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ESTIMATION ALGORITHM FOR PHYSICAL PARAMETERS

IN A SHALLOW ARCH

Semion Gutman, Junhong Ha, and Sudeok Shon

Abstract. Design and maintenance of large span roof structures require

an analysis of their static and dynamic behavior depending on the physical
parameters defining the structures. Therefore, it is highly desirable to

estimate the parameters from observations of the system. In this paper
we study the parameter estimation problem for damped shallow arches.

We discuss both symmetric and non-symmetric shapes and loads, and

provide theoretical and numerical studies of the model behavior.
Our study of the behavior of such structures shows that it is greatly

affected by the existence of critical parameters. A small change in such pa-

rameters causes a significant change in the model behavior. The presence
of the critical parameters makes it challenging to obtain good estimation.

We overcome this difficulty by presenting the Parameter Estimation Al-

gorithm that identifies the unknown parameters sequentially. It is shown
numerically that the algorithm achieves a successful parameter estimation

for models defined by arbitrary parameters, including the critical ones.

1. Introduction

Design of large span roof structures requires an analysis of static and dy-
namic behavior of shallow arches under various loads. There are several math-
ematical models for such arches [3, 9, 10]. These models differ in the damping
effects that are accounted for. Even more general mathematical models are
presented in [2] and [5].

In this paper we consider parameter estimation in an arch model with air
damping. Let a shallow arch be positioned over the interval [0, π]. Suppose
that it is subjected to the load p = p(x, t), under which it takes the shape
y = y(x, t) for x ∈ [0, π], t > 0. Let u0 = u0(x) be its initial load–free shape.
Then the deflection y = y(x, t) of the arch, accounting for a weak damping
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effect, is described by the dimensionless nonlinear partial differential equation

(1)
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+
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−
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∫ π
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∂4u0
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Hinged boundary conditions are given by

(2) y(0, t) = y(π, t) =
∂2y

∂x2
(0, t) =

∂2y

∂x2
(π, t) = 0, t ≥ 0,

and the initial conditions are

(3) y(x, 0) = u0(x),
∂y

∂t
(x, 0) = v0(x), x ∈ [0, π].

Model (1)-(3) has attracted a lot of interest because of its engineering im-
portance for real world arch structures, and rich global dynamic behavior of its
solutions exhibiting chaotic motion, and various resonance phenomena. There
are many research papers on the subject. We refer the reader to [3,4,9,10] and
the references therein. Fundamental mathematical studies of the model were
conducted in [1, 2].

In our paper [7] the existence, uniqueness, and the continuity of the solution
map q → y(q) over the set of the parameters q ∈ P have been studied and newly
derived in a unified framework. Furthermore, we have obtained the necessary
conditions for the model’s optimal parameters. In [8] the stability of the arch
equations (1)-(3) has been studied under the assumptions of the symmetric
initial shape and the time-independent symmetric load

(4) u0(x) = h sinx, and p(x, t) = w sinx.

The existence of the universal attractor for (1)-(3) with general initial and
load functions was established in [6].

The so-called “snap-through” behavior of the arch refers to the arch changing
its position from above the x axis to the one below it, or the other way around.
Under certain combinations of the parameters of the model, the arch oscillates
with or without a snap-through, and eventually settles at an equilibrium.

In [8] we introduced and studied critical parameter pairs (h,w), that sepa-
rate the regions corresponding to the arch equilibrium position above or below
the x axis. A small change in the values of the parameters for such a pair
causes a significant change in the trajectory behavior, since the correspond-
ing trajectories converge to distinct equilibria. In particular, at the critical
pairs the equilibrium positions of the arch do not depend continuously on the
parameters (h,w).

In [8] the effect of the initial velocity was not considered. That is, we assumed
v0 = 0. However it is important in applications to study the stability of (1)-(3)
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with a nonzero initial velocity. In this paper we consider the case of v0 6= 0, as
well as of a non-symmetric initial shape u0 and the load p.

The arch behavior is strongly dependent on the damping effect. In this paper
we take this effect into an account, and study the corresponding critical triples
(h,w, γ). It is a complicated task, since an explicit expression for the solution
for such triples does not seem to be possible. However, we were able to obtain
some useful information via numerical simulations.

