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Abstract. In this paper we introduce the notion of strong Galois H-
progenerator object for a finite cocommutative Hopf quasigroup H in a

symmetric monoidal category C. We prove that the set of isomorphism
classes of strong Galois H-progenerator objects is a subgroup of the group

of strong Galois H-objects introduced in [3]. Moreover, we show that

strong Galois H-progenerator objects are preserved by strong symmetric
monoidal functors and, as a consequence, we obtain an exact sequence in-

volving the associated Galois groups. Finally, to the previous functors, if

H is finite, we find exact sequences of Picard groups related with invertible
left H-(quasi)modules and an isomorphism Pic(HMod) ∼= Pic(C)⊕G(H∗)

where Pic(HMod) is the Picard group of the category of left H-modules,

Pic(C) the Picard group of C, and G(H∗) the group of group-like mor-
phisms of the dual of H.

1. Introduction

Let R be a commutative ring with unit and let H be a Hopf algebra in
the category RMod of left R-modules. In [3] we extend the construction of
the classical group of Galois H-objects to the non-associative setting of Galois
objects associated to a Hopf quasigroup. More concretely, if C is a symmetric
monoidal category with equalizers and H is a Hopf quasigroup in C, in the
quoted paper we introduce the notions of Galois H-object and strong Galois
H-object proving that, when H is cocommutative and faithfully flat, the set
of isomorphism classes of strong Galois H-objects, denoted by Gals(H), is a
commutative group. If H is a Hopf algebra it is easy to show that strong
Galois H-objects and Galois H-objects are the same thing and then in the
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associative setting Gals(H) is the classical group of Galois H-objects (see [10]
for C = RMod).

On the other hand, it is well-known that in the Hopf algebra setting there
exists exact sequences linking Galois groups, Picard groups, and groups of
group-like elements. Some of these sequences are obtained using K-theoretical
tools applied to monoidal functors (see [10] and [12]) as, for example, the ex-
tension of scalars functor associated to a homomorphism of commutative rings.
The main motivation of this paper is to obtain similar exact sequences for Hopf
quasigroups and monoidal functors between symmetric monoidal categories.

Let C be a symmetric monoidal category with equalizers and let H be a Hopf
quasigroup in C. In [3] we introduce the notion of Galois H-object as a right
H-comodule magma A = (A, ρA) such that A is faithfully flat and the canonical
morphism γA = (µA ⊗ idH) ◦ (idA ⊗ ρA) : A⊗A→ A⊗H is an isomorphism.
Moreover, if fA = γ−1

A ◦ (ηA⊗ idH) : H → Ae is a morphism of unital magmas,
the pair A is a strong Galois H-object. The first problem that we find for these
objects when we work with monoidal functors is the following: assume that F :
C→ D is a strong symmetric monoidal functor, then F (H) is a Hopf quasigroup
in D but, if A is a strong Galois H-object in C, F(A) it is not a strong Galois
F (H)-object in D because F does not preserve faithfully flat objects. To avoid
this obstacle, in this paper we will assume that C admits coequalizers and, using
the notion of progenerator in a symmetric monoidal category (for example, a
left R-module P is a progenerator in RMod if and only if P is finitely generated,
projective and faithful), we introduce the notions of Galois H-progenerator
object and strong Galois H-progenerator object. Every progenerator in C is
a faithfully flat object and, as a consequence, if C admits coequalizers, every
Galois H-progenerator object is a Galois H-object, and every strong Galois H-
progenerator object is a strong GaloisH-object. Moreover, ifH is finite we have
that H is a progenerator in C. As a consequence, the set of isomorphism classes
of strong Galois H-progenerator objects forms a subgroup of Gals(H) denoted
by Galsp(H). Moreover, if F : C→ D is a strong symmetric monoidal functor,
C and D admit coequalizers, and F preserves coequalizers, we obtain that
F preserves progenerators. Therefore, under the previous conditions, we can
prove that there exists a group morphism between Galsp(H) and Galsp(F (H)),
that cames from a product preserving functor between categories with product,
and also an exact sequence

Aut(H) Aut(F(H)) K1Φ(G(F )) Galsp(H) Galsp(F (H)).

As was proved in [3], the group Aut(H) of automorphisms of H = (H, δH)
as H-comodule magma can be identified with the group G(H∗) of group-like
morphisms of H∗ when H is finite. Then, as a consequence, we can assure that
there exists an exact sequence

G(H∗) G(F (H)∗) K1Φ(G(F )) Galsp(H) Galsp(F (H)).
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Finally, in this paper we also study the exact sequences associated to in-
vertible left modules and quasimodules for a Hopf quasigroup H. Firstly we
obtain a generalization of the group isomorphism constructed by Caenepeel in
[9] for Hopf algebras in RMod (see also [12] for the monoidal version), i.e., we
prove that, if H is a finite cocommutative Hopf quasigroup, there exists an
isomorphism Pic(HMod) ∼= Pic(C) ⊕ G(H∗) where Pic(HMod) is the Picard
group of the category of left H-modules and Pic(C) the Picard group of C.
Secondly we also prove that if C and D are symmetric monoidal categories,
F : C→ D is a strong symmetric monoidal functor, and H is a cocommutative
Hopf quasigroup in C, there exists two exact sequences

AutC(K) AutD(I) K1Φ(QPic(F )) Pic(HQMod) Pic(F(H)QMod),

AutC(K) AutD(I) K1Φ(Pic(F )) Pic(HMod) Pic(F(H)Mod),

where Pic(HQMod) is the Picard group of the category of left H-quasimodules
and AutC(K), AutD(I) are the groups of automorphisms of the unit objects of
C and D respectively.

2. Progenerators and monoidal functors

Throughout this paper C is a symmetric monoidal category where ⊗ denotes
the tensor product, K the unit object and c the isomorphism of symmetry.
Without loss of generality, by the coherence theorems, we can assume the
monoidal structure of C strict (see [13, Theorem XI.5.3]). Then, in this paper,
we omit explicitly the associativity and unit constraints working as they were
all identities.

We denote the class of objects of C by |C| and for each object M in the cat-
egory C, the identity morphism by idM : M → M . For simplicity of notation,
given objects M , N and P in C and a morphism f : M → N , we write P⊗f for
idP ⊗f and f⊗P for f⊗idP . We will say that P ∈ |C| is flat if the endofunctor
P ⊗− : C→ C, equivalently −⊗ P : C→ C, preserves equalizers. If moreover
P ⊗− reflects isomorphisms we say that P is faithfully flat. Similarly, we will
say that P is coflat if P ⊗ − : C → C, equivalently − ⊗ P : C → C, preserves
coequalizers.

By a unital magma in C we understand a triple A = (A, ηA, µA) where A
is an object in C and ηA : K → A (unit), µA : A ⊗ A → A (product) are
morphisms in C such that µA ◦ (A ⊗ ηA) = idA = µA ◦ (ηA ⊗ A). If µA is
associative, i.e., µA ◦ (A⊗µA) = µA ◦ (µA⊗A), the unital magma will be called
a monoid in C. For any unital magma A, we will denote by A the opposite unital
magma (A, ηA = ηA, µA = µA ◦ cA,A). Given two unital magmas (monoids)
A = (A, ηA, µA) and B = (B, ηB , µB), f : A → B is a morphism of unital
magmas (monoids) if µB ◦ (f ⊗ f) = f ◦ µA and f ◦ ηA = ηB . By duality, a
counital comagma in C is a triple D = (D, εD, δD) where D is an object in C
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and εD : D → K (counit), δD : D → D ⊗D (coproduct) are morphisms in C
such that (εD ⊗ D) ◦ δD = idD = (D ⊗ εD) ◦ δD. If δD is coassociative, i.e.,
(δD⊗D)◦δD = (D⊗δD)◦δD, the counital comagma will be called a comonoid.
If D = (D, εD, δD) and E = (E, εE , δE) are counital comagmas (comonoids),
f : D → E is morphism of counital magmas (comonoids) if (f⊗f)◦δD = δE ◦f
and εE ◦ f = εD.

If A, B are unital magmas (monoids) in C, the object A⊗B is a unital magma
(monoid) in C where ηA⊗B = ηA⊗ηB and µA⊗B = (µA⊗µB)◦ (A⊗ cB,A⊗B).

With Ae we will denote the unital magma A ⊗ A. In a dual way, if D, E are
counital comagmas (comonoids) in C, D⊗E is a counital comagma (comonoid)
in C where εD⊗E = εD ⊗ εE and δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

Let A be a monoid. The pair (M,φM ) is a right A-module if M is an object
in C and φM : M⊗A→M is a morphism in C satisfying φM ◦(M⊗ηA) = idM ,
φM ◦ (φM ⊗ B) = φM ◦ (M ⊗ µA). Given two right A-modules (M,φM ) and
(N,φN ), f : M → N is a morphism of right A-modules if φN ◦(f⊗A) = f ◦φM .
In the following, we will denote the category of right A-modules by ModA. In
a similar way we can define the notions of left A-module (we denote the left
action by ϕM ) and morphism of left A-modules. In this case the category of
left A-modules will be denoted by AMod. Finally, note that K is a monoid and
in this case we can identify the categories ModK and KMod with C.

Let A, B be monoids. An A-B-bimodule is a triple (M,ϕM , φM ) where
(M,ϕM ) is a left A-module, (M,φM ) is a right B-module and ϕM ◦(A⊗φM ) =
φM ◦ (ϕM ⊗ B). With the obvious morphisms A-B-bimodules constitute a
category that we will denote by ABimodB.

Assume that C admits coequalizers and let A be a monoid in C, let (M,φM )
be a right A-module and let (N,ϕN ) be a left A-module. We define the object
M ⊗A N by the following coequalizer diagram in C:

-
-

-
φM ⊗N

M ⊗ ϕN

nNM
M ⊗A⊗N M ⊗N M ⊗A N.

