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SYMMETRY AND MONOTONICITY OF SOLUTIONS TO

FRACTIONAL ELLIPTIC AND PARABOLIC EQUATIONS

Fanqi Zeng

Abstract. In this paper, we first apply parabolic inequalities and a

maximum principle to give a new proof for symmetry and monotonic-
ity of solutions to fractional elliptic equations with gradient term by the

method of moving planes. Under the condition of suitable initial value,
by maximum principles for the fractional parabolic equations, we obtain

symmetry and monotonicity of positive solutions for each finite time to

nonlinear fractional parabolic equations in a bounded domain and the
whole space. More generally, if bounded domain is a ball, then we show

that the solution is radially symmetric and monotone decreasing about

the origin for each finite time.
We firmly believe that parabolic inequalities and a maximum principle

introduced here can be conveniently applied to study a variety of nonlocal

elliptic and parabolic problems with more general operators and more
general nonlinearities.

1. Introduction

Symmetry of positive solutions of the local elliptic equation in unit ball
was first established by Gidas, Ni and Nirenberg [16]. In recent decades, el-
liptic equations involving nonlocal operators, especially fractional operators,
have received extensive attention and a number of results have been achieved
[4,5,7,10,12,15,19,21,29–31] since the work of Caffarelli and Silvestre [3]. For
other results on fractional Laplace equations, we refer readers to [2] for regu-
larity and maximum principles, [14, 28] for existence and symmetry results of
a Schrödinger type problem, [25] for regularity up to the boundary, [26] for
mountain pass solutions, [6, 8] for a review, and references therein.
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For parabolic problems, first symmetry results of similar nature started to
emerge much later. After a prelude [13] devoted to time periodic solutions,
and symmetry of general positive solutions of parabolic equations on bounded
domains was considered in [1, 17] and later in [22, 23]. Li [20] obtained sym-
metry of positive solutions for fully nonlinear second order parabolic equations
with symmetric initial values. In 2006, Poláčik [24] studied symmetry prop-
erties of positive solutions for second order quasilinear parabolic equations in
Rn and proved that such solutions are symmetric at each time t < T (> 0).
So far, the symmetry results of the solutions for parabolic equations involving
nonlocal operators are still very few. Recently, Jarohs and Weth [18] estab-
lished asymptotic symmetry of weak solutions for a class of nonlinear fractional
reaction-diffusion equations in bounded domains. Chen, Wang, Niu and Hu [9]
introduced an asymptotic method of moving planes and obtained asymptotic
symmetry of solutions for fractional parabolic equations.

In this section, we present the symmetry and monotonicity of solutions for
the following fractional parabolic equation

(1)

{
∂u
∂t + (−4)su(x, t) = f(x, t, u(x, t)), (x, t) ∈ Ω× (0, T ),
u(x, t) = φ(x, t), (x, t) ∈ (Rn\Ω)× [0, T ),

where Ω is a bounded domain in Rn which is symmetric and convex in the x1

direction and 0 < T < +∞, n ≥ 2. We call a domain Ω convex in x1 direction
if and only if (x1, x

′), (x′1, x
′) ∈ Ω imply that (γx1 + (1 − γ)x′1, x

′) ∈ Ω for
0 < γ < 1. For each fixed t > 0,

(−4)su(x, t) = Cn,sP.V.

∫
Rn

u(x, t)− u(y, t)

|x− y|n+2s
dy,

where 0 < s < 1 and P.V. stands for the Cauchy principal value.
Define

L2s = {u(·, t) ∈ L1
loc(Rn) |

∫
Rn

|u(x, t)|
1 + |x|n+2s

dx < +∞},

then it is easy to see that for u ∈ C1,1
loc ∩ L2s, (−4)su(x, t) is well defined.

Our main results:

Theorem 1.1. Assume that u(x, t) ∈
(
C1,1
loc (Ω) ∩ C(Rn)

)
× C1([0, T )) is a

solution of (1) which is continuous on Ω̄× [0, T ], f is Lipschitz continuous in
u and satisfies

(2) f(x1, x
′, t, u(x, t)) ≤ f(x̃1, x

′, t, u(x, t)) for x1 ≤ x̃1 ≤ −x1, (x1, x
′) ∈ Ω.

Suppose that the initial-boundary values of u satisfy the following:

(3) u0(x) = u(x, 0), u0(x1, x
′) < u0(x̃1, x

′) for x1 < x̃1 < −x1, (x1, x
′) ∈ Ω.

(4) φ(x̃, t) ≤ u(x, t), (x̃, t) ∈ (Rn\Ω)× [0, T ), (x, t) ∈ Ω× [0, T ).

Then u is monotone increasing in x1 for x1 < 0 and u(x1, x
′, t) ≤ u(−x1, x

′, t)
for (x1, x

′) ∈ Ω, x1 < 0 and 0 ≤ t ≤ T .
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Remark 1.2. The assumptions that u(x, t) ∈ (C1,1
loc (Ω) ∩ C(Rn)) × C1([0, T ))

and u is compact supported ensure that the fractional Laplacian (−4)su(x, t)
is well defined for each fixed t. The solutions of fractional parabolic equations
can be negative.

