is easy to verify that
Z giergkez || )« flimnitnay <C Z i gkez ||y Fllpi@matnay < 00
J:,k=20 J:,k=20

The converse inequality follows by symmetry. (I
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Lemma 3.2. Under the same assumptions of Definition 5, S(R™1"2) is dense
in BY (R™ x R™) with respect to the norm of B (R™ x R™). Consequently,
L2N B is dense in BY' (R™ x R").

Proof. Firstly, if f € S(R™*"2) by the well-known almost orthogonality esti-
mate,

1 1

: < C2-iligTkEe
P » o, za)l < (L F o) (1 [ o 10

for any large positive integers L; and M;, i = 1,2, then

1 1
a1 (gny xgr2) < C dxidx
Wlsgoaesssen <€ [ G G e ondes
<G,

if we choose L; > ay, i = 1,2. This means f € B (R™ x R™),
Let f € B! (R™ x R"2). For any fixed N > 0, set

E={(,k):0<j<N,0<k<N}
and

In(w1,22) = Z Vjk * 0k * f21,22),

(4,k)EE

where ;1 and ;) are the same as in Theorem A. It is easy to see that
fn € S(R™M*"2). Repeating the similar proof of Lemma 3.1, we can conclude
that

||fN||B§"~1(Rn1 xR™2) < CllfHB‘l"vl(Rm xRm2)"
On the other hand,

ljrn * (f = fv) (21, 22) |
< Z C// loj ke * V(@ —u,y — v)||ejr * fu,v)|dudv,
R™1 xR™2

(4,k)eE°
then one can repeat the similar proof of Lemma 3.1 again to get

Hf - fNHBlavl(]Rm xR"2)

<C Z 2‘7()(12]6()42“()0‘1’]‘: * fll L @m xkr2) — 0 as N — oo.
(4,k)eEe

Hence the proof is finished. [l
Lemma 3.3. If f € Ay, g € B; “' (R™ x R™), then

(L < Ol laa N9l oo @ xgns)-
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Proof. By a dense argument in Lemma 3.2, we only need to prove the lemma
for g € S. Using the local Calderén reproducing formula (3), we have

(f.9)]

<Y // [Vjk * f(@1, 22) @)k * g(@1, ¥2)|dT1dTo
Gik>0 7 TR XRR

< D arimarhe / / 271k 1k f(ar, @)l 0 * 91, w2)|dy drs
Gk>0 R

< Cllfllae 19l ret @e xgnz)- O

Now we show the following so-called weak density argument for A, which
will play a crucial role in the proof of Theorem 1.2.

Lemma 3.4. For any f € A, there exists a sequence { fxy} C L2(R™¥m2)NA,,
satisfying
v llae < ClflIAas

and

m {(fn,g) = (f.g) for any g € By “'(R™ x R"2).

li
N—o0
Proof. Suppose f € A,. Note that the local Calderén reproducing formula
(14) Flor,w) = Y Wi+ i a1, x2)
3,k>0
holds in the sense of distributions. For any fixed N > 0, denote
E={(,k):0<j<N, 0<k<N}
and
(15) fn(@nme) = Y Gikx ik fl@n,m2).
(J,k)EE

Obviously, fy € L?(R™*"2). Repeating the same proof as the one in Lemma
3.1 yields

e (. y)| < C2770027Re2| £l .
Therefore, by Theorem 1.1, it follows that

[ flla, = S;lfOQja12ka2||<Pj,k * [l oo @r1 xrr2) < O flAq-
IR=Z

For any g € S(R"**"2), the local Calderdén reproducing formula (14) yields
(f=fn.9) = (f.9—9n)-
By Lemma 3.2, the function

Z Vi * @ik * g(x1,22)

(4,k)€E"
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belongs to By ' (R™ x R"?) and its B; “'(R™ x R"2) norm tends to zero as
N — oco. Thus, Lemma 3.3 implies that

(= )] < CllFlacllg = gl gen =0

as N tends to infinity. Since S(R™1+"2) is dense in B; ' (R™ xR"), a standard
limiting argument concludes the proof of Lemma 3.4. (]

Next, we need to estimate the kernel of the operator ¢; T4,/ 1/, which will
denoted by ¢; & *T(%",k'(' -1, '—yg)) (z1,x2). For this goal, we need to recall
some basic definitions and notations. For 0 < n < 1, let CJ(R™) denote the
space of continuous functions f with compact support such that

[f(x) — f(y)|
FLin, Ry = sup < o0.
17 eip ey ety 1T — Y|

Notice that if ¢ € S(R™) with supp ¢ C B(0,r), where B(0,r) denotes the
Euclidean ball centered at the origin with radius r, then one can check that
19| Lip, &r) < 00,
and for any j € Z,
19| 2ip, () < Cointin.