(1)

Then, if N = A and ϕA = µA we obtain an isomorphism rM : M ⊗A A →
M . This isomorphism is the unique morphism such that φM = rM ◦ nAM .
Analogously, for a left A-module (N,ϕN ), the object A ⊗A N is isomorphic
to N , i.e., there exists a unique isomorphism lN : A ⊗A N → N such that
ϕN = lM ◦ nNA . Moreover, if (N,ϕN , φN ) is an object in ABimodB and B is
coflat, we have that M ⊗A N is a right B-module where the action φM⊗AN :
M⊗AN⊗B →M⊗AN is defined as the unique morphism such that φM⊗AN ◦
(nNM ⊗ B) = nNM ◦ (M ⊗ φN ). Similarly, if (P,ϕP ) is a left B-module and
A is coflat, the object N ⊗B P is a left A-module where the left action is
defined as the unique morphism ϕN⊗BP : A ⊗ N ⊗B P → N ⊗B P such that
ϕN⊗BP ◦(A⊗nPN ) = nPN ◦(ϕN ⊗P ). Finally, if M and N are coflat, there exists
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a unique isomorphism aM,N,P : M ⊗A (N ⊗B P )→ (M ⊗AN)⊗B P such that

aM,N,P ◦ nN⊗BP
M ◦ (M ⊗ nPN ) = nPM⊗AN ◦ (nNM ⊗ P ).

Definition 2.1. An object P in C is said to be finite if there exists P ∗ ∈ |C|
such that P ⊗ − a P ∗ ⊗ −. In what follows we will denote the unit of the
previous adjunction by αP and the counit by βP . Usually the object P ∗ is
called the dual of P . Note that, by the triangular identities for the adjunction
P ⊗− a P ∗ ⊗−, the identities

(2) (βP (K)⊗P )◦(P⊗αP (K)) = idP , (P ∗⊗βP (K))◦(αP (K)⊗P ∗) = idP∗ ,

hold.
If P and Q are finite, P ⊗ Q is finite and (P ⊗ Q)∗ = Q∗ ⊗ P ∗. For

the associated adjunction P ⊗ Q ⊗ − a Q∗ ⊗ P ∗ ⊗ − the unit is defined by
αP⊗Q = (Q∗ ⊗ αP (K) ⊗ Q ⊗ −) ◦ (αQ(K) ⊗ −) and the counit by βP⊗Q =
(βP (K)⊗−) ◦ (P ⊗ βQ(K)⊗ P ∗ ⊗−) (see [2, Proposition 3.4]).

On the other hand, if P is a finite object, P ∗ is finite and P ∗∗ = P because
P ∗ ⊗ − a P ⊗ − with αP∗ = (cP∗,P ⊗ −) ◦ αP and βP∗ = βP ◦ (cP∗,P ⊗ −)
[2, Proposition 3.5].

As a consequence, if P is a finite object, P ⊗− a P ∗ ⊗− a P ⊗− and then
P is flat and coflat.

Let P and Q be finite objects in C and let f : P → Q be a morphism between
them. There exists a new morphism f∗ : Q∗ → P ∗, called the dual of f , where

(3) f∗ = (P ∗ ⊗ βQ(K)) ◦ (P ∗ ⊗ f ⊗Q∗) ◦ (αP (K)⊗Q∗).

Obviously, if P and Q are finite f∗∗ = f.
If P is a finite object and we denote by E(P ) the tensor product P ∗ ⊗ P ,

using the properties of the adjunction it is easy to show that E(P ) is a monoid
with unit ηE(P ) = αP (K) and µE(P ) = P ∗ ⊗ βP (K) ⊗ P . Moreover, P is a
right E(P )-module with action φP = βP (K)⊗P and P ∗ is a left E(P )-module
with action ϕP∗ = P ∗ ⊗ βP (K). Then, if C admits coequalizers, we can define
the object P ⊗E(P ) P

∗ as in (1) by the coequalizer diagram

P ⊗ E(P )⊗ P ∗ -
- P ⊗ P ∗ - P ⊗E(P ) P

∗.
nP

∗

P
φP ⊗ P ∗

P ⊗ ϕP∗

The morphism βP (K) satisfies that βP (K)◦ (φP ⊗P ∗) = βP (K)◦ (P ⊗ϕP∗)
and then there exists a unique morphism ∇P : P ⊗E(P ) P

∗ → K such that

(4) ∇P ◦ nP
∗

P = βP (K).

Definition 2.2. Let P be a finite object in a symmetric monoidal category C
with coequalizers. We will say that P is a progenerator if∇P is an isomorphism.
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Thus P is a progenerator if and only if

P ⊗ E(P )⊗ P ∗
-
- P ⊗ P ∗ - K

βP (K)
φP ⊗ P ∗

P ⊗ ϕP∗

is a coequalizer diagram. Also, by [4, 3.3.14] we know that ∇P is an isomor-
phism if and only if there exists a morphism ∆P : K → P ⊗E(P ) P

∗ such
that

(5) ∇P ◦∆P = idK .

The trivial example of progenerator in C is the unit object K. If P and Q
are progenerators so is P ⊗Q [2, Proposition 3.4]. Moreover, by [2, Proposition
3.5] we have that P ∗ is a progenerator if P is a progenerator. On the other
hand, for any progenerator P the functors P ⊗E(P ) − : E(P)Mod → C and
P ∗ ⊗ − : C → E(P)Mod induce a categorical equivalence. Therefore for any
object M in C, P ⊗E(P ) (P ∗ ⊗ M) ∼= M and, if N is a left E(P )-module,
(N ⊗E(P ) P

∗) ⊗ P ∼= N ⊗E(P ) E(P ) ∼= N . These properties imply that any
progenerator is faithfully flat. Finally, if P and Q are progenerators and M
is an object of C such that P ⊗ Q ∼= M ⊗ Q (Q ⊗ P ∼= Q ⊗M), we get that
P ∼= M and then M is a progenerator.

Example 2.3. Let R be a commutative ring with unit. The category RMod,
with tensor product ⊗ = ⊗R and unit K = R, is an example of symmetric
monoidal category with equalizers and coequalizers. By the results proved in
[11], a left R-module P is a progenerator in the category RMod if and only if
P is finitely generated, projective and faithful.

Proposition 2.4. Let P and Q be finite objects in a symmetric monoidal
category C with coequalizers. Assume that there exist morphisms f : P → Q
and g : Q→ P such that g ◦ f = idP . Then, if P is a progenerator so is Q.

Proof. Let g∗ : P ∗ → Q∗ be the dual morphism of g defined in (3). Then, the
equality

nQ
∗

Q ◦ (φQ ⊗Q∗) ◦ (f ⊗ g∗ ⊗ f ⊗ g∗) = nQ
∗

Q ◦ (Q⊗ ϕQ) ◦ (f ⊗ g∗ ⊗ f ⊗ g∗)

holds by the definition of nQ
∗

Q . Moreover, if we define the morphism h : P ⊗
P ∗ → Q⊗E(Q) Q

∗ as h = nQ
∗

Q ◦ (f ⊗ g∗), by (2) and the equality g ◦ f = idP ,
we have that

nQ
∗

Q ◦ (φQ ⊗Q∗) ◦ (f ⊗ g∗ ⊗ f ⊗ g∗) = h ◦ (φP ⊗ P ∗)

and

nQ
∗

Q ◦ (Q⊗ ϕQ) ◦ (f ⊗ g∗ ⊗ f ⊗ g∗) = h ◦ (P ⊗ ϕP∗).
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Therefore, h ◦ (φP ⊗P ∗) = h ◦ (P ⊗ϕP∗) and, as a consequence, there exists
a unique

ω : P ⊗E(P ) P
∗ → Q⊗E(Q) Q

∗

such that

(6) ω ◦ nP
∗

P = h.

By (6), (4) (for Q and P ), (2) and the equality g ◦ f = idP , we have the
following identity:

∇Q ◦ ω ◦ nP
∗

P = ∇Q ◦ nQ
∗

Q ◦ (f ⊗ g∗) = βQ(K) ◦ (f ⊗ g∗) = βP (K) = ∇P ◦ nP
∗

P .

Thus

(7) ∇Q ◦ ω = ∇P .

On the other hand, P is a progenerator and then there exists a morphism
∆P : K → P ⊗E(P ) P

∗ satisfying (5). Define ∆Q : K → Q ⊗E(Q) Q
∗ as

∆Q = ω ◦∆P . Thus,

∇Q ◦∆Q = ∇Q ◦ ω ◦∆P
(7)
= ∇P ◦∆P

(5)
= idK .

Therefore, ∇Q ◦∆Q = idK and Q is a progenerator. �

Definition 2.5. Let D be a symmetric monoidal category with tensor product
�, unit object I and isomorphism of symmetry t. A functor F : C → D is
said to be symmetric monoidal if there exist morphisms Φ0 : I → F (K) and
ΦM,N : F (M)� F (N)→ F (M ⊗N) (natural in M and N ) such that:

(i) ΦM⊗N,L ◦ (ΦM,N � F (L)) = ΦM,N⊗L ◦ (F (M)� ΦN,L) for M , N and
L in C.

(ii) ΦM,K ◦ (F (M)� Φ0) = idF (M) = ΦK,M ◦ (Φ0 � F (M)) for M in C.
(iii) F (cM,N ) ◦ ΦM,N = ΦN,M ◦ tF (M),F (N) for M and N in C.

The symmetric monoidal functor F is said to be strong if Φ0 and ΦN,M are
isomorphisms for all M , N objects in C. Note that in this case, by (i) of the
previous definition, we have the following identities:

(8) (Φ−1
M,N � F (L)) ◦ Φ−1

M⊗N,L = (F (M)� Φ−1
N,L) ◦ Φ−1

M,N⊗L,

(9) (F (M)� ΦN,L) ◦ (Φ−1
M,N � F (L)) = Φ−1

M,N⊗L ◦ ΦM⊗N,L,

(10) (ΦM,N � F (L)) ◦ (F (M)� Φ−1
N,L) = Φ−1

M⊗N,L ◦ ΦM,N⊗L.

On the other hand, by (ii) of Definition 2.5 we obtain that

(11) ΦM,K = F (M)� Φ−1
0 , ΦK,M = Φ−1

0 � F (M),

(12) Φ−1
M,K = F (M)� Φ0, Φ−1

K,M = Φ0 � F (M),

and then

(13) ΦK,K = Φ−1
0 � F (K) = F (K)� Φ−1

0 ,
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(14) Φ−1
K,K = F (K)� Φ0, Φ−1

K,K = Φ0 � F (K).

Finally, by (iii),

(15)
F (cM,N ) = ΦN,M ◦ tF (M),F (N) ◦ Φ−1

M,N ,

tF (M),F (N) = Φ−1
N,M ◦ F (cM,N ) ◦ ΦM,N ,

hold.

