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ZEROS OF NEW BERGMAN KERNELS

Noureddine Ghiloufi and Safa Snoun

Abstract. In this paper we determine explicitly the kernels Kα,β asso-

ciated with new Bergman spaces A2
α,β(D) considered recently by the first

author and M. Zaway. Then we study the distribution of the zeros of these

kernels essentially when α ∈ N where the zeros are given by the zeros of a
real polynomial Qα,β . Some numerical results are given throughout the

paper.

1. Introduction

The notion of Bergman kernels has several applications and represents an
essential tool in complex analysis and geometry. This notion was introduced
first by Bergman [1], then it has been greatly developed by finding the rela-
tionship with other notions as in [6]. Sometimes it is necessary to determine
these kernels explicitly. However, this is not simple in general. In fact if an
orthonormal basis of a Hilbert space is given, then the Bergman kernel of
this space can be obtained as a series using the basis elements. For example,
the Bergman kernel of the space A2

α(D) of holomorphic functions on the unit
disk D of C that are square integrable with respect to the positive measure
dµα(z) = (α+ 1)(1−|z|2)αdA(z) is given by Kα(z, w) = 1

(1−zw)α+2 . Hence this

kernel has no zero in D. For more details about Bergman spaces one can see
[4]. In order to obtain kernels with zeros in D, Krantz consider in his book [5]
some subspaces of A2

α(D). In our statement, instead of considering subspaces,
we modify slightly the measure dµα to obtain a Bergman kernel that is compa-
rable in some sense with the previous one with some zeros in D. These spaces
are considered recently by N. Ghiloufi and M. Zaway in [3]. We recall the main
background of this paper:

Throughout the paper, D will be the unit disk of the complex plane C as it
was mentioned before and D∗ = Dr{0}. We let N := {0, 1, 2, . . . } be the set of
positive integers and R be the set of real numbers. We use the convention that
a real number x is said to be positive (resp. negative) if x ≥ 0 (resp. x ≤ 0).
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For every −1 < α, β < +∞, we consider the positive measure µα,β on D
defined by

dµα,β(z) :=
1

B(α+ 1, β + 1)
|z|2β(1− |z|2)αdA(z),

where B is the beta function defined by

B(s, t) =

∫ 1

0

xs−1(1− x)t−1dx =
Γ(s)Γ(t)

Γ(s+ t)
, ∀ s, t > 0

and

dA(z) =
1

π
dxdy =

1

π
rdrdθ, z = x+ iy = reiθ

the normalized area measure on D.
We denote by A2

α,β(D) the set of holomorphic functions on D∗ that belongs
to the space:

L2(D, dµα,β) = {f : D→ C; measurable function such that ‖f‖α,β,2 < +∞},

where

‖f‖2α,β,2 :=

∫
D
|f(z)|2dµα,β(z).

The set A2
α,β(D) is a Hilbert space and A2

α,β(D) = A2
α,m(D) if β = β0 + m

with m ∈ N and −1 < β0 ≤ 0 (see [3] for more details). We claim here that
A2
α,β0

(D) = A2
α(D) is the classical Bergman space equipped with the new norm

‖ · ‖α,β0,2. Moreover, for any α, β > −1, if we set

(1.1) en(z) =

√
B(α+ 1, β + 1)

B(α+ 1, n+ β + 1)
zn

for every n ≥ −m, then the sequence (en)n≥−m is an orthonormal basis of
A2
α,β(D). Furthermore, if f, g ∈ A2

α,β(D) with

f(z) =

+∞∑
n=−m

anz
n, g(z) =

+∞∑
n=−m

bnz
n,

then

〈f, g〉α,β =

+∞∑
n=−m

anbn
B(α+ 1, n+ β + 1)

B(α+ 1, β + 1)
,

where 〈·, ·〉α,β is the inner product in A2
α,β(D) inherited from L2(D, dµα,β).

The following main result determines the reproducing kernel of A2
α,β(D).

Theorem 1.1. Let −1 < α, β < +∞ and Kα,β be the reproducing Bergman
kernel of A2

α,β(D). Then Kα,β(w, z) = Kα,β(wz), where

Kα,β(ξ) =
Qα,β(ξ)

(ξ)m(1− ξ)2+α
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with

Qα,β(ξ) =


(α+ 1)B(α+ 1, β + 1) if β ∈ N,

β0
B(α+ 1, β + 1)

B(α+ 1, β0 + 1)

+∞∑
n=0

(−ξ)n

n+ β0

(
α+ 1

n

)
if β 6∈ N,

with β0 = β − bβc − 1 = β −m.