Theorem 1.3. Under the hypotheses of Theorem 1.1, if u(x, t) ∈
(
C1,1
loc (Ω) ∩

C(Rn)
)
× C1([0, T )) is a solution of (1), in addition, assume that

(5) f(x1, x
′, t, u(x, t)) = f(−x1, x

′, t, u(x, t)) for (x1, x
′) ∈ Ω,

and the initial-boundary values of u are symmetric in {x1 = 0}, then u is
symmetric in x1 and has only one crest. That is

u(x1, x
′, t) = u(−x1, x

′, t)

and
∂u

∂x1
(x1, x

′, t) ≥ 0 for (x1, x
′) ∈ Ω, x1 < 0, 0 < t ≤ T.

Furthermore, if the initial value is not independent of x1, we have

(6)
∂u

∂x1
(x1, x

′, t) > 0 for (x1, x
′) ∈ Ω, x1 < 0, 0 ≤ t ≤ T.

When Ω is a special radial domain in Rn, we obtain the following radially
symmetry of solution for the following parabolic equation

(7)
∂u

∂t
+ (−4)su(x, t) = f(x, t, u(x, t)), (x, t) ∈ B1(0)× (0, T ).

Theorem 1.4. Let u(x, t) ∈
(
C1,1
loc (B1(0))∩C(B1(0))

)
×C1([0, T )) be a positive

solution of (7). Assume that f(x, t, u(x, t)) = f(|x|, t, u(x, t)) is decreasing in
|x| and Lipschitz continuous in u for t ≥ t0 and some time t0 ≥ 0. And the
boundary values of u satisfy

(8) u(x, t) = 0, (x, t) ∈ Bc1(0)× [t0, T ).

Suppose that

(9) u(x, t0) = u(|x|, t0) and u(x, t0) is decreasing in |x|.

Then for every time t ∈ (t0,∞), u is radially symmetric and monotone de-
creasing about the origin, that is

(10) u(x, t) = u(|x|, t), x ∈ B1(0), t ∈ (t0, T ).

Remark 1.5. One can see that if the solution of (7) at any time t0 ≥ 0 is radially
symmetric, then at all times t0 ≤ t < T , the solution is radially symmetric.

Theorem 1.6. Suppose that u(x, t) ∈ (C1,1
loc (Rn)∩L2s)×C1([0, T )) is a positive

solution of

(11)
∂u

∂t
+ (−4)su(x, t) = f(x, t, u(x, t)), (x, t) ∈ Rn × (0, T ).
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Here f is Lipschitz continuous in u and satisfies

(12) f(x1, x
′, t, u(x, t))≤f(x̃1, x

′, t, u(x, t)) for x1 ≤ x̃1, x1 ≤ 0, (x1, x
′)∈Rn.

Assume that for all t ∈ [0, T )

(13) lim
|x|→∞

u(x, t) = 0.

Let u0(x) = u(x, 0) satisfies

(14) u(x, 0) = u(|x|, 0) and u(x, 0) is decreasing in |x|.
Then u is monotone increasing in x1 for x1 < 0 and

u(x1, x
′, t) ≤ u(−x1, x

′, t) for x1 < 0, 0 ≤ t ≤ T.
Furthermore, if f(x, t, u) = f(|x|, t, u), then u is radially symmetric and

monotone decreasing about the origin for each time t ∈ [0, T ].

In Section 2, we establish the maximum principle for the anti-symmetric
functions to fractional parabolic equations. Then we give an application of the
maximum principle for the anti-symmetric functions to the following fractional
elliptic equation with a gradient term

(15)

 (−4)su(x) = g(x, u(x),∇u(x)), x ∈ Ω,
u(x) > 0, x ∈ Ω,
u(x) = 0, x ∈ Ωc,

where Ω is a bounded domain in Rn which is convex in x1 direction.
In the following, we denote ∇u = ( ∂u∂x1

, ∂u∂x2
, . . . , ∂u∂xn ) by p = (p1, p2, . . . , pn)

and prove:

Theorem 1.7. Suppose that u(x) ∈ C1,1
loc (Ω)∩C(Ω̄) is a solution of fractional

elliptic equation (15) with g(x, u,p) is Lipschitz continuous in (u,p) and

(16)
for x1 < x′1, x

′
1 + x1 < 0 and p1 ≥ 0,

g(x1, x
′, u, p1, p2, . . . , pn) ≤ g(x′1, x

′, u,−p1, p2, . . . , pn).

Then u(x1, x
′) is strictly increasing in the left half of Ω in x1-direction and

(17) u(x1, x
′) ≤ u(x′1, x

′), ∀ x1 < x′1, x1 + x′1 < 0, (x1, x
′) ∈ Ω.

Furthermore if g(x1, x
′, u, p1, p2, . . . , pn) = g(−x1, x

′, u,−p1, p2, . . . , pn), then
u is a symmetric function of x1 = 0, that is

u(x1, x
′) = u(−x1, x

′).

Remark 1.8. Theorem 1.7 has been obtained in [11] different from our methods.