A common method for parameter estimation is the best fit to data approach,
see [11]. Let V (q), q = (h,w, γ) be the cost function defined by

(5) V (q) = ‖y(q)− z‖2[0,T ].

Here y(q) is the solution of the model (1)-(3) corresponding to the triple of
the parameters q, and z is the observation data. The norm is taken in an
appropriate observation space.

To guarantee the existence of an optimal element q∗ satisfying

V (q∗) = minV (q), q ∈ P,

we assume that the admissible set P ⊂ R3 is compact.
The continuity of the solution map y(q) : P → L2[0, T ] was established by

us in [7]. However, it does not imply that the solutions depend continuously
on the unbounded interval 0 ≤ t <∞. Indeed, the critical pairs snap-through
phenomenon described in [8] confirms that a small change in the system pa-
rameters q can lead to drastically different solution behavior as t → ∞. In
particular, the solutions may converge to distinct equilibria. In this paper we
study how to conduct the parameter estimation for such a situation.

In Section 2 we examine the stability of a shallow arch with symmetric
initial conditions and the load. In Section 3 these results are extended to
non-symmetric conditions. In Sections 4 and 5 we describe our Parameter
Estimation Algorithm for solving the estimation problem, and give results of
the corresponding numerical experiments.

2. Stability for symmetric initial conditions and load

In this section we study stability of the system with the initial conditions and
the load in the finite dimensional space VN = span{sin(nx), n = 1, 2, . . . , N}.
The central result established in [7] shows that given the initial conditions and
the load in VN , the solution y of (1)-(3) remains in VN for all t > 0. We
summarize this result in the following Theorem.

Theorem 2.1. Let u0, v0, p(t) ∈ VN , t ≥ 0, and

(6) u0 =

N∑
n=1

u0n sin(nx), v0 =

N∑
n=1

v0n sin(nx), p (t) =

N∑
n=1

pn(t) sin(nx).
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Then the solution y of (1)-(3) is given by the finite series

y(x, t) =

N∑
n=1

Yn(t) sin(nx),

where Yn = Yn(t) are the solutions of the initial value problem

Ÿn + γẎn + n4Yn +
1

4
n2Yn

(
−

N∑
l=1

l2u20l +

N∑
l=1

l2Y 2
l

)
= n4u0n + pn,(7)

Yn(0) = y0n, Ẏn(0) = y1n,(8)

for n = 1, 2, . . . , N , t ≥ 0. Here ˙ and ¨denote the time derivatives.

Thus, in this case, the stability of (1)-(3) is determined by the stability of
(7)-(8). Suppose that solutions Yn approach an equilibrium as t→∞.

Denote

(9) Ŷn = lim
t→∞

Yn(t), n = 1, . . . , N.

In many applications the initial shape and the load are given by simple
harmonic functions. Accordingly, in this section we assume that the load
p(x, t) = p(x) is time-independent, and

(10) u0(x) = h sinx and p(x) = w sinx,

where h ≥ 0 and w ∈ (−∞,∞). There are no restrictions on the initial velocity
v0, except that v0 ∈ VN .

Next Lemma shows that in this case the equilibrium ŷ(x) = limt→∞ y(x, t)
has a very simple form: it is at most the sum of two pure harmonics.

Lemma 2.2. Suppose that (10) is satisfied, and v0 ∈ VN . Then the equilibrium
shape ŷ(x) satisfies either

(11) ŷ(x) = Ŷ1 sinx,

or

(12) ŷ(x) =
h+ w

1− n2
sinx+ Ŷn sin(nx) for some n ≥ 2.

Furthermore, if 0 ≤ h ≤ 4, then ŷ(x) = Ŷ1 sinx.

Proof. Equations for Ŷn, n = 1, 2, . . . , N , follow from (7)-(8) by letting Ẏn =

Ÿn = 0:

Ŷ1

(
4− h2 +

N∑
l=1

l2Ŷ 2
l

)
= 4(h+ w),(13)

Ŷn

(
4n2 − h2 +

N∑
l=1

l2Ŷ 2
l

)
= 0, n = 2, 3, . . . , N.(14)

(i) Suppose that Ŷn = 0 for any n = 2, . . . , N . Then we have (11).
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(ii) Now assume that there is k ≥ 2 such that Ŷk 6= 0. Then (14) implies

4k2 − h2 +
∑N
l=1 l

2Ŷ 2
l = 0, and −h2 +

∑N
l=1 l

2Ŷ 2
l = −4k2. Substituting this

into equations (14) gives

Ŷn(n2 − k2) = 0, n = 2, . . . , N.