A linear one parameter operator 7 from C{ (R™) to (Cf/(R™))" is said to satisfy
the weak boundedness property if

[ TN < Cr™ 2 fllLip, &) l9lLip, &)

for any f,g € CJ(R") with supports in B(0,r). It is easy to check that L2
boundedness of 7 implies that T satisfies the weak boundedness property.
This property can be easily generalized to multi-parameter operators.

Lemma 3.5. Let S be a one-parameter inhomogeneous Calderon-Zygmund
operator on R™ with regularity exponent € € (0,1] and § > 0 associated with a
kernel S(u,v). Then for any o, @, Yo, € C§(R™) with zero integral of v,
and nonzero integral of po, 1o, the following orthogonal estimate holds

esStsaranl =| [ oita = wS(u oy (o - piude
9—("ni)e

16 <O +1j— N2 = A1 -
(16) <C+15 =7 )(Q,U,M)foybnﬁ/

provided S(1) = 0, where ¢’ = min{e,d} and ¢; is o if j = 0, otherwise the
dilations of ¢, and 1/12- is interpreted similarly. Moreover, the corresponding
constant depends only ||S||cz.

Proof. For simplicity, we assume that the supports of g, v, g, are all con-
tained in the unit ball. Firstly, we prove the estimate (16) in the case where
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j >4 and |z—y| < 10-277". Note that if j = 0, then j/ = 0, the L2-boundedness
of S gives that
|03 Sy (1, 22)| = [{po(x — ), S(tho(- = y))) < C.
Therefore, we assume j > 0. Since S(1) = 0, we get

;S (x1,22) = //R% w;(x —u)S(u, v)j (v —y)dudv

Let po be a smooth function on R™ supported on B(0,4), identically equal to
1 on B(0,2). Set py =1 — py. Then

;S (a1, x2)

= //R% oj(x —u)S(u,v)[Yj (v —y) — i (x — y)]po(2 (v — z))dudv

+ [ oite = w80 =)~ bye — (2o - 2))dud
=1+1I.
Therefore, by the weak boundedness of S on R™, we have
1] < C2770 420 | (a (W5 (=)=t (x=9))po (2 (=) || s gn)-
The following well known estimates (see the Appendix in [7])

i@ =i, @y < CF

—) HLip,7 (R™)

and
15 (- = 9) =g (@ = 9))po(2 (- = @) |y, oy < C27U79020 7207

imply o
1| < c2—G=3")9i'n.

For the term I7, using [ ¢ = 0, one has
1= [ pie—u)(S(0)=S(e o)l (o)~ (z—9))o ) (v-2)dudv.
RQTL

Using the smoothness of S(u,v) in u, together with

[V (v —y) =Yy (x—y)| <C (2—J|U—|—_|U$|—x|) 9i'n

for any ¢ € (0, 1], we obtain

|z — ul® v — z| <
11 <C i(x — - 27 " dud
11| < /| 5@ —u) e wdo

oy 1
<C277%2 "// ————dudv
|lv—z|>2.2—3' ‘U - I|n+€
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+ 27 =iN=gi'n // |[v — 2| " dudv
2.2-i<|v—z|<2-2—7

<O+ (j - g2 e
27’
277" + o =yt

Now we deal with the case where |z — y| > 10-277". If j = 0, then j/ = 0,
using the size condition of S(u,v), we get

’ //R% wo(x — u)S(u,v)o(v — y)dudv
1

= C//Rzn (@ WWJ’(U—ZJ)\dudU
<C

<O+ (j - 4207

e

The last inequality follows from |u — v| & |z — y|. For j > 0, the cancellation
condition of ¢ yields