In Section 3, we give the proof of Theorem 1.7 by a maximum principle
for anti-symmetric functions and the method of moving planes. Section 4 is
devoted to the proofs of symmetry and monotonicity of solutions for fractional
parabolic equation in bounded domain and the whole space.

Throughout the paper, C will be the positive constant which can be different
from line to line and only the relevant dependence is specified.
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2. Maximum principles

In the section, we introduce a maximum principle for fractional parabolic
equation.

For simplicity, we list some notations used frequently: for λ ∈ R, t ∈ [0,∞),
denote x = (x1, x

′), xλ = (2λ − x1, x
′), Tλ = {x ∈ Rn |x1 = λ}, Σλ = {x ∈

Rn |x1 < λ} and Σ̃λ = {x ∈ Rn |x1 > λ}. Set

uλ(x, t) = u(xλ, t), wλ(x, t) = uλ(x, t)− u(x, t).

We call a function wλ(x, t) is λ axial antisymmetric function, that is, for t ≥ 0,
wλ(x, t) is λ antisymmetric function in Rn if and only if

(18) wλ(x1, x2, . . . , xn, t) = −wλ(2λ− x1, x2, . . . , xn, t).

Now we introduce a maximum principle of the anti-symmetric functions for
fractional parabolic equation.

Theorem 2.1 (Maximum principle for anti-symmetric functions). Let Ω be a

domain in Σλ. Assume that wλ(x, t) ∈ (C1,1
loc (Ω) ∩ L2s) × C1([0,∞)) is lower

semi-continuous in x on Ω̄ and satisfies

(19)


∂wλ
∂t (x, t)+(−4)swλ(x, t)≥c(x, t)wλ(x, t), (x, t)∈Ω×(0,∞),
wλ(xλ, t) = −wλ(x, t), (x, t)∈Σλ×(0,∞),
wλ(x, t) ≥ 0, (x, t)∈(Σλ\Ω)×[0,∞),
wλ(x, 0) ≥ 0, x∈Ω,

where c(x, t) is bounded from above.
(i) If Ω is a bounded domain, then we have

(20) wλ(x, t) ≥ 0 in Ω× [0, T ];

(ii) If Ω is unbounded, then the conclusion (20) still holds under the addi-
tional condition: for all t ∈ (0, T ]

(21) lim
|x|→∞

wλ(x, t) ≥ 0;

(iii) Furthermore, under the conclusion (20), if wλ(x, t) attains 0 at some
point (x0, t0) ∈ Ω× (0, T ], then

(22) wλ(x, t0) = 0, a.e. x ∈ Rn.

Remark 2.2. As we can see from the proof, if c(x, t) = 0 or Ω ⊂ Σλ is a bounded
narrow region, the conclusions of Theorem 2.1 still hold. For more maximum
principles of nonlocal parabolic equations, see [27].

Proof. (i) Let m be a determined positive constant to be chosen later and

w̃λ(x, t) = e−mtwλ(x, t).
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Then from (19) we have

(23)

∂w̃λ
∂t

(x, t) + (−4)sw̃λ(x, t)

= −me−mtwλ(x, t) + e−mt
∂wλ
∂t

(x, t) + e−mt(−4)swλ(x, t)

≥ (−m+ c(x, t))w̃λ(x, t).

We will establish (20) by proving

(24) w̃λ(x, t) ≥ 0, (x, t) ∈ Ω× [0, T ].

If (24) does not hold, then the lower semi-continuity of wλ(x, t) in x on Ω̄
indicates that there exists a (x0, t0) ∈ Ω̄× (0, T ] such that

w̃λ(x0, t0) := min
Ω̄×(0,T ]

w̃λ(x, t) < 0.

Since w̃λ and wλ have the same sign, one can further deduce from the third and
fourth inequality of (19) that (x0, t0) is in the interior of Ω× (0, T ]. Therefore
∂w̃λ
∂t (x0, t0) ≤ 0.

From the definition of fractional Laplacian, we have

∂wλ
∂t

(x0, t0) + (−4)swλ(x0, t0)(25)

≤ Cn,sP.V.

∫
Rn

wλ(x0, t0)−wλ(y, t0)

|x0 − y|n+2s
dy

= Cn,sP.V.

{∫
Σλ

wλ(x0, t0)−wλ(y, t0)

|x0−y|n+2s
dy+

∫
Σ̃λ

wλ(x0, t0)−wλ(y, t0)

|x0−y|n+2s
dy

}
= Cn,sP.V.

{∫
Σλ

wλ(x0, t0)−wλ(y, t0)

|x0−y|n+2s
dy+

∫
Σλ

wλ(x0, t0)−wλ(yλ, t0)

|x0−yλ|n+2s
dy

}
= Cn,sP.V.

{∫
Σλ

wλ(x0, t0)−wλ(y, t0)

|x0−y|n+2s
dy+

∫
Σλ

wλ(x0, t0)+wλ(y, t0)

|x0−yλ|n+2s
dy

}
≤ Cn,s

∫
Σλ

{
wλ(x0, t0)−wλ(y, t0)

|x0−yλ|n+2s
+
wλ(x0, t0)+wλ(y, t0)

|x0−yλ|n+2s

}
dy

= Cn,s

∫
Σλ

2wλ(x0, t0)

|x0−yλ|n+2s
dy < 0.