Therefore Ŷn = 0 for all n 6= k, 2 ≤ n ≤ N . For n = 1 we get Ŷ1(4 − 4k2) =
4(h+ w), and we get (12).

(iii) If 0 ≤ h ≤ 4, then 4k2 − h2 +
∑N
l=1 l

2Ŷ 2
l > 0, for any n = 2, . . . , N ,

excluding the trivial case. Thus all Ŷn = 0 for any n = 2, . . . , N , and we are
back to the case (i). �

Lemma 2.2 studies the equilibrium for any v0 ∈ VN . Now we investigate the
case v0 ∈ V1, i.e., v0(x) = v01 sinx, for the remaining of this section. Under this
assumption Theorem 2.1 shows that the solution is given by y = Y1(t) sinx,
where Y1 = Y1(t), t ≥ 0 satisfies

Ÿ1 + γẎ1 +

(
1− h2

4

)
Y1 +

1

4
Y 3
1 − h− w = 0,(15)

Y1(0) = h, Ẏ1(0) = v01.(16)

The following Theorem 2.3 was established by us in [8, Section 3].

Theorem 2.3. Suppose that u0, p satisfy (10), and v0 ∈ V1. Define

f(u) = u3 + (4− h2)u− 4(h+ w), −∞ < u <∞.

Let û ∈ R be an equilibrium of the system (15), i.e., û = Ŷ1 = limt→∞ Y1(t).
Then

(i) If û is the unique root of equation f(u) = 0, then û is asymptotically
stable.

(ii) If equation f(u) = 0 has three distinct roots û1, û2, û3 with û1 < û2 <
û3, then û1 and û3 are asymptotically stable, and û2 is unstable.

(iii) If equation f(u) = 0 has three roots û1, û2, û3 such that û1 = û2, then
the equilibrium û3 is asymptotically stable, and û1 is stable.

Now we are going to illustrate the snap-through phenomenon, critical pairs
and other concepts.

Example 2.4. Let γ = 0.2, and h = 3 be fixed. When w = −3.387, equation
f(u) = 0 has three roots û = 0.316, 2.061, and −2.377. The component Y1(t)
converges to 2.061 as t→∞. Thus the arch equilibrium is ŷ(x) = 2.061 sinx.

When w = −3.388, equation f(u) = 0 has three roots û = 0.317, 2.061, and
−2.378. Note that f is dependent of w. The component Y1(t) converges to
−2.378 as t→∞, and the arch equilibrium is ŷ(x) = −2.378 sinx.

Thus a small change in the value of the parameter w causes a significant
change in the equilibrium position of the arch.

Figure 1 shows the graphs of the components Y1(t) corresponding to w =
−3.387 and w = −3.388. The roots û are almost the same for w = −3.387 and
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for w = −3.388, however the corresponding trajectory behavior is significantly
different, since the trajectories converge to equilibria above and below the x
axis. The trajectories diverge in their behavior around t = 5. When the
function Y1(t) changes its sign, the arch snaps through the x axis.

Figure 1. Components Y1(t) in Example 2.4

The snap-through phenomenon observed in Example 2.4 is dependent on the
damping parameter γ. This is illustrated in Figure 2. We will call the triple of
parameters q = (h,w, γ), at which the position of the equilibria changes from
above to below the x axis, a critical triple, and we call each such parameter a
critical value.

In Example 2.4 parameters q = (3,−3.388, 0.2) form a critical triple, and
the numbers 3,−3.388, 0.2 are the corresponding critical values.

In Figure we plot the critical parameters for various values of h and w. The
figure shows the rectangle [0, 4]× [−8, 0] in the h-w plane subdivided into three
open regions I, II and III. The regions are defined as follows. First, we draw the
straight line w = −h, for 0 ≤ h ≤ 2. Then draw two curves w+(h) = g(u+(h))
and w−(h) = g(u−(h)), for 2 ≤ h ≤ 4, where

(17) g(x) =
1

4
x3 +

(
1− h2

4

)
x− h, and u±(h) = ±

√
1

3
(h2 − 4).