Let F : C → D be a symmetric monoidal functor. If A = (A, ηA, µA) is a
(monoid) unital magma in C, it is easy to prove that

(16) F (A) = (F (A), ηF (A) = F (ηA) ◦ Φ0, µF (A) = F (µA) ◦ ΦA,A)

is a (monoid) unital magma in D. For (comonoids) counital comagmas we have
a similar property, i.e., if F : C → D is a strong symmetric monoidal functor
and C = (C, εC , δC) is a (comonoid) counital comagma in C, the triple

(17) F (C) = (F (C), εF (C) = Φ−1
0 ◦ F (εC), δF (C) = Φ−1

C,C ◦ F (δC))

is a (comonoid) counital comagma in D.
On the other hand, if f : A→ B is a morphism of unital magmas in C, so is

F (f) : F (A) → F (B) in D. Similarly, if g : C → D is a morphism of counital
comagmas in C, so is F (g) : F (C)→ F (D) in D.

The following results were proved in [2] and they will be useful in the fol-
lowing sections.

Proposition 2.6 ([2, Propositions 6.2, 6.4]). Let F : C → D be a strong
symmetric monoidal functor. Then:

(i) If P is a finite object in C, F (P ) is a finite object in D. Moreover,
F (P ∗) ∼= F (P )∗.

(ii) If P is a finite object in C, the monoids F (E(P )) and E(F (P )) are
isomorphic in D.

(iii) If C and D admit coequalizers and F preserves coequalizers, F preserves
progenerators.

Proposition 2.7 ([2, Proposition 6.4]). Let F : C → D be a symmetric
monoidal functor. If A = (A, ηA, µA) and B = (B, ηB , µB) are (monoids)
unital magmas in C, then ΦA,B is a morphism of (monoids) unital magmas in
D.

Similarly, by duality, we have the corresponding result for (comonoids) couni-
tal comagmas.

Proposition 2.8. Let F : C→ D be a strong symmetric monoidal functor. If
C = (C, εC , δC) and D = (D, εD, δD) are (comonoids) counital comagmas in
C, then ΦC,D is a morphism of (comonoids) counital comagmas in D.
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3. Hopf quasigroups and Hopf coquasigroups

The notion of Hopf quasigroup is a generalization of the one of Hopf alge-
bra and was introduced by Klim and Majid in [15] in order to understand the
structure and relevant properties of the algebraic 7-sphere. They are not asso-
ciative but the lack of this property is compensated by some axioms involving
the antipode. Hopf quasigroups are particular instances of unital coassociative
H-bialgebras (see [17]) and include the example of the enveloping algebra of
a Malcev algebra (see [15]) as well as the notion of quasigroup algebra of an
I.P. loop. Then, quasigroups unify I.P. loops and Malcev algebras in the same
way that Hopf algebras unified groups and Lie algebras. The definition of these
kind of objects in a monoidal setting is the following.

Definition 3.1. A Hopf quasigroup H in C is a unital magma (H, ηH , µH)
and a comonoid (H, εH , δH) such that the following axioms hold:

(i) The morphisms εH and δH are morphisms of unital magmas (equiv-
alently, ηH and µH are morphisms of comonoids), i.e., the following
identities hold:
(i-1) εH ◦ ηH = idK ,
(i-2) εH ◦ µH = εH ⊗ εH ,
(i-3) δH ◦ ηH = ηH ⊗ ηH ,
(i-4) δH ◦ µH = µH⊗H ◦ (δH ⊗ δH).

(ii) There exists λH : H → H in C (called the antipode of H) such that:
(ii-1) µH ◦ (λH ⊗ µH) ◦ (δH ⊗H)

= εH ⊗H = µH ◦ (H ⊗ µH) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H),

(ii-2) µH ◦ (µH ⊗H) ◦ (H ⊗ λH ⊗H) ◦ (H ⊗ δH)

= H ⊗ εH = µH ◦ (µH ⊗ λH) ◦ (H ⊗ δH).

If H is a Hopf quasigroup, the antipode is unique, antimultiplicative, anti-
comultiplicative and leaves the unit and the counit invariable:

λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H , δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH ,

λH ◦ ηH = ηH , εH ◦ λH = εH

([15, Proposition 4.2], and [16, Proposition 1]). Note that by (ii),

(18) µH ◦ (λH ⊗ idH) ◦ δH = µH ◦ (idH ⊗ λH) ◦ δH = εH ⊗ ηH .

A Hopf quasigroup H is cocommutative if cH,H ◦ δH = δH . In this case, as
in the Hopf algebra setting, we have that λH ◦ λH = idH (see [15, Proposition
4.3]).

Let H and B be Hopf quasigroups. We say that f : H → B is a morphism
of Hopf quasigroups if it is a morphism of unital magmas and comonoids. In
this case λB ◦ f = f ◦ λH [1, Proposition 1.5].

Example 3.2. Let R be a commutative ring with unit and with 1
2 and 1

3 in
R. A Malcev algebra (M, [ , ]) over R is a free module over R with a bilinear
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anticommutative operation [ , ] on M satisfying that

[J(a, b, c), a] = J(a, b, [a, c]),

where J(a, b, c) = [[a, b], c] − [[a, c], b] − [a, [b, c]] is the Jacobian in a, b, c. By
the construction given in [18] a Hopf quasigroup structure arises from M in the
following way: Consider the not necessarily associative algebra U(M) defined
as the quotient of R{M}, the free non-associative algebra on a basis of M , by
the ideal I(M) generated by the set

{ab− ba− [a, b], (a, x, y) + (x, a, y), (x, a, y) + (x, y, a) : a, b ∈M,x, y ∈ R{M}},

where (x, y, z) = (xy)z − x(yz) is the usual additive associator. Let {ai : i ∈
ΛM} be a basis of M , ≤ an order in ΛM and ΩM = {(i1, . . . , in) : ii, . . . in ∈
ΛM , n ∈ N and i1 ≤ . . . ≤ in}. If I = (i1, . . . , in) ∈ ΩM , then we write aMI
instead of aMi1 (aMi2 (· · · (aMin−1

aMin ) · · · )). As usual, if n = 0, then I = ∅ and

1U(M) = aMI . With this notation, the set {aMI : I ∈ ΩM} is a basis of U(M)
(Poincaré-Birkhoff-Witt theorem for Malcev algebras [18, Theorem 2.1]). By
[18, Proposition 4.1] and [15, Proposition 4.8], U(M) is a cocommutative Hopf
quasigroup structure with coproduct δU(M) : U(M) → U(M)⊗ U(M) defined
by δU(M)(x) = 1⊗x+x⊗1 for all x ∈M, counit εU(M) : U(M)→ K defined by
εU(M)(x) = 0 for all x ∈ M (both extended to U(M) as algebra morphisms),
and antipode λU(M) : U(M)→ U(M), defined by λU(M)(x) = −x for all x ∈M
and extended to U(M) as an antialgebra morphism.

Example 3.3. A quasigroup is a set Q together with a product such that for
any two elements u, v ∈ Q the equations ux = v, xu = v and uv = x have
unique solutions in Q. A quasigroup L which contains an element eL such that
ueL = u = eLu for every u ∈ L is called a loop. A loop L is said to be a
loop with the inverse property (for brevity an I.P. loop) if and only if, to every
element u ∈ L, there corresponds an element u−1 ∈ L such that the equations
u−1(uv) = v = (vu)u−1 hold for every v ∈ L.

If L is an I.P. loop, it is easy to show (see [6]) that for all u ∈ L the element
u−1 is unique and u−1u = eL = uu−1. Moreover, the mapping u → u−1 is an
anti-automorphism of the I.P. loop L, i.e., (uv)−1 = v−1u−1.

Let R be a commutative ring with unit and L an IP loop. Then, by [15,
Proposition 4.7], we know that the loop algebra

R[L] =
⊕
u∈L

Ru

is a cocommutative Hopf quasigroup with product defined by the linear exten-
sion of the one defined in L and δR[L](u) = u⊗u, εR[L](u) = 1R, λR[L](u) = u−1

on the basis elements.

Definition 3.4. A Hopf coquasigroup D in C is a monoid (D, ηD, µD) and a
counital comagma (D, εD, δD) such that the following axioms hold:

(i) The morphisms ηD and µD are morphisms of counital comonoids.
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(ii) There exists λD : D → D in C (called the antipode of D) such that:
(ii-1) (µD ⊗D) ◦ (λD ⊗ δD) ◦ δD

= ηD ⊗D = (µD ⊗D) ◦ (D ⊗ ((λD ⊗D) ◦ δD)) ◦ δD,
(ii-2) (D ⊗ µD) ◦ (δD ⊗ λD) ◦ δD

= D ⊗ ηD = (D ⊗ µD) ◦ (((D ⊗ λD) ◦ δD)⊗D) ◦ δD.
As in the case of Hopf quasigroups, the antipode is unique, antimultiplica-

tive, anticomultiplicative, leaves the unit and the counit invariable and satisfies
(18).

Proposition 3.5. Assume that C admits coequalizers. Then every finite Hopf
(co)quasigroup is a progenerator. As a consequence, every finite Hopf (co)quasi-
group is faithfully flat.

Proof. If H is a Hopf quasigroup we have that (i-1) of Definition 3.1 holds.
Then, if H is finite, by Proposition 2.4, we obtain that H is a progenerator
because so is K. For Hopf coquasigroups the proof is similar. �

It is easy to show that, if H is a finite (commutative) cocommutative Hopf
(coquasigroup) quasigroup, its dual H∗ is a (cocommutative) commutative fi-
nite Hopf (quasigroup) coquasigroup where:

ηH∗ = (H∗ ⊗ εH) ◦ αH(K),

µH∗ = (H∗ ⊗ βH(K)) ◦ (H∗ ⊗H ⊗ βH(K)⊗H∗) ◦ (H∗ ⊗ δH ⊗H∗ ⊗H∗)
◦ (αH(K)⊗H∗ ⊗H∗),

εH∗ = βH(K) ◦ (ηH ⊗H∗),
δH∗ = (H∗ ⊗H∗ ⊗ (βH(K) ◦ (µH ⊗H∗))) ◦ (H∗ ⊗ αH(K)⊗H ⊗H∗)

◦ (αH(K)⊗H∗)

and the antipode is λH∗ = (λH)∗.

Proposition 3.6. Let F : C→ D be a strong symmetric monoidal functor. If

H = (H, ηH , µH , εH , δH , λH)

is a Hopf quasigroup (Hopf coquasigroup) in C, then F (H) with unit and prod-
uct defined as in (16), counit and coproduct defined as in (17), and antipode
λF (H) = F (λH), is a Hopf quasigroup (Hopf coquasigroup) in D. If H is co-
commutative (commutative), so is F (H).