’ //RM @;(x —u)S(u,v) (v — y)dudv’
< ’ //]R2" iz —u)[S(u,v) — S(z,v)]j (v — y)dudv’

€
<o [[ el v o - ) lduas
R2n | v|rte
< C’L oLy plp— 270" )
= =y PR R

This proves (16) for this case where j > j’ and |z —y| < 10-277", j > j' and
|z —y| > 10 - 279", The two remaining cases: j < j/ and |z —y| < 10277,
j<j and |z —y| > 10-277, are similar but easier. O

Lemma 3.6. Let T be a singular integral operator in inhomogeneous Journé’s
class on R™ x R™ with regularity exponent € € (0,1] and § > 0. If T1(1) =
T5(1) = 0, then we have the almost orthogonality estimate

| * T (Ve (- — Y1, — y2)) (w1, 22) |

= ‘// sﬁj,k( — U1, T2 — U2 // Ul,u2,?}1,112)
R™1 xR"2 R™1 xR"™2

(17) X Vi g (V1 — Y1, v2 — Y2)durdvydugduy

< O(L+1j — §DA + [k — K@ 070 A1) 2~ *HD= A1)
9—(3"Aj)e’ 9— (k' Ak)e'
X ——— ,
(2—(J’/\J) + @y — gy ) te (2—(k//\k) + |z — yo| )22 te
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where &’ = min{e, ¢}.

Proof. Set
KQ(UQ,’UQ) = // SOJI(Il — Ul)KZ(u2702)(u17U1)w;/ (Ul — yl)duldvl,
]R2"1

where I@z(fuz, va)(u1,v1) = K(u1,ug,v1,v2) is a one-parameter inhomogeneous
Calderén-Zygmund kernel on R™ x R™* with regularity exponent ¢ € (0, 1] and
6 > 0 such that

1

1K (uz, v2)loz < Cmin{ . oo s}

for fixed ug,vy. Since T7(1) = 0, by Lemma 3.5 we get

| o (g, v2)|
90— (3" Nj)e’

(20N 4 |2y — yy | )t

b+l - o )

< OIIK? (uz, v2) ez (1415 — 5NV A1)

1

lug — va|"2” Jug — vy|n2+9

< C'min {
9—(i"ni)e

X " .
(2-U"NI) 4 |zg — yy|)m2te’

o / [u1 —va|
Similarly, for |uz — uy| < =52,

|K2 u27v2) KQ(UQ,U2)|
= | ] b = w2 ) 0) ~ K2 ) )

X d’j/ (v1 — y1,v2 — Y2)durdoy
< CHK:Q(U'?»’U2) ICQ('LLQ,’UQ)HCZ(]_ + |] _] |)( (G—3")e' A 1)
9—("Aj)e’
X ——
(2*(J'/\J) + |z — yo[)r e
lup — sl
|u2 —1;2|"2+8

90— ni)e’
(2=G"N) 4 |2y — gy |)ate’’

<C 1+ — 7))@ 0= A1)

and for |vg — vh| < w,

| Ko (ug,v2) — Ka(up — v5)|
“c vy — vh|° 9~ (' Ni)e
|ug — wvg|P2te (2=G'N) 4 |zy — gy [)rate’”

(L+ 1= D0 A

The above three estimates imply Ka(us,vs) is a one-parameter inhomogeneous
Calderén-Zygmund kernel on R™2 x R"2 with regularity exponent ¢ € (0, 1] and
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6 >0, and
9= (3" Nj)e’
(2=G"N) 4 |zy — gy [)rate’”

Applying Lemma 3.5 again and the condition (18) of the kernel Ks(uz,v2) gives
the desire estimate (17). O

(18)  ||Kallez < C(1+j— '@ U< A1)

Repeating the same method of Lemma 3.6, we can obtain the following
result.

Lemma 3.7. Let T be a singular integral operator in inhomogeneous Journé’s
class on R™ x R™ with regularity exponent € € (0,1] and § > 0. If T (1) =
T5(1) = 0, then we have the almost orthogonality estimate
i * T (e (- — 1, — y2)) (w1, 22)|
< C(+1j = DA+ [k = KN A1)(27* R A1)
2-(ins")e’ 9—(kAK')e’
X —
@09 1 [ — e @ O [~ gl

where ¢’ = min{e, d}.