As a consequence of this main result, the study can be reduced to the case
β = β0 ∈ ]− 1, 0]. Indeed if we set

M : A2
α,β(D) −→ A2

α,β0
(D)

f 7−→ B(α+ 1, β0 + 1)

B(α+ 1, β + 1)
zmf,

then the linear operator M is invertible and bi-continuous and Kα,β = M−1 ◦
Kα,β0

. Thus we can assume that m = 0, i.e., β = β0.
The proof of the main result is the aim of the following section. Then as

a consequence, we will prove that for α ∈ N and β ∈ ] − 1, 0[, the zeros set of
Kα,β is a totally real submanifold of D∗×D∗ with real dimension one formed by
at most (α + 1) connected components. This set is reduced to one connected
component for β closed to −1 (β → (−1)+) and it is empty for β near 0
(β → 0−). These zeros are related to the zeros set ZQα,β of Qα,β in C. Hence
we will concentrate essentially on the distribution of ZQα,β . This will be the
aim of the third section of the paper where we start by a general study and
we conclude that ZQα,β is formed by exactly (α+ 1) connected regular curves
when β varies in the interval ]− 1, 0[.

We finish the paper with some open problems. Using Python software, some
numerical results are investigated in the annex of the paper where we confirm
numerically some asymptotic results.

2. Proof of the main result

The proof of the first case is simple (it was done in [3]) however, the proof
of the second one is more delicate and it will be done by steps. Using the
sequence (en)n≥−m given by (1.1), we deduce that the reproducing kernel of
A2
α,β(D) can be written as follows:

Kα,β(w, z) =

+∞∑
n=−m

en(w)en(z) =

+∞∑
n=−m

B(α+ 1, β + 1)

B(α+ 1, n+ β + 1)
wnzn

=
B(α+ 1, β + 1)

(wz)m

+∞∑
n=0

1

B(α+ 1, n+ β −m+ 1)
(wz)n

=
Rα,β(wz)

(wz)m
=: Kα,β(wz),
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where

Rα,β(ξ) = B(α+ 1, β + 1)

+∞∑
n=0

ξn

B(α+ 1, n+ β −m+ 1)
.

This series is well-defined as a consequence of Stirling formula. If β = m ∈ N,
then

Rα,m(ξ) = B(α+ 1,m+ 1)

+∞∑
n=0

ξn

B(α+ 1, n+ 1)

=
(α+ 1)B(α+ 1,m+ 1)

(1− ξ)2+α
.

We consider now the case β ∈ ]m − 1,m[ with m ∈ N and we prove the result
in two steps:

• First step: The case α ∈ N.
We start by proving the following preliminary lemma.

Lemma 2.1. We have

Rα,β(ξ) =
Qα,β(ξ)

(1− ξ)2+α
,

where Qα,β is a polynomial of degree α + 1 with Qα,β(1) 6= 0 that satisfies the
recurrence formula:

Qα+1,β(ξ) =
1

α+β+2

[
ξ(1−ξ)Q′α,β(ξ)+(α+ β −m+ 2 + (m− β)ξ)Qα,β(ξ)

]
.

Proof. If α = 0, then we have

R0,β(ξ) = B(1, β + 1)

+∞∑
n=0

ξn

B(1, n+ β −m+ 1)

=
1

β + 1

+∞∑
n=0

(n+ β −m+ 1)ξn =
Q0,β(ξ)

(1− ξ)2

with

Q0,β(ξ) =
1

β + 1
((m− β)ξ + β −m+ 1).

Assume that the result is proved for α ∈ N, i.e.,

Rα,β(ξ) =
Qα,β(ξ)

(1− ξ)2+α
,

where Qα,β is a polynomial of degree α+ 1 with Qα,β(1) 6= 0 and we will prove
that it is true for α+ 1. Indeed, we have

Rα+1,β(ξ) = B(α+ 2, β + 1)

+∞∑
n=0

ξn

B(α+ 2, n+ β −m+ 1)
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= B(α+ 2, β + 1)

+∞∑
n=0

Γ(α+ 3 + n+ β −m)

Γ(α+ 2)Γ(n+ β −m+ 1)
ξn

=
B(α+ 1, β + 1)

α+ β + 2

+∞∑
n=0

(α+ 2 + n+ β −m)

B(α+ 1, n+ β −m+ 1)
ξn

=
1

α+ β + 2

(
ξR′α,β(ξ) + (α+ β −m+ 2)Rα,β(ξ)

)
=

1

α+ β + 2

(
ξ
Q′α,β(ξ)

(1− ξ)2+α
+ ξ

(2 + α)Qα,β(ξ)

(1− ξ)3+α

+(α+ β −m+ 2)
Qα,β(ξ)

(1− ξ)2+α

)
=

Qα+1,β(ξ)

(1− ξ)3+α
,

with

Qα+1,β(ξ) =
ξ(1− ξ)Q′α,β(ξ) + (α+ β −m+ 2 + (m− β)ξ)Qα,β(ξ)

α+ β + 2
.

Thus Qα+1,β is a polynomial of degree α+ 2 and

Qα+1,β(1) =
α+ 2

α+ β + 2
Qα,β(1) 6= 0.

�

Proof of Theorem 1.1. Now, we can deduce the proof of Theorem 1.1 in the
case α ∈ N. This will be done by induction on α. The result is true for α = 0.
Indeed, we have

Q0,β(ξ) =
1

β + 1
(1 + β0 − β0ξ) = β0

B(1, β + 1)

B(1, β0 + 1)

(
1

β0
− ξ

1 + β0

)
.