Proof. We will prove the proposition for Hopf quasigroups. The proof for Hopf
coquasigroups is dual and we leave the details to the reader. First note that,
(F (H), ηF (H) = F (ηH) ◦ Φ0, µF (H) = F (µH) ◦ ΦH,H) is a unital magma in D

and (F (H), εF (H) = Φ−1
0 ◦ F (εH), δF (H) = Φ−1

H,H ◦ F (δH)) is a comonoid in D.
Also, by Proposition 2.7, we have that ΦH,H is a morphism of unital magmas,
i.e., ΦH,H ◦ ηF (H)�F (H) = ηF (H⊗H), and

(19) µF (H⊗H) ◦ (ΦH,H � ΦH,H) = ΦH,H ◦ µF (H)�F (H)
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hold.
Trivially, εF (H) ◦ηF (H) = idI and then (i-1) of Definition 3.1 holds. By (i-2)

of Definition 3.1 for H, the naturality of Φ, and (13) we have that

εF (H) ◦ µF (H) = Φ−1
0 ◦ F (εH ◦ µH) ◦ ΦH,H = Φ−1

0 ◦ F (εH ⊗ εH) ◦ ΦH,H

= Φ−1
0 ◦ ΦK,K ◦ (F (εH)� F (εH)) = εF (H) � εF (H)

and then (i-2) of Definition 3.1 holds for F (H). In a similar way we obtain
that (i-3) of Definition 3.1 holds for F (H) using (i-3) of Definition 3.1 for H,
the naturality of Φ, and (14). On the other hand,

µF (H)�F (H) ◦ (δF (H) � δF (H))

= Φ−1
H,H ◦ F (µH⊗H) ◦ ΦH⊗H,H⊗H ◦ (ΦH,H ⊗ ΦH,H) ◦ (δF (H) � δF (H)) ((19))

= Φ−1
H,H ◦ F (µH⊗H ◦ (δH ⊗ δH)) ◦ ΦH,H (naturality of Φ)

= Φ−1
H,H ◦ F (δH ◦ µH) ◦ ΦH,H ((i-4) of Definition 3.1 for H)

= δF (H) ◦ µF (H) (definitions of δF (H) and µF (H))

and εF (H) and δF (H) are morphisms of unital magmas.
To obtain the proof of (ii) of Definition 3.1 for F (H), we only prove the first

identity of (ii-1) for F (H). The proofs for the other identities are similar and
we leave the details to the reader. Indeed:

µF (H) ◦ (λF (H) � µF (H)) ◦ (δF (H) � F (H))

= F (µH ◦ (H ⊗ µH)) ◦ ΦH,H⊗H ◦ (F (H)� ΦH,H)

◦ ((Φ−1
H,H ◦ F ((λH ⊗H) ◦ δH))� F (H)) (naturality of Φ)

= F (µH ◦ (H ⊗ µH)) ◦ ΦH⊗H,H ◦ (F ((λH ⊗H) ◦ δH)� F (H)) ((i) Definition 2.5)

= F (µH ◦ (λH ⊗ µH) ◦ (δH ⊗H)) ◦ ΦH,H (naturality of Φ)

= F (εH ⊗H) ◦ ΦH,H ((ii-1) Definition 3.1)

= ΦK,H ◦ (F (εH)� F (H)) (naturality of Φ)

= ΦK,H ◦ ((Φ0 ◦ εF (H))� F (H)) (definition of εF (H))

= εF (H) � F (H) ((ii) Definition 2.5).

Finally, if H is cocommutative, the cocommutativity of F (H) follows from
(15). �

4. Galois groups for Hopf quasigroups

In this section we resume the main results of [3] and we introduce the Galois
group associated to strong Galois H-objects that are progenerators.

Definition 4.1. Let D be a comonoid in C. The pair (M,ρM ) is a right D-
comodule if M is an object in C and ρM : M →M⊗D is a morphism in C, called
the coaction, satisfying (M⊗εD)◦ρM = idM , (ρM ⊗D)◦ρM = (M⊗δD)◦ρM .
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Given two right D-comodules (M,ρM ), (N, ρN ), a morphism in C, f : M →
N , is a morphism of right D-comodules if (f ⊗D) ◦ ρM = ρN ◦ f .

The category of right D-comodules will be denoted by CModD. In a similar
way we can define the category of left D-comodules denoted by DCMod.

Definition 4.2. Let H be a Hopf quasigroup in C and let A be a unital
magma (monoid) in C with a right coaction ρA : A → A ⊗ H. We will say
that A = (A, ρA) is a right H-comodule magma (monoid) if (A, ρA) is a right
H-comodule, and the following identities

(i) ρA ◦ ηA = ηA ⊗ ηH ,
(ii) ρA ◦ µA = µA⊗H ◦ (ρA ⊗ ρA),

hold.
Obviously, if H is a Hopf quasigroup in C, the pair H = (H, ρH = δH) is an

example of right H-comodule magma. Also, if H is cocommutative and A is a
right H-comodule magma, A = (A, ρA = (A⊗λH) ◦ ρA) is a right H-comodule
magma (see [3, Proposition 1.6]).

A morphism of right H-comodule magmas (monoids) f : A → B is a mor-
phism f : A→ B in C of unital magmas (monoids) and right H-comodules.

Proposition 4.3. Let F : C→ D be a strong symmetric monoidal functor and
let H be a Hopf quasigroup in C. Then, if A is a right H-comodule magma in
C, F(A) = (F (A), ρF (A) = Φ−1

A,H ◦ F (ρA)) is a right F (H)-comodule magma in
D. Moreover, if f : A → B is a morphism of right H-comodule magmas in B,
F (f) : F(A)→ F(B) is a morphisms of F (H)-comodule magmas in D.

Proof. The proof of this result is the same that the one we can find in [12,
Lemmas 4.3, 4.4] for Hopf algebras in a symmetric monoidal setting. �

Definition 4.4. Let H be a Hopf quasigroup in C and let A be a right H-
comodule magma in C. We will say that A is a Galois H-object if the following
conditions hold:

(i) A is faithfully flat.
(ii) The canonical morphism γA = (µA ⊗H) ◦ (A⊗ ρA) : A⊗A→ A⊗H

is an isomorphism.

Note that, by [3, Proposition 2.4], if A a Galois H-object,

- -
-K A⊗H

ηA
ρA

A⊗ ηH
A

is an equalizer diagram.

Definition 4.5. Assume that C admits coequalizers. Let H be a Hopf quasi-
group in C and let A be a right H-comodule magma in C. We will say that A
is a Galois H-progenerator object if the following conditions hold:

(i) A is a progenerator in C.
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(ii) The canonical morphism

γA = (µA ⊗H) ◦ (A⊗ ρA) : A⊗A→ A⊗H
is an isomorphism.

Definition 4.6. If A is a Galois H-object such that fA = γ−1
A ◦ (ηA ⊗ H) :

H → Ae is a morphism of unital magmas, we will say that A is a strong Galois
H-object.

Definition 4.7. Assume that C admits coequalizers. A Galois H-progenerator
object A is strong if fA = γ−1

A ◦ (ηA ⊗ H) : H → Ae is a morphism of unital
magmas.

Note that every progenerator is a faithfully flat object. As a consequence, if
C admits coequalizers, every Galois H-progenerator object is a Galois H-object,
and every strong Galois H-progenerator object is strong.

Definition 4.8. A morphism between two (strong) Galois H-(progenerator)
objects is a morphism of right H-comodule magmas.

Remark 4.9. Note that if A is a strong Galois H-(progenerator) object and B is
a Galois H-object isomorphic to A as Galois H-objects, then B is also a strong
Galois H-(progenerator) object because, if g : A → B is the isomorphism, we
have γB ◦ (g⊗g) = (g⊗H)◦γA and it follows that fB = (g⊗g)◦fA. Then, fB
is a morphism of unital magmas and B is strong. Finally, if A is a progenerator
and B is isomorphic to A, B is a progenerator.

Proposition 4.10. If H is a faithfully flat Hopf quasigroup, H is a strong
Galois H-object. Moreover, if C admits coequalizers and H is a finite Hopf
quasigroup, H is a strong Galois H-progenerator object.

Proof. The pair H = (H, δH) is a Galois H-object because γH = (µH ⊗ H) ◦
(H⊗δH) is an isomorphism with inverse γ−1

H = ((µH◦(H⊗λH))⊗H)◦(H⊗δH).
Also, H is strong because fH = (λH⊗H)◦δH : H → He is a morphism of unital
magmas. Moreover, if H is finite, by Proposition 3.5, H is a progenerator. �

By [3, Proposition 2.7] we know that if H is a cocommutative Hopf quasi-
group and A is a Galois H-object, the right H-comodule magma A is a Galois
H-object. Moreover, if A is strong so is A. Then, if A is a (strong) Galois
H-progenerator object, A is a (strong) Galois H-progenerator object.

To define a suitable product of Galois objects, in what follows, we will assume
that C admits equalizers. By [3, Proposition 1.5], if H is a Hopf quasigroup and
A and B are right H-comodule magmas, the pairs A ⊗1 B = (A ⊗ B, ρ1

A⊗B =

(A⊗ cH,B) ◦ (ρA ⊗B)), A⊗2 B = (A⊗B, ρ2
A⊗B = A⊗ ρB) are isomorphic as

right H-comodule magmas. The object A•B defined by the equalizer diagram

(20)

- -
-A •B A⊗B A⊗B ⊗H,

iA•B
ρ1
A⊗B

ρ2
A⊗B
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is a unital magma where ηA•B and µA•B are the factorizations through iA•B of
the morphisms ηA⊗B and µA⊗B ◦ (iA•B⊗ iA•B), respectively. Moreover, if H is
flat and the coaction ρA•B : A•B → A•B⊗H is the factorization of ρ2

A⊗B◦iA•B
through iA•B⊗H, the pair A•B = (A•B, ρA•B) is a right H-comodule magma
(see [3, Proposition 1.7]). Moreover, if f : A→ B, g : T→ D are morphisms of
right H-comodule magmas, the morphism f • g : A • T → B •D, obtained as
the factorization of (f ⊗ g) ◦ iA•T : A •T → B⊗D through the equalizer iB•D,
is a morphism of right H-comodule magmas between A •T and B •D. Finally,
if f and g are isomorphisms, so is f • g (see [3, Proposition 1.8]).