From (23), we derive

(26)
∂w̃λ
∂t

(x0, t0) + (−4)sw̃λ(x0, t0) ≥ (−m+ c(x0, t0))w̃λ(x0, t0).

Since c(x, t) is bounded from above, we choose m such that −m + c(x, t) < 0
to derive that the right hand side of (26) is strictly greater than 0. This
contradicts (25). So we obtain (24).

Therefore, (20) must be true.
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(ii) If Ω is unbounded, then (21) guarantees that the negative minimum
of wλ(x, t) must be attained at some point. Then one can follow the same
discussion as the case of (i) to arrive at a contradiction.

(iii) Next we prove (22) based on (20). Suppose that there exists (x0, t0) ∈
Ω× (0, T ] such that

wλ(x0, t0) = 0.

It is obvious that (x0, t0) is the minimum point of wλ(x, t). Hence,

∂wλ
∂t

(x0, t0) ≤ 0.

So we have

(27)

∂wλ
∂t

(x0, t0) + (−4)swλ(x0, t0)− c(x0, t0)wλ(x0, t0)

=
∂wλ
∂t

(x0, t0) + Cn,sP.V.

∫
Rn

−wλ(y, t0)

|x0 − y|n+2s
dy.

If wλ(x, t0) 6≡ 0 for any x ∈ Σλ, t0 ∈ (0, T ], then (27) implies

∂wλ
∂t

(x0, t0) + (−4)swλ(x0, t0)− c(x0, t0)wλ(x0, t0) < 0.

This contradicts (19). Hence wλ(x, t0) ≡ 0 in Σλ, t0 ∈ (0, T ].
Recalling wλ(xλ, t) = −wλ(x, t), we arrive at

wλ(x, t0) = 0, a.e. x ∈ Rn.

This completes the proof Theorem 2.1. �

3. Symmetric and monotonicity of solutions for
fractional elliptic equations

We first establish a parabolic inequality, then derive symmetric and mono-
tonicity of solutions for fractional elliptic equation by the method of moving
planes and the maximum principle for antisymmetric functions to parabolic
equations.

Proof of Theorem 1.7. Since Ω is a bounded domain with smooth boundary
and convex in the x1 direction, without loss of generality, we may assume

Ω ⊂ {|x1| ≤ a}, a > 0, ∂Ω ∩ {x1 = −a} 6= ∅

and

Ωλ = {(x1, x
′) ∈ Ω | −a < x1 < λ}, Σλ = {(x1, x

′) ∈ Rn | x1 < λ}.

Denote v(x) = u(xλ) = u(2λ− x1, x
′) and wλ(x) = v(x)− u(x).
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From (16), if p1 < 0, then by Lipschitz continuity of g with respect to p,
there exists a positive constant C such that for x1 < x′1, x1 + x′1 < 0, we have

g(x′1, x
′, u,−p1, p2, . . . , pn)− g(x1, x

′, u, p1, p2, . . . , pn)

= g(x′1, x
′, u,−p1, p2, . . . , pn)− g(x′1, x

′, u, 0, p2, . . . , pn)

+ g(x′1, x
′, u, 0, p2, . . . , pn)− g(x1, x

′, u, 0, p2, . . . , pn)

+ g(x1, x
′, u, 0, p2, . . . , pn)− g(x1, x

′, u, p1, p2, . . . , pn)

≥ g(x1, x
′, u, 0, p2, . . . , pn)− g(x′1, x

′, u, 0, p2, . . . , pn) + Cp1

≥ Cp1.

It follows that there is an L∞ function β ≥ 0, such that for x1 < x′1, x1+x′1 < 0
and all p1,

(28) g(x′1, x
′, u,−p1, p2, . . . , pn)− g(x1, x

′, u, p1, p2, . . . , pn) ≥ βp1,

here β depends on x1, x
′
1, p.

Then v satisfies

(−4)sv = g(xλ, v,−v1,∇x′v)

≥ g(x, v, v1,∇x′v) + βv1, x ∈ Ωλ,

with β ∈ L∞, by (28). Hence wλ(x) satisfies

(−4)swλ(x) = g(xλ, v,−v1,∇x′v)− g(x, u,∇u)

≥ g(x, v,∇v)− g(x, u,∇u) + βv1.

Since g(x, u,p) is Lipschitz continuous in (u,p), it follows that for suitable
bounded functions bj(x), c(x),

(−4)swλ(x) +

n∑
j=1

bj(x)(wλ)j(x) + c(x)wλ(x)− βv1(x) ≥ 0,

where c(x) = g(x,u,∇u)−g(x,v,∇u)
v(x)−u(x) , (wλ)j = ∂wλ

∂xj
. But

∂wλ
∂λ

(x) = 2u1(xλ1 , x
′) = −2v1(x).

Hence we derive the following parabolic inequality for wλ(x) as a function of x
and λ,

(29)
β

2

∂wλ
∂λ

+ (−4)swλ(x) + bj(x)(wλ)j(x) + c(x)wλ(x) ≥ 0.

