
J. Korean Math. Soc. 58 (2021), No. 3, pp. 633–642

https://doi.org/10.4134/JKMS.j200202

pISSN: 0304-9914 / eISSN: 2234-3008

BLOW-UP OF SOLUTIONS FOR WAVE EQUATIONS WITH

STRONG DAMPING AND VARIABLE-EXPONENT

NONLINEARITY

Sun-Hye Park

Abstract. In this paper we consider the following strongly damped wave
equation with variable-exponent nonlinearity

utt(x, t)−∆u(x, t)−∆ut(x, t) = |u(x, t)|p(x)−2u(x, t),

where the exponent p(·) of nonlinearity is a given measurable function.
We establish finite time blow-up results for the solutions with non-positive

initial energy and for certain solutions with positive initial energy. We

extend the previous results for strongly damped wave equations with
constant exponent nonlinearity to the equations with variable-exponent

nonlinearity.

1. Introduction

In this paper, we are concerned with the following wave equation with strong
damping and variable-exponent nonlinearity

utt(x, t)−∆u(x, t)−∆ut(x, t) = |u(x, t)|p(x)−2u(x, t) in Ω× (0, T ),(1)

u(x, t) = 0 on ∂Ω× (0, T ),(2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω,(3)

where Ω ⊂ Rn, n ≥ 1, is a bounded domain with smooth boundary ∂Ω, and
the exponent p(·) is a given measurable function.

During the past decades, the following wave equations

utt −∆u− ω∆ut + µut = |u|p−2u

have been studied extensively on existence, nonexistence, stability, and blow up
of solutions [5, 10, 12, 15, 17, 26–28]. When ω = µ = 0, Sattinger [27] discussed
the existence of local as well as global solutions by introducing the concepts
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of stable and unstable sets. Ball [5] established a finite time blow-up result
of solutions with negative initial energy. When ω = 0 and µ > 0, Ikehata
[15] gave a characterization of the existence of blow-up solutions for sufficiently
small µ > 0. Later, Esquivel-Avila [10] extended the result of [15] to the case
of any µ > 0. Gazzola and Squassina [12] proved the global existence and finite
time blow up of solutions under the conditions ω ≥ 0 and µ > −ωλ1, where λ1

is the first eigenvalue of the operator −∆ with homogeneous Dirichlet boundary
conditions.

Recently, researchers have much interested in nonlinear models of hyperbolic,
parabolic, and elliptic equations with variable-exponent nonlinearities [2, 22–
25]. This kind of systems appears in electro-rheological fluids or fluids with
temperature-dependent viscosity, nonlinear viscoelasticity, filtration processes
through a porous media and image processing. We refer [1, 3, 18] for more
details on these problems. Antontsev [2] studied a quasilinear equation of the
form

utt − div(a(x, t)|∇u|r(x,t)−2∇u)− α∆ut = b(x, t)|u|p(x,t)−2u+ f(x, t).

He proved the existence and blow up of weak solutions with negative initial en-
ergy under some conditions on a, b, f, r, and p. Messaoudi et al. [25] considered
the following wave equations of variable-exponent nonlinearities

utt(x, t)−∆u(x, t) + a|ut(x, t)|m(x)−2ut = b|u(x, t)|p(x)−2u(x, t),

where a and b are positive constants, and m(·) and p(·) are given measurable
functions. They proved the existence of a unique weak solution under suit-
able assumptions on the variable exponents m(·) and p(·) by using the Faedo-
Galerkin method. Then, they established the finite time blow-up of solutions
when the initial energy is negative. Regarding nonlinear wave equations with
constant-exponent nonlinearities, we also refer [6, 13, 14, 20, 21] and references
therein. Messaoudi and Talahmeh [23] discussed a quasilinear wave equation
of the form

utt(x, t)− div(|∇u(x, t)|r(x)−2∇u(x, t)) + a|ut(x, t)|m(x)−2ut

= b|u(x, t)|p(x)−2u(x, t).

They showed finite time blow-up results for the solution with negative initial
energy and for certain solutions with positive initial energy. Motivated these
results, we investigate finite time blow-up results of the solutions with positive
initial energy as well as non-positive initial energy for problem (1)-(3). As far
as we know, there are few works on wave equations with strong damping and
variable-exponent nonlinearity. Moreover, this work extends the previous re-
sults for strongly damped wave equations with constant-exponent nonlinearity
to the equations with variable-exponent nonlinearity.