On the other hand, if A, B, D are right H-comodule magmas, when H is
flat, by [3, Proposition 1.9], we know that A • B and B • A are isomorphic as
right H-comodule magmas and, if A and D are flat, A • (B •D) and (A •B) •D
are isomorphic as right H-comodule magmas (see [3, Proposition 1.10]. Also,
if H cocommutative and A is a right H-comodule magma

- -
-A A⊗H A⊗H ⊗H,

ρA
ρ1
A⊗H

ρ2
A⊗H

is an equalizer diagram, and A •H and A are isomorphic as right H-comodule
magmas (see [3, Proposition 1.11]). Moreover, A•A is isomorphic to H as right
H-comodules and, if A is strong, the previous isomorphism is a morphism of
right H-comodule magmas (see [3, Proposition 2.8]).

Remark 4.11. If Magf (C,H) denotes the category whose objects are flat H-
comodule magmas and whose arrows are the morphisms of H-comodule mag-
mas, when H is cocommutative and flat, we have that Magf (C,H) is a symmet-
ric monoidal category where the tensor product is defined by the product ” •”,
the unit is H, the associative constraints aA,B,D = n−1

A,B,D, where nA,B,D is the

isomorphism between A• (B•D) and (A•B)•D, and the right unit constraints
and the left unit constraints are rA = rA, lA = rA ◦ τH,A respectively, where rA
is the isomorphism between A • H and A and τH,A is the one between H • A
and A •H (see [3, Proposition 1.13] for details).

Proposition 4.12. Let H be a cocommutative faithfully flat Hopf quasigroup
in C. The following assertions hold:

(i) If C admits equalizers and A, B are Galois H-objects, so is A • B.
(ii) If C admits equalizers and A, B are strong Galois H-objects, so is A•B.
(iii) If C admits equalizers and coequalizers H is finite and A, B are Galois

H-progenerator objects, so is A • B. As a consequence, if A and B are
strong Galois H-progenerator objects so is A • B.

Proof. The proof for (i) and (ii) is the one given in [3, Proposition 2.6]. To get
(iii), note that in the proof of (i) we show that there exists an isomorphism
g : A⊗B⊗H → A⊗B⊗A •B. Then, using that A⊗B is a progenerator, we
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obtain that H ∼= A •B and, as a consequence, A •B is a progenerator because,
by Proposition 4.10, H is a progenerator. �

As a consequence of the previous proposition and [3, Theorem 2.10], we have
the following: Assume that C admits equalizers and let H be a cocommutative
faithfully flat Hopf quasigroup in C. Let Gal(H) be the set of isomorphism
classes of Galois H-objects, and for a Galois H-object A denote its class in
Gal(H) by [A]. With the product defined by

(21) [A].[B] = [A • B]

and unit [H], Gal(H) is a commutative monoid. In addition, if H is finite,
C admits coequalizers, and Galp(H) denotes the set of isomorphism classes
of Galois H-progenerator objects, we obtain that Galp(H) is a commutative
monoid.

If we denote by Gals(H) the set of isomorphism classes of strong Galois
H-objects, with the product defined in (21) for Galois H-objects, Gals(H)
is a commutative group because by (ii) of Proposition 4.12 the product of
strong Galois H-objects is a strong Galois H-object, by Proposition 4.10 we
know that H is a strong Galois H-object and by [3, Propositions 2.7, 2.8] the
inverse of [A] in Gals(H) is [A]. If in addition, H is finite, C admits coequal-
izers, and Galsp(H) denotes the set of isomorphism classes of strong Galois
H-progenerator objects, we obtain that Galsp(H) is a commutative group.
Note that Gal(H) and Galp(H) are submonoids of Gals(H) and Galsp(H),
respectively, and on the other hand, Galsp(H) is a subgroup of Gals(H).

Proposition 4.13. Assume that C admits coequalizers and let D be symmetric
monoidal category with coequalizers. Let F : C → D be a strong symmetric
monoidal functor such that preserves coequalizers. Let H be a Hopf quasigroup
in C. The following assertions hold:

(i) If A is a Galois H-progenerator object in C so is F(A) in D.
(ii) If A is a strong Galois H-progenerator object in C so is F(A) in D.

Proof. The proof for (i) follows from Proposition 4.3 and from the following
fact: The canonical morphism γF (A) is an isomorphism with inverse γ−1

F (A) =

Φ−1
A,A ◦F (γ−1

A ) ◦ΦA,H (the proof is similar to the one given in [12, Lemma 4.3]

for Hopf algebras).
On the other hand, by (11) and the naturality of φ, we obtain that fF (A) =

F (fA) and then fF (A) is a morphism of unital magmas because, as was pointed
in Section 2, every monoidal functor preserves the condition of morphism of
unital magmas. Therefore (ii) holds. �

Proposition 4.14. Assume that C admits equalizers and coequalizers and let
D be a symmetric monoidal category with equalizers and coequalizers. Let
F : C → D be a strong symmetric monoidal functor preserving equalizers and
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coequalizers. Let H be a cocommutative finite Hopf quasigroup in C. The map

Galp(F ) : Galp(H)→ Galp(F (H))

defined by

Galp(F )([A]) = [F(A)]

is a monoid morphism. Moreover, the restriction of the previous map to
Galsp(H), induces a group morphism

Galsp(F ) : Galsp(H)→ Galsp(F (H)).

Proof. The proof follows the same pattern of the one developed for Hopf alge-
bras in [12, Proposition 4.5]. The map Galp(F ) is well-defined by (i) of Propo-
sition 4.13. To prove that Galp(F ) is a morphism of groups we only need to see
that if A and B are Galois H-progenerator objects then F(A)•F(B) ∼= F(A • B)
as Galois F (H)-progenerator objects.

Let A and B be Galois H-progenerator objects. The morphism

Φ−1
A,B ◦ F (iA•B) : F (A •B)→ F (A)� F (B)

satisfies:

ΦA⊗B,H ◦ (ΦA,B � F (H)) ◦ ρ1
F (A)�F (B) ◦ Φ−1

A,B ◦ F (iA•B)

= ΦA⊗B,H ◦ (ΦA,B � F (H)) ◦ ρ2
F (A)�F (B) ◦ Φ−1

A,B ◦ F (iA•B).

Therefore, there exists a unique morphism

pAB : F (A •B)→ F (A) • F (B)

satisfying

(22) iF (A)•F (B) ◦ pAB = Φ−1
A,B ◦ F (iA•B)

and such that it is a morphism of right F (H)-comodule magmas, i.e., a mor-
phism of Galois H-progenerator objects.

On the other hand, if F preserves equalizers

- -
-F (A •B) F (A⊗B) F (A⊗B ⊗H),

F (iA•B)
F (ρ1

A⊗B)

F (ρ2
A⊗B)

is an equalizer diagram. Moreover,

(Φ−1
A,B � F (H)) ◦ Φ−1

A⊗B,H ◦ F (ρ1
A⊗B) ◦ ΦA,B ◦ iF (A)•F (B)

= (Φ−1
A,B � F (H)) ◦ Φ−1

A⊗B,H ◦ F (ρ2
A⊗B) ◦ ΦA,B ◦ iF (A)•F (B)

holds. Thus, there exists a unique morphism

qAB : F (A) • F (B)→ F (A •B)

satisfying

(23) ΦA,B ◦ iF (A)•F (B) = F (iA•B) ◦ qAB .
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Then,

F (iA•B) ◦ qA,B ◦ pA,B
(23)
= ΦA,B ◦ iF (A)•F (B) ◦ pA,B

(22)
= ΦA,B ◦Φ−1

A,B ◦ F (iA•B).

Therefore, using that F (iA•B) is a monomorphism, we have that qA,B ◦
pA,B = idF (A•B). Similarly, we obtain the identity pA,B ◦ qA,B = idF (A)•F (B)

and this implies that pA,B is an isomorphism of Galois H-progenerator objects.
As a consequence, Galp(F ) and Galsp(F ) are group morphisms. �

Example 4.15. Let Set be the category of sets. Then, Set with ⊗ = × and
K = {∗} is a symmetric monoidal category with equalizers and coequalizers.
Let R be a commutative ring. The free R-module functor

R[ ] : Set → RMod,

defined by

R[X] =
⊕
x∈X

Rx

on a set X and in the obvious way on maps, is an example of strong symmetric
monoidal functor. Then, the free module construction turns set-theoretic prod-
ucts into tensor products and the twist on sets into the twist on the category
of left R-modules. Also it preserves coequalizers because it is left adjoint to
the forgetful functor and it is easy to show that R[ ] preserves equalizers. Note
that a Hopf quasigroup in Set is an IP loop L. Then, the loop algebra R[L],
defined in Example 3.3, has the Hopf quasigroup structure induced by the free
R-module functor (see Proposition 3.6).

If α : R→ S is a homomorphism of commutative rings, then the restriction
of scalars is a monoidal functor G : SMod → RMod. The extension of scalars
(or induction functor) F : RMod→ SMod, defined by

F ((M,ϕM )) = (S ⊗R M,ϕS⊗RM )

on objects and by F (f) = S⊗Rf on morphisms, is a strong symmetric monoidal
functor preserving coequalizers because it is left adjoint to the functor G. More-
over if S is R-flat, F is exact and then preserves equalizers. For example, if T
is a multiplicative closed set of R, there exists a ring morphism iT : R→ T−1R
and S = T−1R is a commutative ring that is flat as R-module. In this case,
for any left R-module F ((M,ϕM )) = T−1M , i.e., the localization of (M,ϕM )
by T .

Finally, if F is a field and S is a F-algebra, S contains F as subring and it
is flat as F-module. Then these monomorphisms of rings provide examples of
strong symmetric monoidal functors preserving equalizers and coequalizers.

Definition 4.16. Let H be a faithfully flat Hopf quasigroup in C. If A is a
GaloisH-object, we will say that A has a normal basis if (A, ρA) is isomorphic to
(H, δH) as right H-comodules. We denote by nA the H-comodule isomorphism
between A and H.
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If C admits equalizers and H is cocommutative, the set of isomorphism
classes of GaloisH-objects with normal basis, denoted byN(H), is a submonoid
of Gal(H) because H = (H, δH) is a Galois H-object with normal basis and
if A, B are Galois H-objects with normal basis and associated isomorphisms
nA, nB , respectively, then A • B is a Galois H-object with normal basis and
associated H-comodule isomorphism nA•B = rH ◦ (nA • nB) where nA • nB is
defined in [3, Proposition 1.8]) and rH is the isomorphism between H•H and H.
Moreover, for a strong Galois H-object with normal basis A, with associated
isomorphism nA, we have that A = (A, ρA) is also a strong Galois H-object
with normal basis, where nA = λH ◦ nA, and then, if we denote by Ns(H)
the set of isomorphism classes of strong Galois H-objects with normal basis,
Ns(H) is a subgroup of Gals(H).