It holds in a region V in (x, λ) space

V = {(x1, x
′, λ) | −a < x1 < λ < λ̃, (x1, x

′) ∈ Ωλ}, λ̃ ≤ a.

Next, we will use the moving plane method to divide the following two steps
to prove (17).

Step 1. Start moving the plane Tλ from −a to the right in x1-direction.
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We will show that there exists δ > 0 small enough such that

(30) wλ(x) ≥ 0, ∀ x ∈ Ωλ, λ ∈ [−a,−a+ δ].

If (30) does not hold, we set

A = inf
x∈Ω̄λ

−a≤λ≤−a+δ

wλ(x) < 0.

Obviously, wλ(x) ≡ 0, x1 = λ. From u(x) > 0, x ∈ Ω and u(x) ≡ 0, x ∈ Ωc, A
can be attained for some

(λ̄, x̄) ∈ {(λ, x) | (λ, x) ∈ [−a,−a+ δ]× Ω̄λ}.
Noticing that wλ̄(x) ≥ 0, x ∈ ∂Ω ∩ Σλ̄, we have x̄ ∈ Ωλ̄. From the fact that
Σ−a ∩ Ω = ∂Σ−a ∩ Ω for λ = −a, one gets w−a(x) ≥ 0, x ∈ Σ−a ∩ Ω. This
implies λ̄ > −a. Since (λ̄, t̄) is a minimizing point, we have

(31) ∇xwλ̄(x̄) = 0

and

(32)
∂wλ(x̄)

∂λ
|λ=λ̄≤ 0.

By a direct computation, this implies that (∂x1u)(x̄λ̄) ≤ 0. We derive

(∇xuλ̄)(x̄) = (∇xu)(x̄).

So (wλ̄)j(x̄) = 0.
We have w−a(x̄) ≥ 0 and wλ(x) ≥ 0, x ∈ Σλ\Ωλ, λ ∈ [−a,−a+δ]. By (29),

for δ small enough, Ωλ is a narrow region, applying Theorem 2.1, we derive

wλ(x) ≥ 0, ∀ x ∈ Ωλ, λ ∈ [−a,−a+ δ].

Hence (30) is proved.
Step 2. Keep moving the planes to the right till the limiting position Tλ0 as

long as (30) holds. Define

λ0 = {−a ≤ λ ≤ 0 | wµ(x) ≥ 0, ∀ x ∈ Ωµ, ∀ µ ≤ λ}.
By the definition of λ0 and the continuity of u(x), we have

wλ0
(x) ≥ 0 for all x ∈ Ωλ0

.

We claim that λ0 = 0 via contradiction arguments.
Suppose on the contrary that λ0 < 0, we first show that

(33) wλ0(x) > 0, x ∈ Ωλ0 .

If not, there exists x0 ∈ Ωλ0
such that wλ0

(x0) = 0. So (λ0, x0) is a minimizing

point. Since we have (∂xiu)(xλ0
0 ) = (∂xiuλ0

)(x0) = (∂xiu)(x0) for i = 2, . . . , n

and (∂x1u)(xλ0
0 ) = −(∂x1uλ0)(x0) = −(∂x1u)(x0) ≤ 0 by (32) and (31). We

use property (16) of g(x, u,p) and obtain

(−4)swλ0
(x0) = g(xλ0

0 , uλ0
(x0),∇uλ0

(x0))− g(x0, u(x0),∇u(x0)) ≥ 0,
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which contradicts

(−4)swλ0
(x0) = Cn,sP.V.

∫
Rn

−wλ0
(y)

|x0 − y|n+2s
dy < 0

by wλ0
6≡ 0.

Suppose that λ0 < 0, we claim that there exists ε0 > 0 small enough such
that

(34) wλ(x) ≥ 0, x ∈ Ωλ, ∀ λ ∈ (λ0, λ0 + ε0).

Suppose (34) is not true, one gets

Ak = inf
x∈Ω̄λ

λ0≤λ≤λk

wλ(x) < 0, for a sequence of λk ↘ λ0, as k → +∞.

The minimum Ak can be obtained for some µk ∈ (λ0, λk], xk ∈ Ωµk where
wµk(xk) = Ak by the same reason as in Step 1. By the property of λk, we have
µk → λ0 as k → +∞. Let w̃(x) = e−mµkwµk(x), m > 0. It follows from (31)
that

(35) (w̃)j(xk) = 0.

Case 1) If β > 0. From (29), we obtain

(36)
β

2

∂w̃

∂µk
(xk) + (−4)sw̃(xk) ≥ (−β

2
m− c(xk))w̃(xk) > 0,

by choosing m such that −β2m− c(xk) < 0 since c(x) and β are bounded. On
the other hand, by (32), β ≥ 0, w̃(xk) < 0 and (25) in Theorem 2.1, we have

β

2

∂w̃

∂µk
(xk) + (−4)sw̃(xk) < 0.

This contradicts (36), thus we have (34).
Case 2) If β = 0. From (29) and (35), we have

(−4)sw̃(xk) + c(xk)w̃(xk) ≥ 0.

It follows from (33) that for any δ > 0

wλ0
(x) > c0 > 0, ∀ x ∈ Ωλ0−δ.