The outline of this paper is as follows. In Section 2, we give materials needed
for our work. In Section 3, we prove finite time blow-up results.
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2. Preliminaries

In this section, we present some material needed for the statement and proof
of our results. First, we give preliminary facts about Lebesque and Sobolev
spaces with variable exponents (see [8, 9, 11]). Let p : Ω → [1,∞] be a mea-
surable function. The Lebesque space Lp(·)(Ω) with variable exponent p(·) is
defined by

Lp(·)(Ω) = {u : Ω→ R | u is measurable in Ω,∫
Ω

|λu(x)|p(x)dx <∞ for some λ > 0}.

This space is a Banach space with the Luxembourg-type norm

||u||p(·) = inf{λ > 0 |
∫

Ω

∣∣∣u(x)

λ

∣∣∣p(x)

dx ≤ 1}.

In general, variable-exponent Lebesgue spaces are similar to classical Lebesgue
spaces in many aspects (see [16]). As usual, (·, ·) and 〈·, ·〉 denote the in-
ner product in the space L2(Ω) and the duality pairing between H1

0 (Ω) and
H−1(Ω), respectively. || · ||q denotes the norm of the space Lq(Ω). For brevity,
we denote || · ||2 by || · ||.

Let us list some properties of the space Lp(·)(Ω) which will be used in this
work.

Lemma 2.1 ([7]). If p : Ω→ [1,∞) is a measurable function satisfying

2 ≤ p(x) <∞ if n = 1, 2;

2 ≤ ess inf
x∈Ω

p(x) ≤ p(x) ≤ ess sup
x∈Ω

p(x) <
2n

n− 2
if n ≥ 3,

then the embedding H1
0 (Ω) ↪→ Lp(·)(Ω) is continuous and compact.

Lemma 2.2 ([4]). If

1 < p1 := ess inf
x∈Ω

p(x) ≤ p(x) ≤ p2 := ess sup
x∈Ω

p(x) <∞,

then

min{||u||p1p(·), ||u||
p2
p(·)} ≤

∫
Ω

|u(x)|p(x)dx ≤ max{||u||p1p(·), ||u||
p2
p(·)}

for any u ∈ Lp(·)(Ω).

Definition. Let T > 0. We say that a function u is a solution of problem
(1)-(3) on Ω× (0, T ) if

u ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) ∩ C2([0, T ];H−1(Ω))

with ut ∈ L2(0, T ;H1
0 (Ω)) and satisfies

〈utt(t), w〉+ (∇u(t),∇w) + (∇ut(t),∇w) = (|u(t)|p(·)−2u(t), w)(4)
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for any w ∈ H1
0 (Ω), and

u(0) = u0 in H1
0 (Ω), ut(0) = u1 in L2(Ω).

We state the well-posedness which can be established by the arguments of
[19,25].

Theorem 2.3. Assume that p(·) satisfies

2 < p1 ≤ p(x) ≤ p2 <∞ if n = 1, 2;

2 < p1 ≤ p(x) ≤ p2 <
2(n− 1)

n− 2
if n ≥ 3,

where
p1 := ess inf

x∈Ω
p(x), p2 := ess sup

x∈Ω
p(x),

and the log-Hölder continuity condition:

(5) |p(x)− p(y)| ≤ − A

log |x− y|
for a.e. x, y ∈ Ω, with |x− y| < δ,

here A > 0 and 0 < δ < 1. Then, for every u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω),

problem (1)-(3) has a unique local solution.

3. Finite time blow-up of solutions

In this section we prove that the solution to problem (1)-(3) blows up in
finite time when the initial energy is positive as well as non-positive. In order
to state and prove our results, we need the following lemma:

Lemma 3.1 ([17]). Let G(t) be a positive, twice differentiable function satis-
fying the inequality

G(t)G′′(t)− (1 + δ)(G′(t))2 ≥ 0 for t > 0,

where δ is a positive constant. If G(0) > 0 and G′(0) > 0, then there exists a

time T∗ ≤ G(0)
δG′(0) such that

lim
t→T−∗

G(t) = +∞.

We start by defining the energy of the solution to problem (1)-(3) as

E(t) =
1

2
||ut(t)||2 +

1

2
||∇u(t)||2 −

∫
Ω

|u(x, t)|p(x)

p(x)
dx.(6)

Then, multiplying (1) by ut and integrating it over Ω, we find

E′(t) = −||∇ut(t)||2 ≤ 0 for 0 ≤ t < Tmax,(7)

where Tmax is the maximal existence time of the solution u of problem (1)-(3).
Moreover, we also get

E(t) +

∫ t

0

||∇ut(s)||2ds = E(0) for 0 ≤ t < Tmax.(8)



WAVE EQUATIONS WITH STRONG DAMPING ... 637

3.1. Blow up for non-positive initial energy

In this subsection, we show that the solution with non-positive initial energy
blows up in finite time.