Furthermore, if C admits coequalizers and H is finite, when A has a normal
basis we obtain that A is a Galois H-progenerator object because A is isomor-
phic to H. Therefore, under these conditions N(H) = Np(H) where Np(H)
denotes the set of isomorphism classes of Galois H-progenerator objects with
normal basis. Similarly, Ns(H) = Nsp(H), where Nsp(H) denotes the set of
isomorphism classes of strong Galois H-progenerator objects with normal basis.

Proposition 4.17. Assume that C admits equalizers and coequalizers and let
D be a symmetric monoidal category with equalizers and coequalizers. Let
F : C → D be a strong symmetric monoidal functor preserving equalizers and
coequalizers. Let H be a finite cocommutative Hopf quasigroup in C. The map

Np(F ) : Np(H)→ Np(F (H))

defined by
Np(F )([A]) = [F(A)]

is a monoid morphism. Moreover, the restriction of the previous map to
Nsp(H), induces a group morphism

Nsp(F ) : Nsp(H)→ Nsp(F (H)).

Proof. The proof follows from Proposition 4.14 and from the following fact: If
A is a right H-comodule magma isomorphic to H as right H-comodules, the
image of A by F is isomorphic to F(H) as right H-comodules. �

Remark 4.18. Note that, in the conditions of the previous proposition,

-

? ?
-

Nsp(F )
Nsp(H) Nsp(F (H))

ispH ispF (H)

Galsp(H) Galsp(F (H))
Galsp(F )

is a commutative diagram of commutative groups where ispH and ispF (H) denote

the obvious monomorphisms. Similarly, we have a commutative diagram of
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monoids when we work with not strong Galois H-progenerator objects:

-

? ?
-

Np(F )
Np(H) Np(F (H))

ipH ipF (H)

Galp(H) Galp(F (H))
Galp(F )

5. Exact sequences for Galois groups

In this section we will construct exact sequences of groups associated to
a finite cocommutative Hopf quasigroup in a symmetric monoidal category C
with equalizers and coequalizers. Under these conditions H is a progenerator
object and then all object isomorphic to H is a progenerator object.

We define the symmetric monoidal category Gal(C,H) as the one whose
objects are Galois H-objects, whose morphisms are morphisms of right H-
comodule magmas, the tensor product • is the one defined by the equalizer di-
agram (20), the unit object is H, and, finally the associative and unit constraints
are the ones defined for Magf (C,H) (see Remark 4.11). Similarly, with the same
morphisms, tensor product, unit object and associative and unit constraints we
can define new symmetric monoidal categories: Gals(C,H) whose objects are
strong Galois H-objects, Galp(C,H) whose objects are Galois H-progenerator
objects, Galsp(C,H) whose objects are strong Galois H-progeneretor objects,
N(C,H) whose objects are Galois H-objects with normal basis, and Ns(C,H)
whose objects are strong Galois H-objects with normal basis. Note that, in
this case, N(C,H) = Np(C,H), where Np(C,H) is the symmetric monoidal cate-
gory whose objects are Galois H-progenerator objects with normal basis, and
similarly Ns(C,H) = Nsp(C,H).

Then, we have a commutative diagram

Np(C,H) = N(C,H) Gal(C,H)

Galp(C,H)

Nsp(C,H) = Ns(C,H) Gals(C,H)

Galsp(C,H)

Ls

Ipsp

Issp

Is

J

Jp Ip

Js
s

Jp
s

Jsp
s

where Ipsp, Issp, Ip, J , Jp, Jp
s , Jsp

s , Js
s and Ls are inclusion functors.



MONOIDAL FUNCTORS AND EXACT SEQUENCES FOR HOPF QUASIGROUPS 371

Let E be a category where the isomorphisms classes of E form a set. Following
[5] we will say that E is a category with product if there exists a functor
�E : E× E→ E and natural isomorphisms �E ◦ (IdE×�E) ∼= �E ◦ (�E× IdE) :
E × E × E → E and �E ◦ τ ∼= �E : E × E → E where τ is the twist. The
Grothendieck group K0E is the abelian group generated by the isomorphisms
classes [X] of objects of E modulo the relations [X �E Y ] = [X][Y ]. Note that
for X, Y objects in E, [X] = [Y ] in K0E if and only if there exists Z in E such
that X �E Z ∼= Y �E Z in E. Also it is easy to show that any element in K0E
is equal to [X][Y ]−1 for some objects X,Y in E.

On the other hand, if E and T are categories with product and Γ : E→ T is
a product preserving functor, i.e., for all objects X, Y in E there are natural
isomorphisms Γ(X �E Y ) ∼= Γ(X)�T Γ(Y ), we have a group morphism K0Γ :
K0E→ K0T.

If we apply this construction to the categories of Galois objects associated
to a finite cocommutative Hopf quasigroup (all of them categories with product
� = •) we have that

K0Gal
s(C,H) = Gals(H), K0Gal

sp(C,H) = Galsp(H),

K0N
s(C,H) = Ns(H) = Nsp(H).

Also, using that the inclusion functors Ipsp, Issp, Ip, J , Jp, Jp
s , Jsp

s , Js
s and

Ls preserve the product, we have group morphisms

K0I
p
sp : Galsp(H)→ K0Gal

p(C,H), K0I
s
sp : Galsp(H)→ Gals(H),

K0Ip : K0Gal
p(C,H)→ K0Gal(C,H), K0J : K0N

p(C,H)→ K0Gal(C,H),

K0J
p : K0N

p(C,H)→ K0Gal
p(C,H), K0J

p
s : Nsp(H)→ K0Gal

p(C,H),

K0J
sp
s : Nsp(H)→ Galsp(H), K0J

s
s : Nsp(H)→ Gals(H),

K0Ls : Nsp(H)→ K0N(C,H).

Proposition 5.1. The following assertions hold:

(i) Ker(K0I
p
sp) ⊂ K0N

p(C,H).
(ii) Ker(K0Ip) ⊂ K0N

p(C,H).
(iii) [B] ∈ Ker(K0J) if and only if there exists D in Gal(C, H) such that

B • D ∼= D as right H-comodule magmas.
(iv) [B] ∈ Ker(K0J

p) if and only if there exists D in Galp(C, H) such that
B • D ∼= D as right H-comodule magmas.

(v) [B] ∈ Ker(K0J
p
s ) if and only if there exists D in Galp(C, H) such that

B • D ∼= D as right H-comodule magmas.
(vi) K0I

s
sp, K0J

sp
s , K0J

s
s and K0Ls are monomorphisms.

Proof. First we prove (i). Let [B] be in Ker(K0I
p
sp). Then [B] = [H] in

K0Gal
p(C,H). Thus, there exists D in Galp(C,H) such that B • D ∼= H • D as

right H-comodule magmas. This implies that B • D ∼= D as right H-comodule
magmas and, as a consequence, B ∼= H as right H-comodules because D is not
strong. Therefore B is in Np(C,H) and [B] belongs to K0N

p(C,H). The proofs
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for (ii)-(vi) are similar and we leave the details to the reader. Finally, note that
if is [B] in Ker(K0J

s
sp), B ∼= H as right H-comodules magmas, and then [B]

is the unit of GalspC (H). Similarly we obtain that K0J
sp
s , K0J

s
s and K0Ls are

monomorphisms. �

Remark 5.2. Note that in (iii), (iv) and (v) of the previous proposition the
isomorphism of right H-comodule magmas B •D ∼= D only implies that B ∼= H
as right H-comodules because D is not strong.

If E is a category with product �E, it is possible to define a new category with
product denoted by L(E) and called the loop category of E. The objects of this
category are pairs (X,α) with X an object in E and α an E-automorphism of X.
A morphism f : (X,α)→ (Y, β) in L(E) is a morphism f : X → Y in E such that
β ◦ f = f ◦α. The product on L(E) is defined with the product of E in the two
components of each object and as in E on morphisms. The Whitehead group of
E is defined as the Grothendieck group of L(E) modulo the subgroup generated
by elements of the form [(X,α ◦ β)] = [(X,α)][(X,β)]. In the following we will
denote this group by K1E. As in the case of the Grothendieck group, it is easy
to show that if Γ : E → T is a product preserving functor we have a group
morphism K1Γ : K1E→ K1T.

Let Γ : E→ T be a product preserving functor. We will say that Γ is cofinal
if, for all Z objects in T there exist an object Y in T and an object X in E such
that Γ(X) ∼= Z�T Y . For these kind of functors we define a new category with
product, denoted by Φ(Γ), whose objects are triples (X,α, Y ) with X,Y objects
in E and α : Γ(X) → Γ(Y ) an isomorphism in T. The morphisms of Φ(Γ)
are pairs (f, g) : (X,α, Y ) → (X ′, α′, Y ′) where f : X → X ′, g : Y → Y ′ are
morphisms in E such that Γ(g)◦α = α′◦Γ(f). The product on objects is defined
componentwise using the product of E and in a similar way for morphisms. The
abelian group K1Φ(Γ) is defined as K0Φ(Γ) modulo the subgroup generated
by elements of the form [(X,β ◦ α,Z)][(X,α, Y )]−1[(Y, β, Z)]−1. With these
definitions we have that there exists, for any cofinal functor Γ, an exact sequence
of abelian groups (see [5])

K1E K1T K1Φ(Γ) K0E K0T
K1Γ d l K0Γ

with l([(X,α, Y )]) = [Y ][X]−1 and d([(Z, ω)]) = [(X,β,X)], where the object
X and the morphism β come from [(Z, ω)] = [(Z�TY, ω�T idY )] = [(Γ(X), β)]
in K1T.

Let E be a category with product. A full subcategory with product E0 is
called a cofinal subcategory of E if the inclusion functor IE0 is cofinal. Then
K1IE0

is an isomorphism, K0IE0
is a monomorphism, and K1Φ(IE0

) is trivial.
Moreover, if there exists an object X in E such that the full subcategory {X}
is cofinal we have that K1E ∼= AutE(X) (see [5]).
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Proposition 5.3. The functors Issp, Jsp
s , and Js

s are cofinal. Also {H} is a
cofinal subcategory of Gals(C,H), Galsp(C,H), Nsp(C,H). Therefore,

K1Gal
s(C,H) ∼= K1Gal

sp(C,H) ∼= K1N
sp(C,H) ∼= Aut(H)

where Aut(H) is the group of automorphisms of right H-comodule magmas of
H.