Clearly, all the curves meet at the same point h = 2, w = −2.
For all the points (h,w), 0 < h < 2 we have f ′(u) = 3u2 + (4 − h2) > 0.

Therefore, for all such points, equation f(u) = 0 has a unique root û, which is
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the system equilibrium. By Theorem 2.3(i), the equilibrium is asymptotically
stable. Rewrite equation f(û) = 0, as û[û2 + (4 − h2)] = 4(h + w). Since
h + w > 0 in region I, we conclude that û > 0 for 0 < h < 2. On the other
hand, in region II, below the line w = −h, we have h+w < 0, and û < 0. Since
the equilibrium is unique for 0 < h < 2, there is no snap-through in region I
and in region II for such vales of h. This is also seen in Figure 2.

A similar analysis for various points (h,w) for h > 2 in regions I and II
shows that they may lead to the snap-through phenomena. The snap-through
does not depend on γ for points in regions I and II for 2 < h < 4. The
snap-through phenomena is γ dependent in region III, because there are three
equilibria whose signs are opposite, see [8, Section 3].

Next, let us draw the critical pairs (h,w) in region III. First, we notice that
for all (h,w) satisfying 2 ≤ h ≤ 4 and w ≤ 0 we have

lim
t→∞

Y1(t;h,w, γ) = û < h.

Indeed, we can rewrite equation f(û) = 0 as

(û− h)(û2 + hû+ 4) = 4w.

Suppose that û > 0. Since w < 0, we conclude that û − h < 0, and so û < h.
Now assume that û < 0. Then either û2 + hû + 4 > 0, or û2 + hû + 4 < 0
is possible. If û2 + hû + 4 > 0, then it is clear that û < h, since w < 0. If
û2 + hû+ 4 < 0, then û− h > 0, i.e., û > h ≥ 2. However, this cannot happen
since û < 0 by the assumption.

Figure 2. Critical pairs for γ = 0.2 and γ = 0.05
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To summarize this discussion, limt→∞ Y1(t;h,w, γ) = û < h, when 0 ≤ h ≤
4 and w ≤ 0. Furthermore, either û < 0, or 0 ≤ û < h. These cases can
be distinguished by the curvature sign of the equilibrium shape. So, for the
parameter pairs (h,w) the sign of û determines if the equilibrium is above or
below the x axis. The critical pairs separate the regions where û have different
signs.

The computations were carried out for 0 ≤ t ≤ 300. Note that the computed
set of critical pairs in Figure 2 looks like a zigzag line. The structure of the set of
the critical pairs becomes more complex for smaller values of the air resistance
coefficient γ. For γ = 0.05 the zigzag line acquires saw-tooth features.

3. Non-symmetric initial conditions and load

Now we consider non-symmetric initial conditions and the time-independent
load p(x, t) = p(x) given by

(18) u0 = h1 sin(x) + h2 sin(2x), and p(x) = w1 sin(x) + w2 sin(2x),

where h1, h2 and w1, w2 are constants. The non-symmetric conditions are com-
mon because symmetric initial states can be changed by small perturbations.

Since u0, v0 ∈ V2, and p(t) ∈ V2 for any t > 0, we conclude by Theorem 2.1
that the solution is expressed by

(19) y = Y1(t) sin(x) + Y2(t) sin(2x),

where Y1 = Y1(t) and Y2 = Y2(t) are the solutions of the system of ordinary
differential equations

Ÿ1 + γẎ1 +
1

4

(
4− h21 − 4h22 + Y 2

1 + 4Y 2
2

)
Y1 = h1 + w1,

Ÿ2 + γẎ2 +
(
16− h21 − 4h22 + Y 2

1 + 4Y 2
2

)
Y2 = 16h2 + w2,

Y1(0) = h1, Y2(0) = h2, Ẏ1(0) = v01, Ẏ2(0) = v02.

Since this system depends on five parameters γ, h1, h2, w1 and w2, it is hard
to analyze the stability similarly to the symmetric case considered in Section
2. Hence we are looking into how small perturbation parameters h2, w2 affect
the trajectory Y1, assuming that h1, w1 and γ are fixed.