By the continuity of wλ with respect to λ, for λ0 < µk ≤ λk, such that

(37) wµk(x) ≥ 0, ∀ x ∈ Ωλ0−δ, ∀ µk ∈ (λ0, λ0 + ε0).

For narrow region Ωµk\Ωλ0−δ, we apply the following Narrow region principle.

Theorem 3.1 (Narrow region principle, [5]). Let Ω be a bounded narrow region
such that it is contained in

{x | λ− δ < x1 < λ} ⊂ Σλ



SYMMETRY AND MONOTONICITY OF SOLUTIONS 1011

with small δ. Suppose that wλ ∈ C1,1
loc ∩ L2s and is lower semi-continuous on

Ω̄. If c(x) is bounded from below in Ω and (−4)swλ(x) + c(x)wλ(x) ≥ 0, x ∈ Ω,
wλ(xλ) = −wλ(x), x ∈ Σλ,
wλ(x) ≥ 0, x ∈ Σλ\Ω,

then for sufficiently small δ, we have

wλ(x) ≥ 0, x ∈ Ω.

Then we have

wµk(x) ≥ 0, ∀ x ∈ Ωµk\Ωλ0−δ.

This together with (37) implies

wµk(x) ≥ 0, ∀ x ∈ Ωµk , ∀ µk ∈ (λ0, λ0 + ε0).

This is a contradiction with the definition of λ0. Therefore λ0 = 0 must be
valid.

Hence

(38) u(x1, x
′) ≤ u(−x1, x

′), ∀ (x1, x
′) ∈ Ω, x1 < 0.

Furthermore, similar to the proof of (33), we can actually deduce that

wλ(x) > 0, x ∈ Ωλ, ∀ λ < 0.

For any (x1, x
′), (x̂1, x

′) ∈ Ω with 0 > x1 > x̂1, one can take λ = x1+x̂1

2 . Then
we have

u(x1, x
′) > u(x̂1, x

′)

and hence u(x1, x
′) is strictly increasing in the left half of Ω in x1-direction.

Moreover, if g(x1, x
′, u, p1, p2, . . . , pn) = g(−x1, x

′, u,−p1, p2, . . . , pn), then
we have û(x1, x

′) = u(−x1, x
′) also solves (15). Thus we have derived that

û(x1, x
′) ≤ û(−x1, x

′), ∀ (x1, x
′) ∈ Ω, x1 < 0,

or equivalently,

u(x1, x
′) ≥ u(−x1, x

′), ∀ (x1, x
′) ∈ Ω, x1 < 0.

Combining this with (38) yields that

u(x1, x
′) = u(−x1, x

′), ∀ (x1, x
′) ∈ Ω, x1 < 0,

that is, u is symmetric in the x1 direction about x1 = 0. This completes the
proof of Theorem 1.7. �

4. Symmetry and monotonicity of solutions for
fractional parabolic equations

In this section, we apply maximum principle for fractional parabolic equa-
tions to obtain symmetry and monotonicity of fractional parabolic equations
in bounded domains and the whole space.
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4.1. Bounded domain

Proof of Theorem 1.1. From (3), one knows that the initial values of u are not
a constant and strictly increasing in x1 when x1 < 0, then increasing the time
t, we only need to show that u is monotonicity increasing in x1 for each time
when x1 < 0. Denote

−a := min{x1 | x ∈ Ω}, a > 0, Ωλ = {x ∈ Ω | −a < x1 < 0}
and

wλ(x, t) = u(xλ, t)− u(x, t).

We will prove

(39) wλ(x, t) ≥ 0, x ∈ Ωλ, t ∈ (0, T ), λ ∈ (−a, 0).

Since u(xλ, t) is also a solution of (1), we have

(40)

∂wλ
∂t

(x, t) + (−4)swλ(x, t) = f(xλ, t, u(xλ, t))− f(x, t, u(x, t))

≥ f(x, t, u(xλ, t))− f(x, t, u(x, t))

:= c(x, t)wλ(x, t), x ∈ Ωλ, t ∈ (0, T ),

where c(x, t) = f(x,t,u(xλ,t))−f(x,t,u(x,t))
u(xλ,t)−u(x,t)

is bounded by Lipschitz continuity of

f with respect to u.
Since the initial condition (3), we have

wλ(x, 0) ≥ 0, x ∈ Ωλ, λ ∈ (−a, 0).

Fixed λ, increasing t, we want to prove that (39) holds. From (4), we have

wλ(x, t) ≥ 0, (x, t) ∈ (Σλ\Ωλ)× [0, T ).

Applying Theorem 2.1, we obtain (39). So we arrive at

wλ(x, t) ≥ 0, x ∈ Ωλ, t ∈ [0, T ], λ ∈ (−a, 0),

which is equivalent to the conclusions of Theorem 1.1. �

Proof of Theorem 1.3. From Theorem 1.1, we have shown that

(41) u(x1, x
′, t) ≤ u(−x1, x

′, t) for (x1, x
′) ∈ Ω, x1 < 0 and 0 ≤ t ≤ T.