Assume that the result is true until the value α. Thanks to Lemma 2.1, we
have

Qα+1,β(ξ) =
1

α+ β + 2

(
ξ(1− ξ)Q′α,β(ξ) + (α+ 2 + β0 − β0ξ)Qα,β(ξ)

)
=

β0B(α+ 1, β + 1)

(α+ β + 2)B(α+ 1, β0 + 1)

α+1∑
j=1

j
(−1)j

j + β0

(
α+ 1

j

)
ξj

+

α+2∑
j=1

(j − 1)
(−1)j+1

j − 1 + β0

(
α+ 1

j − 1

)
ξj

+ (α+ 2 + β0)

α+1∑
j=0

(−1)j

j + β0

(
α+ 1

j

)
ξj
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+β0

α+2∑
j=1

(−1)j

j − 1 + β0

(
α+ 1

j − 1

)
ξj


= β0

B(α+ 2, β + 1)

B(α+ 2, β0 + 1)

α+2∑
j=0

(−ξ)j

j + β0

(
α+ 2

j

)
.

This achieves the first step.

• Second step: The general case (α > −1).
We set

Sα,β0
(ξ) :=

B(α+ 1, β0 + 1)

β0B(α+ 1, β + 1)
Qα,β(ξ)

=
(1− ξ)α+2

β0

+∞∑
n=0

B(α+ 1, β0 + 1)

B(α+ 1, n+ β0 + 1)
ξn

=
Qα,β0

(ξ)

β0

and

(2.1) Gα,β0
(ξ) :=

+∞∑
n=0

(−1)n

n+ β0

(
α+ 1

n

)
ξn.

To prove the result it suffices to attest that Sα,β0
= Gα,β0

on D. To show this
equality we will prove that both functions Sα,β0

and Gα,β0
satisfy the following

differential equation:

(2.2) ξF ′(ξ) = −β0F (ξ) + (1− ξ)α+1, ∀ ξ ∈ D.

It follows that Sα,β0 −Gα,β0 satisfies on D∗ the homogenous differential equa-
tion: ξF ′(ξ) = −β0F (ξ). In particular it satisfies the same homogenous dif-
ferential equation on ]0, 1[. Thus there exists a constant σ ∈ R such that for
every t ∈ ]0, 1[ we have Sα,β0

(t)−Gα,β0
(t) = σt−β0 . Since Sα,β0

−Gα,β0
is dif-

ferentiable at 0, we get σ = 0, i.e., Sα,β0
= Gα,β0

on ]0, 1[ and by the analytic
extension principle we conclude that Sα,β0 = Gα,β0 on D.

To finish the proof we will show that both functions Sα,β0 and Gα,β0 satisfy
the differential equation (2.2). For Gα,β0

the result is obvious. Indeed

ξG′α,β0
(ξ) =

+∞∑
n=0

n

n+ β0

(
α+ 1

n

)
(−ξ)n

=

+∞∑
n=0

(
1− β0

n+ β0

)(
α+ 1

n

)
(−ξ)n

= (1− ξ)α+1 − β0Gα,β0
(ξ).
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Now for Sα,β0
, it is not hard to prove that

ξS′α,β0
(ξ) = −(1− ξ)α+1

+∞∑
n=0

(α+ 1)B(α+ 1, β0 + 1)

(α+ 1 + n+ β0)B(α+ 1, n+ β0 + 1)
ξn

= (1− ξ)α+1 − β0Sα,β0
(ξ).

Thus the proof of Theorem 1.1 is finished. �

As a first consequence of Theorem 1.1, we obtain the following identity:

Corollary 2.2. Let −1 < α < +∞ and −1 < β < 0. For every n ∈ N,
n∑
k=0

(
α+ 2

k

)
(−1)k

B(α+ 1, n− k + β + 1)
=

β

B(α+ 1, β + 1)

(
α+ 1

n

)
(−1)n

n+ β
.

Proof. Thanks to Theorem 1.1, we have

Sα,β(ξ) =

+∞∑
n=0

(−1)n

n+ β

(
α+ 1

n

)
ξn

=
B(α+ 1, β + 1)

β
(1− ξ)α+2

+∞∑
n=0

ξn

B(α+ 1, n+ β + 1)

=
B(α+ 1, β + 1)

β

[
+∞∑
n=0

(
α+ 2

n

)
(−ξ)n

][
+∞∑
n=0

ξn

B(α+ 1, n+ β + 1)

]

=
B(α+ 1, β + 1)

β

+∞∑
n=0

dnξ
n,

where

dn =

n∑
k=0

(
α+ 2

k

)
(−1)k

B(α+ 1, n− k + β + 1)
.