The equilibrium components Ŷ1 and Ŷ2 are determined from the nonlinear
system (

4− h21 − 4h22 + Ŷ 2
1 + 4Ŷ 2

2

)
Ŷ1 = 4(h1 + w1),(20) (

16− h21 − 4h22 + Ŷ 2
1 + 4Ŷ 2

2

)
Ŷ2 = 16h2 + w2.(21)

Equation (21) implies that the magnitude of Ŷ2 is proportional to 16h2 +
w2. So, as long as 16h2 + w2 is small, the behavior of the solution y(x, t) =
Y1(t) sinx+ Y2(t) sin 2x is dominated by the component Y1(t).
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Now we investigate how the regions I, II, and III, introduced in Example
2.4, and the corresponding critical pairs are changing when parameters h1 and
w1 are perturbed by h2 and w2, satisfying (18).

Let δ = −h22 + Ŷ 2
2 , and rearrange (20) to get

(22)
(

4(1 + δ)− h21 + Ŷ 2
1

)
Ŷ1 = 4(h1 + w1).

Solutions of polynomial equations are continuously dependent on their coeffi-
cients. Therefore Ŷ1 is continuously dependent on h1, w1 and δ in (22).

Repeating the analysis done for equation (17), while replacing 4 by 4(1 + δ),
and h = 2 by hδ = 2

√
1 + δ. That is, g(x) and u±(h) are changed to

(23) g(x) =
1

4
x3 +

(
1 + δ − h2

4

)
x− h, and u±(h) = ±

√
1

3
(h2 − 4− 4δ).

The following Example 3.1 shows that previously non-critical triple (h1, w1,
γ) = (3,−3.387, 0.2) turns into a critical triple by adding h2 = −0.02.

Example 3.1. In this example the arch with non-symmetric initial shape
and simple symmetric load is considered. Let us assume that h1 = 3, h2 =
−0.02, w1 = −3.387, w2 = 0, the damping parameter is γ = 0.2, and the
initial velocity is v0 = 0.

Solving (20)-(21) for the equilibrium component Ŷ1 gives the following three
values

−2.3769, 0.3160 and 2.0609.

On the other hand, if δ = 0, the solutions for Ŷ1 are

−2.3772, 0.3159 and 2.0613.

Example 3.1 predicts that the larger the absolute value of δ is, the wider
the region III becomes. In fact, Figure 4 shows that the regions I and II are
reduced. On the other hand, the region III is expanded when δ = −0.1, that
is, if hδ = 2

√
0.9.

4. Parameter estimation problem

In this section we investigate the estimation problem for the arch system
governed by equations (1)-(3). Our goal is to identify the model parameters
from the observation of the system. In this study the problem is restricted to
the time-independent load p(t) = p ∈ VN . Thus

(24) u0(x) =

N∑
n=1

hn sin(nx), v0(x) =

N∑
n=1

sn sin(nx), p(x) =

N∑
n=1

wn sin(nx).

By Theorem 2.1 the solution y of (1)-(3) is expressed by

(25) y(x, t) =

N∑
n=1

Yn(t) sin(nx),
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Figure 3. Component Y1(t) in Example 3.1

Figure 4. Change in regions I, II, and III, under small perturbations

where the component functions Yn = Yn(t), n = 1, 2, . . . , N are the solutions
of the initial value problem

Ÿn + γẎn + n4Yn +
1

4
n2Yn

N∑
j=1

j2(Y 2
j − h2j ) = n4hn + wn,(26)
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Yn(0) = hn, Ẏn(0) = sn,(27)

for n = 1, 2, . . . , N .
In this numerical study we will assume that v0 = 0, thus sn = 0 for all n.

Let h = (h1, h2, . . . , hN ) ∈ RN , w = (w1, w2, . . . , wN ) ∈ RN , and γ > 0 be
the unknown model parameters. Let q = (h,w, γ) ∈ P ⊂ R2N+1, where the
admissible set P is a closed box in R2N+1.

Assume that the system observation z ∈ L2(Q), Q = [0, π]× [0, T ] is given.
Introduce the objective function V (q) by

(28) V (q) =

∫ T

0

∫ π

0

(y(x, t; q)− z(x, t))2dxdt,

where y is the solution of the system (1)-(3) with the parameters q.
The goal of the parameter estimation problem is to find an optimal set of

parameters q∗ ∈ P satisfying

(29) V (q∗) = min
q∈P

V (q).