Since (5), ū(x1, x
′, t) = u(−x1, x

′, t) is also a solution of (1). Since the initial-
boundary values of u are symmetric in {x1 = 0}, then go through the same
process for the function ū(x1, x

′, t), we have

ū(x1, x
′, t) ≤ ū(−x1, x

′, t), x1 < 0, t ∈ [0, T ].

That is

(42) u(x1, x
′, t) ≥ u(−x1, x

′, t), x1 < 0, t ∈ [0, T ].

Combining (41) and (42), we obtain

u(x1, x
′, t) = u(−x1, x

′, t) for x1 ≤ 0, 0 ≤ t ≤ T.
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Hence we obtain

(43)
∂wλ
∂x1

(x, t) ≤ 0, x ∈ Ωλ, t ∈ (0, T ], λ ∈ (−a, 0].

By the definition of wλ(x, t), we have

∂u

∂x1
(x, t) ≥ 0, x ∈ Ω, x1 < 0, t ∈ (0, T ].

Hence

u(x1, x
′, t) = u(−x1, x

′, t) and
∂u

∂x1
(x, t) ≥ 0 for x ∈ Ω, x1 < 0, 0 < t ≤ T.

Next we prove
∂u

∂x1
(x, t) > 0, x1 < 0, 0 < t ≤ T.

We have shown that

wλ(x, t) ≥ 0, x ∈ Ωλ, t ∈ (0, T ], λ ≤ 0

and

(44) w0(x, t) = 0, x ∈ Ω0, t ∈ (0, T ].

For fixed λ < 0, we claim that

(45) wλ(x, t) > 0, x ∈ Ωλ, t ∈ (0, T ], λ ∈ [−a, 0).

Set

w̃λ(x, t) = e−mtwλ(x, t), m > 0.

Since w̃λ and wλ have the same sign, we claim that (45) by proving

(46) w̃λ(x, t) > 0, x ∈ Ωλ, t ∈ (0, T ], λ ∈ [−a, 0).

If not, there exists x̄ ∈ Ωλ and the first t̄ ∈ (0, T ] such that

w̃λ(x̄, t̄) = min
Ω̄λ×(0,T ]

w̃λ(x, t) = 0.

And one can further deduce from conditions (3) and (4) that (x̄, t̄) is in the
interior of Ωλ × (0, T ]. On the one hand, by (40), taking m = 2|c(x, t)|, we
obtain

(47)
∂w̃λ
∂t

(x̄, t̄) + (−4)sw̃λ(x̄, t̄) ≥ (−m+ c(x̄, t̄))w̃λ(x̄, t̄) ≥ 0.

On the another hand, by ∂w̃λ
∂t (x̄, t̄) ≤ 0, similar to (25) in the proof of Theorem

2.1, we have
∂w̃λ
∂t

(x̄, t̄) + (−4)sw̃λ(x̄, t̄) < 0,

which contradicts (47). So (45) is true. Combining (44) and (45), we obtain

∂wλ
∂x1

(x, t) < 0, x1 < 0, 0 ≤ t ≤ T.
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By the definition of wλ, we arrive at

∂u

∂x1
(x, t) > 0, x1 < 0, 0 ≤ t ≤ T.

Hence (6) is proven.
This completes the proof of Theorem 1.3. �

Proof of Theorem 1.4. We choose a direction to be the x1-direction. Since
f(x, t, u(x, t)) = f(|x|, t, u(x, t)) is decreasing in |x| and f is Lipschitz continu-
ous in u for t ≥ t0, then employ (8) and (9), similar to the proof of Theorem
1.1 and Theorem 1.3 with initial value is t0 ≥ 0, we obtain

u(x1, x
′, t) = u(−x1, x

′, t), x1 < 0, t0 < t ≤ T.
That is

w0(x, t) ≡ 0, x ∈ B1(0), x1 ≤ 0, t0 < t ≤ T.
Since the direction of x1 can be chosen arbitrarily, we have actually shown that
(10). The monotonicity is similar to the proof of (45). This completes the
proof of Theorem 1.4. �

4.2. The whole space

In the section, we give the proof of Theorem 1.6.

Proof of Theorem 1.6. We choose a direction to be the x1-direction. Let

wλ(x, t) = u(xλ, t)− u(x, t)

and

Hλ = {x ∈ Rn | x1 < λ < 0}.
From (14), one knows that the initial values of u is not a constant and is strictly
increasing in x1 when x1 < 0. So we have

(48) wλ(x, 0) ≥ 0, x ∈ Hλ, λ ≤ 0.

For the fixed λ, the assumption (13) implies that for all t ∈ [0, T )

u(x, t)→ 0 as |x| → +∞.
Since |xλ| → +∞, as |x| → +∞, it follows that

uλ(x, t) = u(xλ, t)→ 0, t ∈ [0, T ).

Thus we have

(49) wλ(x, t)→ 0 as |x| → +∞, t ∈ [0, T ).