So the result follows. �

Using the proof of Theorem 1.1, one can conclude the following corollary:

Corollary 2.3. For every −1 < α and −1 < β < 0, the function Gα,β defined
in (2.1) satisfies:

ξG′α,β(ξ) = (1− ξ)α+1 − βGα,β(ξ)

and

Gα+1,β(ξ) =
1

α+ β + 2

(
ξ(1− ξ)G′α,β(ξ) + (α+ β + 2− βξ)Gα,β(ξ)

)
=

1

α+ β + 2

(
(α+ 2)Gα,β(ξ) + (1− ξ)α+2

)
.

Remarks 2.4. (1) Using the Stirling formula, one can prove that Gα,β is

bounded on the closed unit disk D. This fact will be used frequently
in the hole of the paper.
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(2) Thanks to Lemma 2.1, for α ∈ N, one has Gα,β(1) 6= 0. For the general
case, if Gα0,β(1) 6= 0 for some −1 < α0 ≤ 0, then Gα0+n,β(1) 6= 0 for
every n ∈ N.

In the rest of the paper, we assume that Gα,β(1) 6= 0. This may be true for
any −1 < α and −1 < β < 0.

3. Zeros of Bergman kernels

Using Theorem 1.1, the functionKα,0 has no zero in the unit disk D. However
if −1 < β < 0, then Kα,β may have some zeros in D. We claim that if ξ ∈ D∗ is
a zero of Kα,β , then the sets {(z, w) ∈ D2; wz = ξ} and {(z, w) ∈ D2; zw = ξ}
define two totally real algebraic surfaces (of real dimension equal to 2) of C2

that are contained in the zeros set of the Bergman kernel Kα,β . Thus it suffices
to study the zeros set of Kα,β .

Due to an algebraic problem, we focus sometimes on the case α ∈ N, because
in this case the zeros of Kα,β are given by the zeros of the polynomial Gα,β
contained in D. Thus for α ∈ N, we will study the zeros set of Gα,β in the
hole complex plane C. It is interesting to discuss the variations of these sets
in terms of the parameter β. All results on Gα,β can be viewed as particular
cases of those of the following linear transformation.

3.1. The linear transformation Tβ

If O(D(0, R)) is the space of holomorphic function on the disk D(0, R) and
−1 < β < 0, then we define Tβ on O(D(0, R)) by

Tβf(z) =

+∞∑
n=0

an
n+ β

zn

for any f(z) =
∑+∞
n=0 anz

n. The transformation Tβ is linear and bijective from
O(D(0, R)) onto itself. It transforms any polynomial to a polynomial with the
same degree. We start by the study of zeros of Tβf in general then we specialize
the study to the case f(z) = Pα(z) = (1− z)α+1, where TβPα is exactly Gα,β .

Theorem 3.1. Let 0 < R ≤ +∞ and f be a holomorphic function on D(0, R)
such that (f(0), f ′(0)) 6= (0, 0). Then for every 0 < r0 < R, there exist β1(f, r0)
and β2(f, r0), with

−1 < β1(f, r0) ≤ − |f(0)|
|f(0)|+ r0|f ′(0)|

≤ β2(f, r0) < 0,

depending on f and r0 such that the function Tβf has no zero in D(0, r0) for
every β2(f, r0) < β < 0 and has exactly one simple zero in D(0, r0) for every
−1 < β < β1(f, r0).

When f(0) = 0 and f ′(0) 6= 0 the result is reduced to “0 is the unique zero
(simple) of the function Tβf in D(0, r0) for every −1 < β < 0”. However,



ZEROS OF NEW BERGMAN KERNELS 457

when f ′(0) = 0 and f(0) 6= 0 then “the function Tβf has no zero in D(0, r0)
for every −1 < β < 0.”

Proof of Theorem 3.1. If f(z) =
∑+∞
n=0 anz

n for every z ∈ D(0, R) with (a0, a1)
6= (0, 0), then we set

Fβ,f (z) =
a0
β

+
a1

1 + β
z.

If |z| = r0 we have

|Tβf(z)− Fβ,f (z)| ≤
+∞∑
n=2

|an|
n+ β

rn0 .

Moreover, if we set

ψ(β) =

∣∣∣∣ |a0|β +
|a1|r0
1 + β

∣∣∣∣− +∞∑
n=2

|an|
n+ β

rn0 ,

then

ψ

(
− |a0|
|a0|+ r0|a1|

)
< 0 and lim

β→0−
ψ(β) = +∞ (resp. lim

β→(−1)+
ψ(β) = +∞)

when a0 6= 0 (resp. a1 6= 0). It follows that there exist β1 and β2, with

−1 < β1 ≤ −
|a0|

|a0|+ r0|a1|
≤ β2 < 0,

depending on f and r0 such that for every β ∈ ]−1, β1[∪]β2, 0[ one has ψ(β) > 0.
Hence, for every β ∈ ]−1, β1[∪]β2, 0[ and |z| = r0, we have |Tβf(z)−Fβ,f (z)| <
|Fβ,f (z)|. Thus by Rouché Theorem, Tβf and Fβ,f have the same number of
zeros counted with their multiplicities in the disk D(0, r0). �

In the following lemma we collect some useful properties of Tβf that will be
used frequently in the sequel.