In other words, q∗ = argminq∈PV (q).
We call q∗ the optimal parameter and y∗ = y(q∗) the optimal state. It is

proved in [7] that the solution map q → y(q), from P into C([0, T ], H1
0 [0, π]) is

continuous at any q ∈ P . Hence there is an optimal parameter q∗ ∈ P , as P is
closed and bounded in R2N+1.

As we have already mentioned, the continuity q → y(q) of the solutions on
any bounded interval [0, T ] does not imply the continuity of the map q → ŷ(q).
This was illustrated in Section 2. A small change in the parameter values q
near a critical pair causes drastically different solution behavior. Therefore,
the direct minimization of the objective function V (q) is unlikely to produce
good results in such situations.

Our approach is to identify optimal parameters q∗ = (h∗,w∗, γ∗) in a se-
quential manner. First, we identify h∗, then w∗, and, finally, the damping
coefficient γ∗. We will keep the q∗ notation, even that such an optimal param-
eter set may not satisfy (29).

Parameter estimation algorithm.

(i) Estimation of h∗.

By (24), y(x, 0) = u0(x) =
∑N
n=1 hn sin(nx). Thus we require

h∗ = argmin(h1,...,hN )

∥∥∥∥∥
N∑
n=1

hn sin(nx)− z(x, 0)

∥∥∥∥∥
2

L2[0,π]

.

The minimum is attained when h∗ are the Fourier coefficients given by

h∗n =
2

π

∫ π

0

z(x, 0) sinnx dx, n = 1, . . . , N.
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(ii) Estimation of w∗.

Let the observed arch equilibrium be ẑ(x) = limt→∞ z(x, t). Since

ŷ(x) =

N∑
n=1

Ŷn sinnx,

we identify the equilibrium components Ŷ ∗n , n = 1, . . . , N from

Ŷ∗ = argmin(Y1,...,YN )

∥∥∥∥∥
N∑
n=1

Yn sin(nx)− ẑ(x)

∥∥∥∥∥
2

L2[0,π]

.

Thus

Ŷ ∗n =
2

π

∫ π

0

ẑ(x) sinnx dx, n = 1, . . . , N.

Observe from (26) that the equilibrium components Ŷ ∗n satisfy the sys-
tem

(30)

(
4n2 +

N∑
l=1

l2((Ŷ ∗l )2 − (h∗l )
2)

)
n2Ŷ ∗n = 4(n4h∗n + w∗n), n = 1, . . . , N.

Thus, since h∗n and Ŷ ∗n are already identified, we can find w∗n from (30)
by

(31) w∗n =

(
n2 +

1

4

N∑
l=1

l2((Ŷ ∗l )2 − (h∗l )
2)

)
n2Ŷ ∗n − n4h∗n, n = 1, . . . , N.

(iii) Estimation of γ∗.

With h∗n, w
∗
n, n = 1, . . . , N already known, the minimization prob-

lem (29) is reduced to a one dimensional minimization with respect to
γ. Thus, let

(32) V (γ) = ‖y(x, t; ĥ∗, ŵ∗, γ)− z(x, t)‖2L2(Q),

and

γ∗ = argminγ>0V (γ).

Remark. It was proved in [7, Section 7] that V (γ) is differentiable in the interior
of P . In particular, dV

dγ exists at γ∗ ∈ int(P ). This implies that the optimal

parameter γ∗ is found either on the boundary of P of the admissible set, or in
its interior int P , in which case we have dV

dγ (γ∗) = 0. Thus the gradient dV
dγ (γ∗)

can be used to identify γ∗. Practically, as illustrated in the next section,
the objective function V (γ) may have many local minima. Therefore global
minimization methods are recommended.
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5. Numerical experiments

For the purposes of numerical simulation we suppose that the arch motion is
described by the system (1)-(3), and its solution y(x, t) is approximated in the
finite dimensional space VN . Consistent with our stability analysis in previous
sections, we conduct numerical experiments with N = 1 and N = 2.