Proof. Note that for every object B in the categories Gals(C,H), Galsp(C,H),
Nsp(C,H), we have an isomorphism of right H-comodule magmas B • B ∼= H.
Therefore, Issp, Jsp

s , and Js
s are cofinal and {H} is a cofinal subcategory of

Gals(C,H), Galsp(C, H), Nsp(C,H). Thus by the results of the previous para-
graph we obtain the isomorphisms for the Whitehead groups. �

Proposition 5.4. Assume that C admits equalizers and coequalizers and let
D be a symmetric monoidal category with equalizers and coequalizers. Let
F : C → D be a strong symmetric monoidal functor preserving equalizers and
coequalizers. Let H be a cocommutative finite Hopf quasigroup in C. The func-
tors

G(F ) : Galsp(C,H)→ Galsp(D,F(H)), N(F ) : Nsp(C,H)→ Nsp(D,F(H)),

defined by

G(F )(A) = F(A), N(F )(A) = F(A)

on objects and in the obvious way for morphisms, are cofinal. Therefore there
exist two exact sequences of abelian groups:

Aut(H) Aut(F(H)) K1Φ(G(F )) Galsp(H) Galsp(F (H)),
G(F )

Aut(H) Aut(F(H)) K1Φ(N(F )) Nsp(H) Nsp(F (H)).
N(F )

Proof. The functors G(F ) and are well defined and they are cofinal because for
every object B in the categories Galsp(C, F (H)), Nsp(C, F (H)), we have that
B • B ∼= F(H) as right F (H)-comodule magmas. Thus, applying the general
theory of exact sequences associated to cofinal functors we obtain the result. �

As was proved in [3], the group Aut(H) admits a good explanation in terms
of the group of grouplike elements of the dual algebra of H when H is finite. If
H is a finite cocommutative Hopf quasigroup, H∗ is a finite commutative Hopf
coquasigroup and, if G(H∗) (the set of grouplike elements of H∗) denotes the
set of morphisms h : K → H∗ such that δH∗ ◦ h = h ⊗ h and εH∗ ◦ h = idK ,
G(H∗) with the convolution product h ∗ g = µH∗ ◦ (h ⊗ g) is a commutative
group, called the group of grouplike morphisms of H∗. Note that the unit
element of G(H∗) is ηH∗ and the inverse of h ∈ G(H∗) is h−1 = λH∗ ◦h. Under
this conditions we have that G(H∗) and Aut(H) are isomorphic (see [3]). Then
we have the following corollary.
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Corollary 5.5. In the conditions of Proposition 5.4 there exists two exact
sequences of abelian groups:

G(H∗) G(F (H)∗) K1Φ(G(F )) Galsp(H) Galsp(F (H)),
G(F )

G(H∗) G(F (H)∗) K1Φ(N(F )) Nsp(H) Nsp(F (H)).
N(F )

6. Exact sequences for invertible modules

In the last section of this paper we will study the exact sequences associated
to invertible (quasi)modules and associated to Hopf quasigroups in a symmetric
monoidal category C with equalizers and coequalizers.

Definition 6.1. Let H be a Hopf quasigroup in C. We say that (M,ϕM ) is a
left H-quasimodule if M is an object in C and ϕM : H⊗M →M is a morphism
in C (called the action) satisfying

(24) ϕM ◦ (ηH ⊗M) = idM ,

(25)
ϕM ◦ (H ⊗ ϕM ) ◦ (H ⊗ λH ⊗M) ◦ (δH ⊗M)

= εH ⊗M = ϕM ◦ (λH ⊗ ϕM ) ◦ (δH ⊗M).

This definition was introduced by Brzeziński and Jiao in [8], but the involved
equalities appeared previously in the definition of Hopf module that we can find
in [7] and in [14].

Given two left H-quasimodules (M,ϕM ) and (N,ϕN ), f : M → N is a
morphism of left H-quasimodules if it is a morphism of left H-modules for the
unital magma H, i.e., ϕN ◦ (H ⊗ f) = f ◦ ϕM holds. We denote the category
of left H-quasimodules by HQMod.

If (M,ϕM ) and (N,ϕN ) are left H-quasimodules, the tensor product M⊗N
is a left H-quasimodule with the diagonal action

(26) ϕM⊗N = (ϕM ⊗ ϕN ) ◦ (H ⊗ cH,M ⊗N) ◦ (δH ⊗M ⊗N).

The tensor product defined by the diagonal action (26) makes the cate-
gory of left H-quasimodules into a monoidal category (HQMod,⊗,K) and in
a symmetric monoidal category when H is cocommutative. Therefore, if H
is cocommutative, HQMod is a category with product. Replacing (25) by the
equality

(27) ϕM ◦ (H ⊗ ϕM ) = ϕM ◦ (µH ⊗M),

we obtain the definition of left H-module. Under these conditions, (25) holds
trivially. Note that (H,µH) is not an H-module but an H-quasimodule. The
morphism between left H-modules is defined as for H-quasimodules and we
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denote the category of left H-modules by HMod. As in the case of left H-
quasicomodules, HMod with the tensor product defined by the diagonal struc-
ture is monoidal with unit object K and also is a symmetric category, and
therefore a category with product, when H is cocommutative.

In the Hopf quasigroup setting the notion of left H-comodule is exactly
the same as for ordinary Hopf algebras since it only depends on the coalgebra
structure of H. Then, we will denote a left H-comodule by (M,%M ) where
M is an object in C and %M : M → H ⊗M is a morphism in C (called the
coaction) satisfying the comodule conditions:

(28) (εH ⊗M) ◦ %M = idM ,

(29) (H ⊗ %M ) ◦ %M = (δH ⊗M) ◦ %M .
Given two left H-comodules (M,%M ) and (N, %N ), f : M → N is a mor-

phism of left H-comodules if

(30) %N ◦ f = (H ⊗ f) ◦ %M .
In the following, we denote the category of left H-comodules by HComod.

For two left H-comodules (M,%M ) and (N, %N ), the tensor product M ⊗N is
a left H-comodule with the codiagonal coaction

(31) %M⊗N = (µH ⊗M ⊗N) ◦ (H ⊗ cM,H ⊗N) ◦ (%M ⊗ %N ).

This makes the category of left H-comodules into a monoidal category
(HComod,⊗,K) but not in a symmetric monoidal category because the product
of H it is not associative in general.

In a similar way we can define the categories of right H-quasimodules, right
H-modules, and right H-comodules. All of them are monoidal with the cor-
responding diagonal actions an coactions. The notations for these categories
will be QModH, ModH and ModH respectively. As in the left case QModH,
ModH are symmetric monoidal categories, and then with product, when H is
cocommutative.

If D is a Hopf coquasigroup we will say that (M,%M ) is a left D-quasi-
comodule if M is an object in C and %M : M → D ⊗M is a morphism in C
satisfying (28) for H = D and

(32)
(µD ⊗M) ◦ (D ⊗ λD ⊗M) ◦ (D ⊗ %M ) ◦ %M

= ηD ⊗M = (µD ⊗M) ◦ (λD ⊗ %M ) ◦ %M .

If (M,%M ) satisfies (29) instead of (32) we will say that (M,%M ) is a
left D-comodule. With DQComod we will denote the category of left D-
quasicomodules and with DComod the category of left D-comodules. Note that
(D, δD) is an example of D-quasicomodule but not an example of D-comodule.
In these categories the morphisms are the ones satisfying (30), for H = D, and
they are monoidal categories with the product induced by the diagonal coac-
tion (31). They are symmetric monoidal categories, and then with product, if
D is commutative. On the other hand, the notion of left D-module is defined
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as in the case of Hopf quasigroups and then we will denote the category of left
D-modules by DMod. This category with the diagonal product is monoidal but
not with product in general. Finally, we can define the corresponding categories
of right objects denoted by QComodD, ComodD and ModD respectively.

Definition 6.2. Let D be a symmetric monoidal category with tensor product
�, unit I and symmetry τ . An object M in D is said to be invertible if there

exist M̂ , an object in D, and an isomorphism in D ωM : M ⊗ M̂ → I.
The object M is invertible if and only if the functor M ⊗ − : D → D is an

equivalence of categories. In this setting if we put F = M ⊗− and G = M̂ ⊗−
we have that the natural isomorphisms aM : IdD =⇒ GF and bM : FG =⇒ IdD
associated to the equivalence are defined by

aM (N) = (τ
M,M̂

◦ ω−1
M )⊗N, bM (N) = ωM ⊗N

for all N in D. It is well-known that this equivalence induces an adjoint
equivalence by replacing either one of the natural isomorphism aM , bM by
a new unit or counit. In this case the unit uM : IdD =⇒ GF and the counit
vM : FG =⇒ IdD of the adjunction F a G are defined by

uM (N) = aM (N),

vM (N) = bM (N) ◦ (M ⊗ a−1
M (K)⊗ M̂ ⊗N) ◦ (M ⊗ M̂ ⊗ b−1

M (N)),

for all N in D. Therefore, M is finite in D and we can assume that M∗ = M̂ .
Moreover, If we define ∆M = nM

∗

M ◦v−1
M (K), by (4) we obtain that ∇M ◦∆M =

vM (I) ◦ vM (I)−1 = idI and therefore we have that M is a progenerator in D.
With Pic(D) we will denote the set of isomorphism classes [M ] of invertible

objects in D. The set Pic(D) is an abelian group under the operation induced
by the tensor product. The unit element is [I] and the inverse of [M ] is [M∗].
Also, note that if Pic(D) denotes the full subcategory of D whose objects are
the invertible objects in D we have that Pic(D) is a category with product
and {I} is a cofinal subcategory of Pic(D). Therefore K1Pic(D) ∼= AutD(I) and
K0Pic(D) ∼= Pic(D).

Remark 6.3. Let H be a cocommutative Hopf quasigroup in the category C. We
know that HQMod and HMod are symmetric monoidal categories and, as a con-
sequence, they are categories with product. With Pic(HQMod) and Pic(HMod)
we shall denote the Picard groups of HQMod and HMod respectively. Then, if
Pic(HQMod) and Pic(HMod) are the categories with product of the invertible
objects in HQMod and HMod, we have that {(K,ϕK = εH ⊗K)} is a cofinal
subcategory of Pic(HQMod) and Pic(HMod). Therefore,

K1Pic(HQMod) ∼= AutC(K) ∼= K1Pic(HMod),

K0Pic(HQMod) ∼= Pic(HQMod), K0Pic(HMod) ∼= Pic(HMod),

and there exists a group injection iH : Pic(HMod)→ Pic(HQMod).