Lemma 3.2. If f is a holomorphic function on D(0, R) and −1 < β < 0, then
the following assertions hold:

(1) The number 0 is a zero of f if and only if it is a zero of Tβf (with the
same multiplicity).

(2) The derivative of Tβf satisfies

z(Tβf)′(z) = f(z)− βTβf(z), ∀ z ∈ D(0, R).

(3) The functions f and Tβf have a common zero in D∗(0, R) if and only
if the function Tβf has a zero in D∗(0, R) with multiplicity greater than
or equal to 2.

Now we consider a fixed holomorphic function f on D(0, R) without common
zero with Tβ for any β ∈]− 1, 0[. We set

Hf (β, z) := Tβf(z) =

+∞∑
n=0

an
n+ β

zn
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for (β, z) ∈ ]− 1, 0[×D(0, R) and

Df := {(β, z) ∈ ]− 1, 0[×D(0, R); Hf (β, z) = 0}.
We assume that the set Df is not empty. Indeed if f ≡ c is a constant function,
then Tβf ≡ c

β , thus Dc = ∅ if c 6= 0 and Dc =]− 1, 0[×C if c = 0. Moreover it

is easy to find some examples of non constant holomorphic functions g where
Tβg has no zero for some value of β. But we don’t know if there exists a non
constant function g such that Dg is empty.

Proposition 3.3. The set Df is a submanifold of (real) dimension one in R3

formed by at most countable connected components (Yf,k)k.
If Y is a connected component of Df , then there exist −1 ≤ aY < bY ≤ 0

and a C∞-function X : ]aY , bY [−→ D(0, R) such that

Y = Graph(X ) := {(β,X (β)); β ∈ ]aY , bY [}.
Moreover for every β ∈]aY , bY [, one has

(3.1) X ′(β) =
X (β)

f(X (β))

+∞∑
n=0

an
(n+ β)2

(X (β))n.

Proof. For every (β, z) ∈ Df we have

∂Hf

∂z
(β, z) = (Tβf)′(z) =

1

z
(f(z)− βTβ(z)) =

1

z
f(z) 6= 0.

The result follows using the implicit functions theorem. �

It is easy to see that if 0 < R < +∞, then aY > −1 for all connected
components Y of Df except the unique component Yf,0 given by Theorem 3.1
where aYf,0 = −1. However, bY = 0 if and only if R = +∞, i.e., f is an entire
function. In this case, of entire functions, all functions Xf,k are defined on
]− 1, 0[.

Remark 3.4. Using the same proof, the previous result can be improved to
the complex case as follows: If we set Ω := {β ∈ C; −1 < <e(β) < 0} and
Df := {(β, z) ∈ Ω × D(0, R); Hf (β, z) = 0}, then Df is a submanifold of
(complex) dimension one in Ω × D(0, R) formed by connected components.
Thus, the Lelong number of the current [Df ] of integration over Df is equal
to one at every point of Df . (This is due to the fact that all zeros of Hf are
simple.) For more details about currents and Lelong numbers, one can refer to
[2].

The following theorem gives the asymptotic behaviors of functions Xf near
−1 and 0 when f is a polynomial. We use the notation∼ to indicate the classical

equivalence, i.e., two functions h1(t) ∼
t→t0

h2(t) if we have limt→t0
h1(t)
h2(t)

= 1

whenever h2(t) 6= 0. We claim that if f(z) = a0 + a1z, then the solution is
explicitly determined by

Xf (β) = −a0
a1

β + 1

β
.
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Hence we will consider the case when deg(f) ≥ 2.

Theorem 3.5. Let f(z) =
∑p
n=0 anz

n be a polynomial of degree p ≥ 2 with
f(0) 6= 0. We set an = |an|eiθn for any 0 ≤ n ≤ p. The set Df is formed
exactly by p connected components (Yf,k)0≤k≤p−1 with the corresponding func-
tions Xf,k : ] − 1, 0[−→ C. Again we keep Xf,0 to indicate the function related
to the unique component given by Theorem 3.1.

(1) For every 0 ≤ k ≤ p− 1, we have limβ→0− |Xf,k(β)| = +∞ and

(3.2) Xf,k(β) ∼
β→0−

(
− p|a0|
β|ap|

) 1
p

ei
θ0−θp+2jkπ

p ,

where jk ∈ Z that depends on k.
(2) If f ′(0) 6= 0, then for every 1 ≤ k ≤ p− 1

lim
β→(−1)+

|Xf,k(β)| = +∞ and lim
β→(−1)+

Xf,0(β) = 0.

Moreover, we have

(3.3) Xf,0(β) ∼
β→(−1)+

a0
a1

(1 + β)

and

(3.4) Xf,k(β) ∼
β→(−1)+

(
(p− 1)|a1|
(1 + β)|ap|

) 1
p−1

e
i(θ1−θp+(2sk+1)π)

p−1 , ∀ 1 ≤ k ≤ p− 1

for some sk ∈ Z that depends on k.