Let the solution y be generated by the triple of parameters q∗ = (h∗,w∗, γ∗).
We will write y(x, t) = y(x, t;h∗,w∗, γ∗). To make the parameter estimation
more realistic, we used noise contaminated observations z(x, t) of the form

(33) z(x, t) = y(x, t;h∗,w∗, γ∗) + εη(x).

Here η(x) is a random variable uniformly distributed on interval [−1, 1], and
the noise factor ε is a small constant. Accordingly, the initial condition becomes

z(x, 0) = u0(x, 0;h∗) + εη(x).

Recall, that we assume that yt(x, 0) = v0 = 0.
Our goal is to find a triple q∗ε = (h∗ε ,w

∗
ε , γ
∗
ε ), such that

V (q∗ε ) = min
q∈P

V (q).

First we need to set the end time Te, when the arch motion has almost
stopped. This time was determined experimentally, depending on the param-
eter γ∗, from the stopping criterion

‖y(x, t)− y(x, t+ ∆t)‖2L2(Q) ≈ 0, t ≥ Te

for a small ∆t > 0.
Now let the optimal parameters q∗ε = (h∗ε , w

∗
ε , γ
∗
ε ) be determined by using

the Parameter Estimation Algorithm described in Section 4.
Clearly, we expect to get a better parameter estimation in regions where the

solution is more regular, i.e., away from the critical pairs. To understand this
effect, consider the case N = 1, and h = 3. In Figure 5 we plot the equilibria
û corresponding to various pairs (w, γ) ∈ [−4.5,−2.5]× (0, 0.5]. The light gray
points correspond to û > 0, and the dark gray points correspond to û < 0. The
equilibrium values limt→∞ Y1(t) = û are computed for 0 ≤ t ≤ 25000.

Figure 5 shows that for γ > 0.1, there is just one corresponding critical pair,
but for 0 < γ ≤ 0.1, the critical pairs do not exhibit a clear pattern. Another
manifestation of this pattern can be seen from the behavior of the objective
function V = V (γ) defined in (32).

Let the observation z(x, t) = y(x, t;h∗,w∗, γ∗) in (33) be generated by q∗ =
(h∗,w∗, γ∗) with ε = 0. According to the Parameter Estimation Algorithm, we
estimate h∗, and then w∗. Then the value of γ∗ is found by minimizing V (γ).

For comparison purposes, function V (γ) is normalized by its maximum, i.e.,
V (γ) := V (γ)/max0<γ≤1 V (γ). Function V (γ) used for the estimation of γ∗ in
(32) depends on a normed space chosen to evaluate the discrepancy between the
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data z(x, t) and the solution y(x, t; ĥ∗, ŵ∗, γ). For the numerical experiments
in this section we selected the norm given by

‖u‖2 =

5∑
j=1

∣∣∣∣u(πj5
)∣∣∣∣2 ,

where u ∈ C[0, π].
For h∗ = 3 and w∗ = −2.3, the graph of the function V (γ) is shown in

Figure 6 as a dash line. It is a regularly behaving function with a clearly
defined unique minimum.

For h∗ = 3 and w∗ = −1.3, the graph of the function V (γ) is shown in
Figure 6 as a dotted line. It coincides with the graph of V (γ) for h∗ = 3, and
w∗ = −0.3, shown as an alternated long and short dash line. The functions
also have a clearly defined unique minimum.

The behavior of V (γ) is very different for h∗ = 3, and w∗ = −3.3, which is
shown as a solid line. In this case q∗ = (3,−3.3, 0.01) is a critical point. We see
that the graph of V (γ) is oscillating, having many local minima, which makes
the identification process challenging and imprecise.

Example 5.1. In this example the identification results for N = 1 and various
levels of the noise factor ε, are shown in Tables 1, 2, and 3. The optimal
parameters are given by h∗ = 3, w∗ = −1.3, with γ∗ = 0.01, γ∗ = 0.05, and
γ∗ = 0.1. The stopping times were chosen to be Te = 1877, Te = 376, and
Te = 188 corresponding to γ∗ = 0.01, 0.05, and 0.1.