Theorem 3.2. Let the conditions of Theorem 2.1 hold and E(0) ≤ 0. More-
over, assume that (u0, u1) > 0 when E(0) = 0. Then the solution u of problem
(1)-(3) blows up in finite time .

Proof. By contradiction, suppose that the solution u is global. For any T > 0,
we consider G : [0, T ]→ R+ defined by

(9) G(t) = ||u(t)||2 +

∫ t

0

||∇u(s)||2ds+ (T − t)||∇u0||2 + b(t+ T0)2,

where T0 > 0 and b ≥ 0 to be specified later. Then

(10) G(t) > 0 for t ∈ [0, T ]

and

G′(t) = 2(u(t), ut(t)) + ||∇u(t)||2 − ||∇u0||2 + 2b(t+ T0)

= 2(u(t), ut(t)) + 2

∫ t

0

(∇u(s),∇ut(s))ds+ 2b(t+ T0).(11)

From (1), we obtain

G′′(t) = 2||ut(t)||2 + 2〈utt(t), u(t)〉+ 2(∇u(t),∇ut(t)) + 2b

= 2||ut(t)||2 − 2||∇u(t)||2 + 2

∫
Ω

|u(x, t)|p(x)dx+ 2b.(12)

By Cauchy-Schwartz inequality and (9), we get

(G′(t))2

4
=
(

(u(t), ut(t)) +

∫ t

0

(∇u(s),∇ut(s))ds+ b(t+ T0)
)2

≤
(
||u(t)||2 +

∫ t

0

||∇u(s)||2ds+ b(t+ T0)2
)

×
(
||ut(t)||2 +

∫ t

0

||∇ut(s)||2ds+ b
)

=
(
G(t)− (T − t)||∇u0||2

)(
||ut(t)||2 +

∫ t

0

||∇ut(s)||2ds+ b
)

≤ G(t)
(
||ut(t)||2 +

∫ t

0

||∇ut(s)||2ds+ b
)
.(13)

From (12) and (13), we have the following differential inequality

G(t)G′′(t)− p1 + 2

4
(G′(t))2 ≥ G(t)F (t),(14)
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where

F (t) = − p1||ut(t)||2 − 2||∇u(t)||2 + 2

∫
Ω

|u(x, t)|p(x)dx

− (p1 + 2)

∫ t

0

||∇ut(s)||2ds− p1b.(15)

Using (6) and (8), we find

F (t) = − 2p1E(t) + (p1 − 2)||∇u(t)||2 − 2p1

∫
Ω

|u(x, t)|p(x)

p(x)
dx

+ 2

∫
Ω

|u(x, t)|p(x)dx− (p1 + 2)

∫ t

0

||∇ut(s)||2ds− p1b

= − 2p1E(0) + (p1 − 2)||∇u(t)||2 − 2p1

∫
Ω

|u(x, t)|p(x)

p(x)
dx

+ 2

∫
Ω

|u(x, t)|p(x)dx+ (p1 − 2)

∫ t

0

||∇ut(s)||2ds− p1b

≥ − 2p1E(0) + (p1 − 2)||∇u(t)||2 + (p1 − 2)

∫ t

0

||∇ut(s)||2ds− p1b.(16)

We now consider two cases E(0) < 0 and E(0) = 0.
Case 1: E(0) < 0.

Taking 0 < b ≤ −2E(0), we have from (16) that

F (t) ≥ 0.(17)

Case 2: E(0) = 0.
Choosing b = 0, we get from (16) that

F (t) ≥ 0.(18)

Adapting (17) and (18) to (14), we infer

G(t)G′′(t)− p1 + 2

4
(G′(t))2 ≥ 0.(19)

Now, it remains to show G′(0) > 0. When E(0) < 0, we take T0 large enough
such that

G′(0) = 2(u0, u1) + 2bT0 > 0.

If E(0) = 0, the condition (u0, u1) > 0 gives

G′(0) = 2(u0, u1) > 0.

Thus, we conclude from Lemma 3.1 that

(20) lim
t→T−∗

G(t) = +∞

for

(21) T∗ ≤
4G(0)

(p1 − 2)G′(0)
=

2||u0||2 + 2T ||∇u0||2 + 2bT 2
0

(p1 − 2)
(

(u0, u1) + bT0

) .
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Thus, we deduce that

(22) T∗ ≤
2||u0||2 + 2bT 2

0

(p1 − 2)(u0, u1) + (p1 − 2)bT0 − 2||∇u0||2
.

From (9), (20) and (22), we have

(23) lim
t→T−∗

(
||u(t)||+

∫ t

0

||∇u(s)||2ds
)

= +∞.