If f(0) 6= 0 and f ′(0) = 0, then all functions Xf,k are bounded near −1.

Proof. Let 0 ≤ k ≤ p− 1. As a0 6= 0 then using the equality

a0
β

+

p∑
n=1

an
n+ β

(Xf,k(β))n = 0

we obtain
lim
β→0−

Xf,k(β) =∞

and
−a0
β
∼

β→0−

ap
p+ β

(Xf,k(β))p.

That means
(Xf,k(β))p ∼

β→0−
− pa0
apβ

so we get Equation (3.2).
With the same way if a1 6= 0, then for every 0 ≤ k ≤ p− 1 we have

lim
β→(−1)+

Xf,k(β) ∈ {0,∞}.

Thanks to Theorem 3.1,

lim
β→(−1)+

Xf,0(β) = 0 and lim
β→(−1)+

Xf,k(β) =∞, ∀ 1 ≤ k ≤ p− 1.
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Thus, we obtain

Xf,0(β) ∼
β→(−1)+

−a0
a1

1 + β

β
.

Therefore, Equation (3.3) follows.
For 1 ≤ k ≤ p− 1 we obtain

a1
1 + β

∼
β→(−1)+

− ap
p+ β

(Xf,k(β))p−1

thus,

(Xf,k(β))p−1 ∼
β→(−1)+

− (p− 1)a1
ap(1 + β)

and Equation (3.4) follows. �

3.2. Application on the Bergman kernels

As mentioned before, for any α ∈ N, TβPα = Gα,β , where Pα(z) = (1 −
z)α+1. Hence all previous results are valid and more precisions are needed to
accomplish the study of Xα,k := XPα,k, 0 ≤ k ≤ α. We start by claiming that
if x < 0, then there exists βx ∈ ]− 1, 0[ such that Gα,βx(x) = 0. It follows that
(βx, x) is in a component (says Yα,0) of Dα := DPα . Hence, the corresponding
function Xα,0 maps ] − 1, 0[ onto ] − ∞, 0[. Indeed we have X ′α,0(β) < 0 for
every β ∈ ]− 1, 0[ thus it is a decreasing function and

lim
β→0−

Xα,0(β) = −∞, lim
β→(−1)+

Xα,0(r) = 0.

Using Corollary 2.3, we can deduce that Xα,0(β) ≥ Xα+1,0(β) for every β ∈
]− 1, 0[ (See Figure 1).

Remark 3.6. For every α ∈ N, we set −1 < sα < 0 the unique solution of
Xα,0(β) = −1. The polynomial Gα,β has no zero in ]−1, 0[ for every sα < β < 0
and has exactly one simple zero in ]− 1, 0[ for every −1 < β < sα.

We claim that (sα)α is an increasing sequence (See again Figure 1).
The following lemma explain differently the conclusion of Theorem 3.1 in

the current statement (See Table 1 for numerical values of β1 and β2 given by
Theorem 3.1 for this example).

Lemma 3.7. For every α > −1, the family of functions (β(1+β)Gα,β)β∈ ]−1,0[
converges uniformly on D to the constant 1 (resp. to the polynomial (α + 1)ξ)
as β → 0− (resp. as β → (−1)+).

In particular, for every m ∈ N (resp. m ∈ N∗) the family of kernels
(Kα,β)β∈ ]m−1,m[ converges uniformly on every compact subset of D∗ to Kα,m
(resp. to Kα,m−1) as β → m− (resp. as β → (m− 1)+).

Proof. The lemma is a simple consequence of the following equality:

β(1 + β)Gα,β(ξ) = (1 + β)− β(1 + α)ξ + β(1 + β)

+∞∑
n=2

(−ξ)n

n+ β

(
α+ 1

n

)
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Figure 1. Graphs of Xα,0 for 0 ≤ α ≤ 9.

and the fact that the series converges normally on D (obtained using the Stirling
formula). �

Table 1. Numerical values of β1(Pα, 1) and β2(Pα, 1) given
by Theorem 3.1.

α β1(Pα, 1) β2(Pα, 1)
2 −0.381966 −0.177124
3 −0.493058 −0.107610
4 −0.667086 −0.0649539
5 −0.793482 −0.0387481
6 −0.870294 −0.0227925
7 −0.917737 −0.0132128
8 −0.947843 −0.00755239
9 −0.967185 −0.0042614

The most important conclusion of this lemma is the continuity of the Bergman
kernels Kα,β in terms of the parameter β. Essentially the fact that the Bergman
kernel Kα,β converges uniformly on every compact subset of D2 to the classical
Bergman kernel Kα,0 when β → 0−.