Proposition 6.4. Let H be a finite cocommutative Hopf quasigroup in C.
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(i) If (M,ϕM ) is a left H-quasimodule,

(M,ρM = cH∗,M ◦ (H∗ ⊗ ϕM ) ◦ (αH(K)⊗M))

is a right H∗-quasicomodule.
(ii) If (M,ϕM ) is a left H-module,

(M,ρM = cH∗,M ◦ (H∗ ⊗ ϕM ) ◦ (αH(K)⊗M))

is a right H∗-comodule.

Proof. (i) Note that by the naturality of c, the triangular equalities for the unit
αH and counit βH of the adjunction H ⊗− a H∗ ⊗−, and (24) we have

(M⊗εH∗)◦ρM = (βH(K)⊗ϕM )◦(ηH⊗αH(K)⊗M) = ϕM ◦(ηH⊗M) = idM .

On the other hand,

(M ⊗ µH∗) ◦ (ρM ⊗ λH∗) ◦ ρM
= (M ⊗ ((H∗ ⊗ βH(K)) ◦ (H∗ ⊗ ((λH ⊗ βH(K)) ◦ (δH ⊗H∗))⊗H∗)
◦ (αH(K)⊗H∗ ⊗H∗))) ◦ (cH∗,M ⊗H∗) ◦ (H∗ ⊗ ϕM ⊗H∗)
◦ (αH(K)⊗ cH∗,M ) ◦ (H∗ ⊗ ϕM ) ◦ (αH(K)⊗M) (triangular equalities)

= ((ϕM ◦ (H ⊗ ϕM ))⊗H∗) ◦ (H ⊗H ⊗ cH∗,M ) ◦ (H ⊗ cH∗,H ⊗M)

◦ (cH∗,H ⊗ βH(K)⊗H ⊗M) ◦ (H∗ ⊗ cH,H ⊗ αH(K)⊗M)

◦ (H∗ ⊗ λH ⊗ βH(K)⊗H ⊗M) ◦ (H∗ ⊗ δH ⊗ αH(K)⊗M)

◦ (αH(K)⊗M) (naturality of c)

= ((ϕM ◦ (H ⊗ ϕM ))⊗H∗) ◦ (H ⊗H ⊗ cH∗,M ) ◦ (H ⊗ cH∗,H ⊗M)

◦ (cH∗,H ⊗H ⊗M) ◦ (H∗ ⊗ ((H ⊗ λH) ◦ cH,H ◦ δH)⊗M)

◦ (αH(K)⊗M) (triangular equalities)

= cH∗,M ◦ (H∗ ⊗ ((ϕM ◦ (H ⊗ ϕM ) ◦ (H ⊗ λH ⊗M) ◦ (δH ⊗M)))

◦ (αH(K)⊗M) (naturality of c and cocommutativity of H)

= M ⊗ ηH∗ ((25) and naturality of c).

The proof for (M⊗µH∗)◦(M⊗λH∗⊗H∗)◦(ρM⊗H∗)⊗ρM = M⊗ηH∗ uses
the same pattern and we leave the details to the reader. Finally (ii) follows by
(27) in a similar way. �

The following result generalizes the one proved by Caenepeel in [9] (see also
[10, Proposition 13.3.1]) for left modules associated to a faithfully projective
commutative and cocommutative Hopf algebra.

Theorem 6.5. Let H be a finite cocommutative Hopf quasigroup in C. Then

Pic(HMod) ∼= Pic(C)⊕G(H∗).

Proof. In the proof of this result the commutativity and the associativity of
the product on H is not needed. As a consequence, the proof is similar to the
one developed in [12, Proposition 3.11]. For the convenience of the reader we
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give a brief resume. First, by the previous proposition we have that if (M,ϕM )
is a left H-module, then (M,ρM = cH∗,M ◦ (H∗ ⊗ ϕM ) ◦ (αH(K) ⊗M)) is a
right H∗-comodule. Let (M,ϕM ) be a left H-module invertible. The morphism
hM = (u−1

M (K)⊗H∗) ◦ (M∗ ⊗ ρM ) ◦ uM (K) is in G(H∗). As a consequence, it
is possible to define the map

w : Pic(HMod)→ G(H∗)

by w([(M,ϕM )]) = hM . This map is a group morphism and it is an epimor-
phism because if h : K → H∗ is in G(H∗), h = w([(K,ϕK = βH(K)◦(H⊗h))]).
Note that the object (K,ϕK = βH(K) ◦ (H ⊗ h)) is invertible in HMod with

(K̂ = K,ϕK̂ = βH(K) ◦ (λH ⊗ h)).
On the other hand, there exists a morphism of groups

pic : Pic(C)→ Pic(HMod)

defined by pic([M ]) = [(M, εH⊗M)]. If w([(M,ϕM )]) = ηH∗ it is easy to prove
that ϕM = εH ⊗M and then [(M,ϕM )] ∈ Im(pic). Moreover, w(pic([M ])) =
ηH∗ for all M invertible in C. Therefore, the sequence

0→ Pic(C)→ Pic(HMod)→ G(H∗)→ 0

is exact and splits because there exists a morphism

pH : Pic(HMod)→ Pic(C)

defined by

pH([(M,ϕM )]) = [M ]

such that pH ◦ pic = idPic(C). �

Proposition 6.6. Let C and D be symmetric monoidal categories, let F : C→
D be a strong symmetric monoidal functor, and let H be a Hopf quasigroup in
C. The following assertions hold.

(i) If (M,ϕM ) is a left H-quasimodule, (F (M), ϕF (M) = F (ϕM ) ◦ ΦH,M )
is a left F (H)-quasimodule.

(ii) If (M,ϕM ) is a left H-module, (F (M), ϕF (M) = F (ϕM ) ◦ ΦH,M ) is a
left F (H)-module.

(iii) If f : M → N is a morphism of left H-(quasi)modules in C, F (f) is a
morphism of left F (H)-(quasi)modules in D.

(iv) If (M,ϕM ), (N,ϕN ) are left H-(quasi)modules, ΦM,N is a morphism
of left F (H)-(quasi)modules.

(v) The morphism Φ0 is a morphism of left F (H)-(quasi)modules for

ϕF (K) = F (εH ⊗K) ◦ ΦH,K

and ϕI = εF (H) ⊗ I.
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Proof. As in the previous cases we shall assume that � is the tensor product
of D and I its unit object. The proof for (i) is the following: Firstly note that,
by the naturality of Φ, (24), and (11), we have:

ϕF (M) ◦ (ηF (H) � F (M)) = ΦK,M ◦ (Φ0 � F (M)) = idF (M).

On the other hand,

ϕF (M) ◦ (λF (H)� ϕF (M)) ◦ (δF (H) � F (M))

= F (ϕM ◦ (λH ⊗ ϕM )) ◦ ΦH,H⊗M ◦ (F (H)� ΦH,M )

◦ ((Φ−1
H,H ◦ F (δH))� F (M)) (naturality of Φ)

= F (ϕM ◦ (λH ⊗ ϕM )) ◦ ΦH,H⊗M ◦ Φ−1
H,H⊗M ◦ ΦH⊗H,M

◦ (F (δH)� F (M)) ((9))

= F (ϕM ◦ (λH ⊗ ϕM ) ◦ (δM ⊗M)) ◦ ΦH,M (naturality of Φ)

= F (εH ⊗M) ◦ ΦH,M ((25))

= ΦK,M ◦ (F (εH)� F (M)) (naturality of Φ)

= εF (H) � F (M) ((11)).

Similarly, we can prove that

ϕF (M) ◦ (F (H)� ϕF (M)) ◦ (F (H)� λF (H � F (M)) ◦ (δF (H) � F (M))

= εF (H) � F (M).

The proof of (ii) follows by analogous arguments and we leave the details to
the reader.

If f : M → N is a morphism of left H-(quasi)modules, by the naturality of
Φ, we obtain that F (f) is a morphism of left F (H)-(quasi)modules in D. Then
(iii) holds. Similarly, by the naturality of Φ and (i) of Definition 2.5, it is easy
to prove (iv). Finally (v) follows from (11). �

Corollary 6.7. In the conditions of the previous proposition, if (M,ϕM ) is
an invertible left H-(quasi)module, (F (M), ϕF (M)) is an invertible left F (H)-
(quasi)module.

Proof. If (M,ϕM ) is an invertible left H-(quasi)module and (M̂, ϕ
M̂

) is the left

H-(quasi)module such that there exists an isomorphism ωM : M ⊗ M̂ → K,

we can choose the left F (H)-(quasi)module (F̂ (M) = F (M̂), ϕ
F̂ (M)

= ϕ
F (M̂)

)

and then, by (iii)-(v) of the previous proposition we have that

ωF (M) = Φ−1
0 ◦ F (ωM ) ◦ Φ

M,M̂
: F (M)� F̂ (M)→ I

is an isomorphism of left F (H)-(quasi)modules. Therefore (F (M), ϕF (M)) is
an invertible left F (H)-(quasi)module and the assertion holds. �
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Corollary 6.8. In the conditions of Proposition 6.6, if H is cocommutative,
there exists cofinal product preserving functors

QPic(F ) : Pic(HQMod)→ Pic(F(H)QMod),

P ic(F ) : Pic(HMod)→ Pic(F(H)Mod)

defined as (M,ϕM )  (F (M), ϕF (M)) on objects and in the obvious way on
morphisms.

Proof. The proof follows directly from Corollary 6.7. Note that if (P,ϕP ) is

an invertible left F (H)-(quasi)module, then, by (v) of Proposition 6.6, P � P̂
is isomorphic to F (K) as left F (H)-(quasi)modules.

�

Theorem 6.9. In the conditions of Proposition 6.6, if H is cocommutative,
there exist two exact sequences

AutC(K) AutD(I) K1Φ(QPic(F )) Pic(HQMod) Pic(F(H)QMod),

AutC(K) AutD(I) K1Φ(Pic(F )) Pic(HMod) Pic(F(H)Mod).

Proof. The proof is a consequence of the general results about exact sequences
associated to cofinal product preserving functors of Corollary 6.8 and the iso-
morphisms of Remark 6.3. �
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