Since u(xλ, t) is also a solution of (11), by (12) we have

(50)

∂wλ
∂t

(x, t) + (−4)swλ(x, t) = f(xλ, t, u(xλ, t))− f(x, t, u(x, t))

≥ f(x, t, u(xλ, t))− f(x, t, u(x, t))

:= c(x, t)wλ(x, t), x ∈ Hλ, t ∈ (0, T ),
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where c(x, t) = f(x,t,u(xλ,t))−f(x,t,u(x,t))
u(xλ,t)−u(x,t)

is bounded by Lipschitz continuous of

f with respect to u.
Denote

w̃λ(x, t) = e−mtwλ(x, t), m > 0, (x, t) ∈ Rn × (0, T ).

We will prove that

(51) wλ(x, t) ≥ 0, x ∈ Hλ, t ∈ (0, T ).

We only need prove that

(52) w̃λ(x, t) ≥ 0, x ∈ Hλ, t ∈ (0, T ).

Otherwise, there exists (x0, t0) ∈ Hλ×(0, T ] by (48), (49) and wλ(x, t) ≡ 0, x ∈
Tλ such that

w̃λ(x0, t0) = min
Hλ×(0,T ]

w̃λ(x, t) < 0.

From (50), we have

∂w̃λ
∂t

(x0, t0) + (−4)sw̃λ(x0, t0) ≥ (−m+ c(x0, t0))w̃λ(x0, t0).

Since c(x, t) is bounded, we choose m such that c(x0, t0)−m < 0. So

(53)
∂w̃λ
∂t

(x0, t0) + (−4)sw̃λ(x0, t0) > 0.

On the other hand, similar to (25) in the proof of Theorem 2.1

∂w̃λ
∂t

(x0, t0) + (−4)sw̃λ(x0, t0) < 0,

which contradicts (53). So we obtain (52). Therefore (51) is correct, that is,

(54) u(x1, x
′, t) ≤ u(−x1, x

′, t) for x1 < 0, 0 ≤ t ≤ T.

Furthermore, since f(x, t, u) = f(|x|, t, u), ū(x1, x
′, t) = u(−x1, x

′, t) is also
a solution of (11). Base on the initial values of u are symmetric in {x1 = 0},
then go through the same process for the function ū(x1, x

′, t), we have

ū(x1, x
′, t) ≤ ū(−x1, x

′, t), x1 < 0, t ∈ [0, T ].

That is

(55) u(x1, x
′, t) ≥ u(−x1, x

′, t), x1 < 0, t ∈ [0, T ].

Combining (54) and (55), we obtain

u(x1, x
′, t) = u(−x1, x

′, t) for x1 ≤ 0, 0 ≤ t ≤ T.

Since the direction of x1 can be chosen arbitrarily, we obtain u(x, t) is radially
symmetric about the origin for each t ∈ [0, T ]. The monotonicity is similar to
the proof of (45). This completes the proof of Theorem 1.6. �
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[17] P. Hess and P. Poláčik, Symmetry and convergence properties for non-negative solutions

of nonautonomous reaction-diffusion problems, Proc. Roy. Soc. Edinburgh Sect. A 124
(1994), no. 3, 573–587. https://doi.org/10.1017/S030821050002878X

https://doi.org/10.1007/BF02218852
https://doi.org/10.1007/BF02218852
https://doi.org/10.1016/j.aim.2010.01.025
https://doi.org/10.1016/j.aim.2010.01.025
https://doi.org/10.1080/03605300600987306
https://doi.org/10.1080/03605300600987306
https://doi.org/10.1016/j.aim.2018.07.016
https://doi.org/10.1016/j.aim.2018.07.016
https://doi.org/10.1016/j.aim.2016.11.038
https://doi.org/10.3934/dcds.2019054
https://doi.org/10.3934/dcds.2019054
https://doi.org/10.3934/dcds.2019055
https://doi.org/10.1016/j.aim.2020.107463
https://doi.org/10.1016/j.aim.2020.107463
https://doi.org/10.1016/j.jde.2015.11.029
https://doi.org/10.1016/j.jde.2015.11.029
https://doi.org/10.1142/S0219199717500183
https://doi.org/10.1007/s00526-019-1595-z
https://doi.org/10.1007/s00526-019-1595-z
https://doi.org/10.1016/0377-0427(94)90350-6
https://doi.org/10.1016/0377-0427(94)90350-6
https://doi.org/10.4418/2013.68.1.15
https://projecteuclid.org/euclid.die/1528855437
https://projecteuclid.org/euclid.die/1528855437
http://projecteuclid.org/euclid.cmp/1103905359
http://projecteuclid.org/euclid.cmp/1103905359
https://doi.org/10.1017/S030821050002878X


SYMMETRY AND MONOTONICITY OF SOLUTIONS 1017

[18] S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional

reaction-diffusion equations, Discrete Contin. Dyn. Syst. 34 (2014), no. 6, 2581–2615.

https://doi.org/10.3934/dcds.2014.34.2581

[19] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on

bounded domains, Comm. Partial Differential Equations 16 (1991), no. 2-3, 491–526.
https://doi.org/10.1080/03605309108820766

[20] , Some qualitative properties of fully nonlinear elliptic and parabolic equations,

ProQuest LLC, Ann Arbor, MI, 1989.
[21] G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related

to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations 42 (2011),

no. 3-4, 563–577. https://doi.org/10.1007/s00526-011-0398-7
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