Now we will focus on the other components of Dα. We use Xα,k, 0 ≤ k ≤ α
to indicate the corresponding functions such that =m(Xα,k(β)) ≤ 0 for every
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0 ≤ k ≤ bα+1
2 c and Xα,α+1−k(β) = Xα,k(β) for every 1 ≤ k ≤ α. Theorem 3.5

can be written as follows:

Proposition 3.8. For every α ∈ N, we have

Xα,k(β) ∼
β→0−

(
−α+ 1

β

) 1
α+1

ei
(2k−α−1)π

α+1 , ∀ 0 ≤ k ≤ α,

Xα,k(β) ∼
β→(−1)+

(
α(α+ 1)

1 + β

) 1
α

e
i(2k−α−1)π

α , ∀ 1 ≤ k ≤ α,

Xα,0(β) ∼
β→(−1)+

−1 + β

α+ 1
.

The following figures (Figures 2 and 3) explain numerically the result of
Proposition 3.8.

Figure 2. Graphs of X3,• (in red) with asymptotic curves (to
CX3,0

in blue and to CX3,2
in green)

3.3. Even and odd Bergman kernels

Following the idea of Krantz developed in [5], we consider the subspaces
E 2
α,β(D) and L 2

α,β(D) of A2
α,β(D) generated respectively by the even (e2n)n≥0

and the odd (e2n+1)n≥0 sequences. Hence E 2
α,β(D) and L 2

α,β(D) are Hilbert

subspaces of A2
α,β(D) formed respectively by even and odd functions. The re-

producing Bergman kernels of these spaces are given by Eα,β(z, w) = Eα,β(zw)
and Lα,β(z, w) = Lα,β(zw), where

Eα,β(ξ) =
1

2
(Kα,β(ξ) +Kα,β(−ξ))

=
1

2(1− ξ2)α+2

(
(1 + ξ)α+2Qα,β(ξ) + (1− ξ)α+2Qα,β(−ξ)

)
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Figure 3. Graphs of X6,• (in red) with asymptotic curve to
CX6,0

(in green)

=:
Iα,β(ξ)

2(1− ξ2)α+2

and

Lα,β(ξ) =
1

2
(Kα,β(ξ)−Kα,β(−ξ))

=
1

2(1− ξ2)α+2

(
(1 + ξ)α+2Qα,β(ξ)− (1− ξ)α+2Qα,β(−ξ)

)
=:

Jα,β(ξ)

2(1− ξ2)α+2
.

Again, to study the zeros of even and odd Bergman kernels, it suffices to
study the zeros of the corresponding functions Iα,β and Jα,β . Let εα,β (resp.
Θα,β) be the number of zeros of the function Iα,β (resp. Jα,β) in the unit disk
D counted with their multiplicities. To determine εα,β and Θα,β in the case
when α ∈ N, we start by the case β = 0. In this case it is easy to check that the

zeros of Iα,0 are given by zk := −i tan
(

(2k+1)π
2(α+2)

)
where 0 ≤ k ≤ α+1 (we omit

the value k for which cos
(

(2k+1)π
2(α+2)

)
= 0 whenever α is odd). Similarly to the

even case, the zeros of Jα,0 are given by wk := −i tan
(
kπ
α+2

)
, 0 ≤ k ≤ α + 1.

It follows that if α = 4τ + r with τ ∈ N and 0 ≤ r ≤ 3, then

εα,0 =

{
2τ if r = 0,
2τ + 2 if 1 ≤ r ≤ 3,

Θα,0 =

{
2τ + 1 if 0 ≤ r ≤ 2,
2τ + 3 if r = 3.

Proposition 3.9. Let α = 4τ + r ∈ N with τ ∈ N and 0 ≤ r ≤ 3.

(1) If r 6= 0, then
(a) There exists −1 < β4 < 0 such that for every β4 < β ≤ 0 we have

εα,β = εα,0.
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(b) There exists −1 < β5 < 0 such that for every −1 < β < β5 we
have Θα,β = εα,0 + 1.

(2) If r 6= 2, then
(a) There exists −1 < β3 < 0 such that for every −1 < β < β3 we

have εα,β = Θα,0 + 1.
(b) There exists −1 < β6 < 0 such that for every β6 < β ≤ 0 we have

Θα,β = Θα,0.

Proof. We claim that ±i are zeros of Iα,0 (resp. Jα,0) when α = 4τ (resp.
α = 4τ + 2). For this reason we omit the corresponding values of α in the
proposition in order to use the Rouché theorem. Hence it suffices to study the
convergence in terms of the parameter β.

Thanks to Lemma 3.7, the family of polynomials ((1 + β)Qα,β(ξ))−1<β<0

converges to 1 on D when β → 0− and to the polynomial (α + 1)ξ when
β → (−1)+. It follows that (1+β)Iα,β(ξ) converges to Iα,0(ξ) on D as β → 0−

and to (α+ 1)ξJα,0(ξ) on D as β → (−1)+.
For the odd case, the family (1+β)Jα,β(ξ) converges to Jα,0(ξ) when β → 0−

and to (α+ 1)ξIα,0(ξ) when β → (−1)+. Using the Rouché theorem the result
follows. �

To improve the previous result, we consider the number of zeros ε̂α,0 (resp.