This contradicts our assumption that the solution is global. Therefore, we
conclude that the solution u to problem (1)-(3) blows up in finite time. �

3.2. Blow up for positive initial energy

In this subsection, we establish a finite time blow-up result for certain solu-
tions with positive energy. For this, we set

(24) B̃ = max{1, B}, ξ1 =
( 1

B̃

) p1
p1−2

, d =
(p1 − 2)ξ2

1

2p1
,

where B is the optimal constant of the embedding inequality

(25) ||v||p(·) ≤ B||∇v|| for v ∈ H1
0 (Ω).

Next, we define a functional h by

(26) h(ξ) =
1

2
ξ2 − B̃p1

p1
ξp1 .

We can easily check that h is continuous, h(0) = 0, and limξ→+∞ h(ξ) = −∞.
Moreover, we see that h is increasing on (0, ξ1) and decreasing on (ξ1,∞). So,
h has the maximum value h(ξ1) = d.

Lemma 3.3. Let u be the solution of problem (1)-(3). Assume that

(27) E(0) < d and ξ1 < ||∇u0|| ≤
1

B̃
.

Then there exists a constant ξ∗ > ξ1 such that

(28) ||∇u(t)||2 ≥ ξ2
∗ for 0 ≤ t < Tmax.

Proof. From (6), Lemma 2.2, (25) and (24), we have

E(t) ≥ 1

2
||∇u(t)||2 − 1

p1

∫
Ω

|u(x, t)|p(x)dx

≥ 1

2
||∇u(t)||2 − 1

p1
max{||u(t)||p1p(·), ||u(t)||p2p(·)}

≥ 1

2
||∇u(t)||2 − 1

p1
max{B̃p1 ||∇u(t)||p1 , B̃p2 ||∇u(t)||p2}

= g(||∇u(t)||),(29)

where

g(ξ) =
1

2
ξ2 − 1

p1
max{B̃p1ξp1 , B̃p2ξp2}.
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It is noted that

h(ξ) = g(ξ) for 0 ≤ ξ ≤ 1

B̃
,

where h is the function given in (26). Owing to E(0) < d, there exists ξ∗ > ξ1
such that

(30) E(0) = h(ξ∗).

Considering t = 0 in the inequality (29), we have from (27) and (30) that

(31) h(ξ∗) = E(0) ≥ g(||∇u0||) = h(||∇u0||).
Since h is decreasing on (ξ1,∞), we see

(32) ξ∗ ≤ ||∇u0||.
From (27), we also know

(33) ξ∗ ≤
1

B̃
.

Now, we want to show that

(34) ||∇u(t)|| ≥ ξ∗ for all t ∈ [0, Tmax).

By contradiction, suppose that there exists t0 ∈ [0, Tmax) such that

(35) ||∇u(t0)|| < ξ∗.

Because the solution u is continuous in t, there exists t1 > 0 such that

(36) ξ1 < ||∇u(t1)|| < ξ∗.

Noting that h is decreasing on (ξ1,∞), we have from (33), (36) and (29) that

(37) E(0) = h(ξ∗) < h(||∇u(t1)||) = g(||∇u(t1)||) ≤ E(t1) ≤ E(0),

we used the fact E is nonincreasing in the last inequality. But, this is contra-
diction. Thus we complete the proof. �

Theorem 3.4. Under the conditions of Lemma 3.2, the solution u of problem
(1)-(3) blows up in finite time.

Proof. Suppose that the solution u is global. For any T > 0, we consider the
function G defined in (9). Then, (10), (14), (15), and (16) hold. First, we show
that the function F (t) given in (15) is non-negative. Indeed, the fact that the
solution u is continuous on [0, T ] and Lemma 3.2 ensure the existence of ε > 0
satisfying

ξ2
1 + ε < ξ2

∗ ≤ ||∇u(t)||2 for all t ∈ [0, T ].(38)

From (16), (38), and (24), we observe

F (t) > −2p1d+ (p1 − 2)(ξ2
1 + ε)− p1b = (p1 − 2)ε− p1b.(39)

Choosing b > 0 sufficiently small such that (p1 − 2)ε− p1b ≥ 0, we obtain

(40) F (t) > 0.
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From (40) and (14), we have

G(t)G′′(t)− p1 + 2

4
(G′(t))2 > 0.(41)

Choosing T0 large enough such that

G′(0) = 2(u0, u1) + 2bT0 > 0,

we can get

G′(0) > 0.

The remainder of the proof can be established by repeating the steps (20) to
(23) of the proof of Theorem 3.1. �
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