Figure 5. Equilibria û > 0 (light gray), and û < 0 (dark
gray), for various pairs (w, γ), N = 1, h = 3.
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Whenever ε is small, the suggested Parameter Estimation Algorithm finds
good optimal parameters q∗ε for small γ∗. But when ε becomes bigger, the
estimates worsen, especially for γ∗ε , as can be seen in Table 1. Table 3 shows
that when γ∗ is sufficiently large, the Parameter Estimation Algorithm provides
good identification for all considered noise levels.

Table 1. Estimation for γ∗ = 0.01
ε h∗ε w∗ε γ∗ε V (γ∗ε )

0.000 3.00000 −1.29989 0.01004 4.797e− 08
0.001 3.00023 −1.30000 0.00973 3.090e− 06
0.005 3.00056 −1.29981 0.00900 2.513e− 05
0.010 2.99946 −1.29132 0.00755 1.724e− 04
0.050 2.98771 −1.21648 0.00091 4.292e− 03

Table 2. Estimation for γ∗ = 0.05
ε h∗ε w∗ε γ∗ε V (γ∗ε )

0.000 3.00000 −1.29990 0.04998 1.734e− 08
0.001 2.99987 −1.30071 0.05052 3.372e− 06
0.005 3.00013 −1.29466 0.04861 6.792e− 05
0.010 3.00186 −1.33290 0.05874 1.109e− 03
0.050 2.98409 −1.25458 0.06278 3.090e− 03

Figure 6. Function V (γ) := V (γ)/maxV (γ) for h∗ = 3, and
various values of w∗.



738 S. GUTMAN, J. HA, AND S. SHON

Table 3. Estimation for γ∗ = 0.1
ε h∗ε w∗ε γ∗ε V (γ∗ε )

0.000 3.00000 −1.30009 0.10036 2.628e− 07
0.001 2.99987 −1.30014 0.10049 1.853e− 06
0.005 2.99929 −1.29430 0.09909 3.740e− 05
0.010 2.99925 −1.28340 0.09614 3.714e− 04
0.050 2.97843 −1.17046 0.09424 4.096e− 03

Example 5.2. The identification results for N = 2 are shown in Table 4.
Accordingly, the parameters h∗, and w∗ are given by vectors in V2, i.e., they
have two components, see (18).

The optimal parameters are given by h∗ = (3, 0.2), w∗ = (−1.3,−0.2),
γ∗ = 0.01. The stopping time was chosen to be Te = 1871.

The results show that for N = 2, the Parameter Estimation Algorithm is
much more sensitive to noise, as compared to the case of N = 1.

Table 4. Estimation for γ∗ = 0.01
ε h∗ε w∗ε γ∗ε V (γ∗ε )

0.000 3.00000 −1.29990 0.01007 8.055e− 08
0.20000 −0.20003

0.000 3.00003 −1.30078 0.01067 7.499e− 06
0.19973 −0.19121

0.000 2.99971 −1.30300 0.01250 1.928e− 04
0.19936 −0.16785

0.000 3.00121 −1.29986 0.00664 3.036e− 04
0.20205 −0.23370

0.000 2.99018 −1.29719 0.01555 7.762e− 03
0.21081 −0.55812

6. Conclusions

Stability of solutions and parameter estimation for the system (1)-(3) were
investigated for sinusoidal initial shapes and loads. To summarize, if the initial
conditions u0, v0 and the load p(t) belong to the finite-dimensional space VN ,
the solution y(t) remains in VN for any t ≥ 0.

With these assumptions and a time-independent load p, the static solution
(i.e., the equilibrium) ŷ(x) was shown to be expressed as ŷ(x) = Ŷ1 sinx +

Ŷn sin(nx) for some n. In the special case u0 = h sinx, p = w sinx, and

v0 ∈ V1, the static solution is shown to be ŷ(x) = Ŷ1 sinx, and its stability was
completely analyzed.

We have introduced the notion of critical parameter sets, separating the
regions where the initial data imply convergence to different equilibria. A
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numerical study of critical values h,w, dependent on the damping parameter
γ, was conducted.

The Parameter Estimation Algorithm for the identification of system’s pa-
rameters from its observation was proposed, and its efficiency has been analyzed
numerically. Numerical experiments show good results for small noise levels, as
well as for the initial parameter sets away from critical values. A study of the
identification near the critical values shows that the difficulties can be traced
to the erratic behavior of the objective function V (γ).
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