(19)

As a consequence of Lemmas 3.6 and 3.7, one can easily get the following
boundedness.

Lemma 3.8. Suppose that T is a singular integral operator in inhomogeneous
Journé’s class with regularity exponents e € (0,1] and 6 > 0. Then
(1) T is bounded on B®"(R™ x R™) if 0 < max{ay,as} < e and T1(1) =
T5(1) = 0.
(2) T is bounded on By ' (R™ x R™) if —e < min{ay, a2} < 0 and
T;(1) = T3(1) = 0.
Proof. Here we only give the details of the first item, since the second is the
same. For f € L? (R”IJF”Q)QBf"l(R”l xR™2), by the local Calderén reproducing
formula (3) and Lemma 3.6, we have

”TfHBffl(R”lJr”z)
= Z 2ja12ka2||30j,k *Tf||L1(R"1+"2)

J,k=>0
jo1 oko
< D Fma ) // // |05 6T (21, 22,91, 92))|
. . R™1 xR"2 R™1 xR"™2
J,k>0 J'k'20

X [pjra * f(y1, y2)|dzrdzady: dys
C > ST pegker (1 i — )1+ k- K[)(2707 AT

J',k'205,k20

, 9—(iNs")e’
X(g—(k_k)s/\1)// // G o=
Rr1 srnz J Jrea xrne (270N 4 |2y — g |) (0 Fe

IA
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9—(kAK')e
X 20N 1 [y — ) 07+ lejr e x f(y1, y2)|dzrdaady: dya
<C Yy D 20 mtEhen g i - (14 k- KO AT
§7,k'>05,k>0
. (2_(k_k/)€ A /./ 2j/a12k/a2|50j’,k’ * [ (y1,y2)|dyr1dys
R™1 xR™2

< Cllfll peor (mr xmomy-

The last inequality follows from

7 207K (1 - )+ k= KT A A <0
J,k=>0

if max{ay, a2} < e. Then a limiting argument yields Lemma 3.8. O
We now turn to prove Theorem 1.2.

Proof of Theorem 1.2. We first claim that for any f € L2(R™+"2) N A,,

(20) ITflla. < CllflAq-

To see this, it suffices to show that

e sup 291282 g 8 T fll s enzy < Clf .
Jk>

Repeating the same argument as the proof of Lemma 3.8, we obtain that
29012702 ;T f (w1, 2)| < Ol fa-

Plugging this estimate into (21) yields (20).
Next, we extend T to Lip(ay, as) as follows. Given f € A,, by Lemma 3.4,
there is a sequence {fy} C L?(R™*"2) N A, such that

{ {fv} C IRMF™) A A,
. — —ao,1 g no
Jim(fx,g) = (f,g) for any g € By (" x ™)
We thus define
{Tfa)=Jim,
To see the existence of the limit, we write <T(fN —fnr)s g> = <fN — fnr, T*g).
By Lemma 3.8, T* is bounded on By ®!(R™ x R"), and thus
T*g € By (R™ x R"2).

Therefore, by Lemma 3.4, <fN — fNr7T*g> tends to zero as N, N’ — oo. It is
also easy to check that the definition of T f is independent of the choice of the
sequence fy satisfying the conditions in Lemma 3.4.

For f € A, by the definition of T'f and the boundedness of T'on L?(R™"2)
NA4,

(Tfx.9), 9 € By (R™ x R™).

||Tf||Aa < C sup gjaigkas H(pj’k * TfHLoo(Rn1+n2)
J,k>0
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< Climinf sup 2912~%2||p; ;% T fN | poo (mr1+n2)
N=oo j k>0

< Climinf ||Tfn]la,
N—o00

< Climinf || fxla, < Ol fllans
N—oo

which concludes the proof of Theorem 1.2. (I

Remark 3.9. The sufficient condition T3 (1) = T5(1) = 0 of Theorem 1.2 might
not be necessary. Suppose that 7' is bounded on A,. Take fy € C§°(R™2), we
note that |1 ® fa||a, # 0. The boundedness of T yields that |71 ® fa]|a, may
be not equal to zero in general. That is

(91 ® g2, T1® fa) #0

for all g1 € C§H(R™) and gz, fo € C5°(R"2). By our definition, T1(1) # 0.
T5(1) follows similarly.
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