Θ̂α,0) of the function Iα,0 (resp. Jα,0) in the closed unit disk D given by ε̂α,0 =
2τ + 2 and

Θ̂α,0 =

{
2τ + 1 if 0 ≤ r ≤ 1,
2τ + 3 if 2 ≤ r ≤ 3,

where α = 4τ + r. Using the same idea, one can prove the following corollary:

Corollary 3.10. Let α ∈ N and η0 = tan
(
π
4 + π

α+2

)
.

(1) There exist −1 < β3 < β4 < 0 that depend on α such that for every
1 < η < η0, the polynomial Iα,β(ηξ) has exactly ε̂α,0 zeros in D for

every β ∈ ]β4, 0] and Θ̂α,0 + 1 zeros in D for every β ∈ ]− 1, β3[.
(2) There exist −1 < β5 < β6 < 0 that depend on α such that for every

1 < η < η0, the polynomial Jα,β(ηξ) has exactly Θ̂α,0 zeros in D for
every β ∈ ]β6, 0] and ε̂α,0 + 1 zeros in D for every β ∈ ]− 1, β5[.

If the conditions of the previous proposition are satisfied, then one can take
η = 1 in the corollary to obtain the same result given by the proposition.

4. Open problems

It is interesting to study the asymptotic distribution of zeros of Gα,β when
α ∈ N and goes to infinity. In other words, can we find a positive measure µ
such that the sequence of measures

µα,β :=
1

α+ 1

α+1∑
j=0

δXα,j(β)
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converges weakly to the measure µ as α→ +∞? Geometrically, the distribution
of the set {Xα,j(β), 0 ≤ j ≤ α+ 1} may depend on α in some non trivial way.
For example, the distribution of sets Xα,•(−10−4) for α = 31, 32, 33, 34, 36 are
similar (see Figure 4) however these are different to the one that correspond to
α = 35 (see Figure 5).

Can we find explicitly the equation of the parametric curve that describe the
set Xα,•(β)? (This curve may be a circle in Figure 4 for α = 31, 32, 33, 34, 36.)
See also Figures 5 and 6.

Figure 4. The sets Xα,•(−10−4) for α ∈ {31, 32, 33, 34, 36}

It is simple to prove that for every 1 ≤ k ≤ α, there exists tα,k ∈ ] − 1, 0[
such that

|Xα,k(tα,k)| = min
−1<β<0

|Xα,k(β)|

and satisfies
α+1∑
j,k=0

(
α+ 1

j

)(
α+ 1

k

)
(−1)j+k

(j + tα,k)2
Rj+kα,k cos(θα,k(j − k)) = 0

with Xα,k(tα,k) = Rα,ke
iθα,k .

One of the most important questions is to see if the critical value tα,k of β
that realizes the minimum of |Xα,k(β)| doesn’t depend on k. It means that all
functions attempt their minimums at the same “time”.

For even and odd kernels, can we prove Corollary 3.10 with η = 1? Indeed,
if we show that the zeros of Iα,β(ξ) and Jα,β(ξ) that converges to ±i are in D,
then we conclude the result. We note that this fact is confirmed numerically
for some values of α.
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Figure 5. The sets Xα,•(−10−4) for α = 35 (in violet) at left
and α = 49 (in red) and α = 51 (in blue) at right

Figure 6. The set X101,•(−10−4)

Annex: Numerical results

All figures of this paper were produced using Python software. We give here
the used code.
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**********************************************

from scipy import special

from sympy.abc import x, y, z

def A(beta, alpha):

s=0

for j in range(0, alpha+2):

s=s+ ((1)/(j+beta)*special.binom(alpha+1,j)*(-x)**j)

return s

import numpy

from cmath import *

from sympy.solvers import solve

import csv

DATA_PATH = ’/content/drive/My Drive/graphes data/alpha7_7.csv’

i=1

with open(DATA_PATH, mode=’w’, newline=’’) as points_file:

points_writer = csv.writer(points_file, delimiter=’,’)

for beta in numpy.arange(10**(-6), 1, 10**(-2)):

row = []

for s in solve(A(beta, 6), x):

sol = complex(s)

row.append(-beta)

row.append(sol.real)

row.append(sol.imag)

points_writer.writerow(row)

print(i)

i=i+1

i=1

for beta in numpy.arange(1-10**(-2), 1, 10**(-3)):

row = []

for s in solve(A(beta, 6), x):

sol = complex(s)

row.append(-beta)

row.append(sol.real)

row.append(sol.imag)

points_writer.writerow(row)

print(i)

i=i+1

**********************************************
In Figures 4, 5, 6, we present some zeros sets of Gα,β for β = −10−4 and α ∈
{31, 32, 33, 34, 35, 36, 49, 51, 101}. The values of α and β are chosen arbitrary
just to see that there is no geometric stability of these zeros. It is possible
that the geometric distribution of zeros of Gα,β depends on both α and β in a
complicate manner. It is also possible that if we see numerically the geometric
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distribution of zeros of Gα,β for α large enough, then some new limit curve
appear. However as a material problem, it was not possible for us to exceed
the value α = 101.
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