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SOME FINITENESS RESULTS FOR CO-ASSOCIATED

PRIMES OF GENERALIZED LOCAL HOMOLOGY MODULES

AND APPLICATIONS

Yen Ngoc Do, Tri Minh Nguyen, and Nam Tuan Tran

Abstract. We prove some results about the finiteness of co-associated
primes of generalized local homology modules inspired by a conjecture of

Grothendieck and a question of Huneke. We also show some equivalent

properties of minimax local homology modules. By duality, we get some
properties of Herzog’s generalized local cohomology modules.

1. Introduction

In [13] J. Herzog introduced the definition of generalized local cohomology
which is an extension of local cohomology of A. Grothendieck ([4, 11]). Let I
be an ideal of a noetherian commutative ring R and M,N R-modules. In [20]
we defined the i-th generalized local homology module HI

i (M,N) of M,N with
respect to I by

HI
i (M,N) = lim←−

t

TorRi (M/ItM,N).

This definition is in some sense dual to J. Herzog’s definition of generalized
local cohomology modules [13] and in fact a generalization of the usual local
homology modules ([5, 6]).

In [10] A. Grothendieck gave a conjecture: For any ideal I of R and any
finitely generated R-module M, the module HomR(R/I,Hi

I(M)) is finitely gen-
erated for all i. A weaker question is due to C. Huneke [14]: If M is finitely gen-
erated, is the number of associated primes of local cohomology modules Hi

I(M)
always finite? Hartshorne in [12] gives a counterexample to Grothendieck’s con-
jecture and Singh in [25] gives a counterexample to C. Huneke’s question. In
[16] M. Katzman also gives an example of an infinite set of associated primes
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of a local cohomology module. Brodmann-Faghani [3] and Aghapournahr-
Melkersson [1] also gave some finiteness results for associated primes of local
cohomology modules.

There is a similar question in (generalized) local homology theory: When is
the set of co-associated primes of (generalized) local homology modules finite?
Note that the finiteness of co-associated primes and associated primes of (gen-
eralized) local homology modules and (generalized) local cohomology modules
is closely related to the local-global-principle for finiteness dimensions of G.
Faltings [9]. T. T. Nam in [23] showed some finiteness results for co-associated
primes of local homology modules. In this paper we extend some results of [23]
to generalized local homology modules. The purpose of this paper is to study
the finiteness of co-associated primes of generalized local homology modules
inspired by Grothendieck’s conjecture and Huneke’s question. We also study
some properties of minimax local homology modules. By duality, we get some
properties of Herzog’s generalized local cohomology modules. The organization
of the paper is as follows.

In Section 2 we recall briefly some properties of linearly compact modules
and (generalized) local homology modules that we shall use.

In Section 3 we establish some properties of minimax local homology mod-
ules. Theorems 3.3, 3.4 and 3.5 give us some results on the finiteness of co-
associated primes of local homology modules inspired by A. Grothendieck’s
conjecture and C. Huneke’s question. In [20] and [24] we also showed some
similar results, but the new results in this paper are stronger. In addition we
show some equivalent properties of minimax local homology modules (Theo-
rem 3.6).

In the last section, based on the dual theorem (Theorem 4.5) and the re-
sults of generalized local homology modules in the previous section we get the
finiteness results of associated primes of generalized local cohomology modules
(Theorems 4.7, 4.9 and 4.12). The section is closed by Theorem 4.14 in which
we show some equivalent properties of minimax generalized local cohomology
modules.

Throughout this paper, R is a noetherian commutative ring has a topological
structure.

2. Preliminaries

We begin by recalling the concept of linearly compact defined by I. G. Mac-
donald [17]. A Hausdorff linearly topologized R-module M is said to be linearly
compact if for any family F of closed cosets (i.e., cosets of closed submodules)
in M which has the finite intersection property, then the cosets in F have a
non-empty intersection. A Hausdorff linearly topologized R-module M is called
semi-discrete if every submodule of M is closed. Thus a discrete R-module is
semi-discrete. It is clear that artinian R-modules are linearly compact with
the discrete topology. So the class of semi-discrete linearly compact modules
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contains all artinian modules. Moreover, if (R,m) is a complete ring, then the
finitely generated R-modules are also linearly compact and discrete. Following
are some basic properties of linearly compact modules.

Lemma 2.1 ([17, 3.5, 3.14, 3.15]). (i) Let M be a Hausdorff linearly topologized
R-module, N a closed submodule of M. Then M is linearly compact if and only
if N and M/N are linearly compact.

(ii) If M is a linearly compact module, then for each positive integer t, ItM
is a closed submodule of M. Moreover, I(

⋂
t>0

ItM) =
⋂
t>0

ItM.

Denoting by lim←−
i

t

the i-th right derived functor of the inverse limit lim←−
t

, we

have the following lemma.

Lemma 2.2 (see [15, 7.1]). Let {Mt} be an inverse system of linearly compact
modules with continuous homomorphisms. Then lim←−

i

t

Mt = 0 for all i > 0.

Therefore, if

0 −→ {Mt} −→ {Nt} −→ {Pt} −→ 0

is a short exact sequence of inverse systems of R-modules provided {Mt} is an
inverse system of linearly compact modules with continuous homomorphisms,
then the sequence of inverse limits

0 −→ lim←−
t

Mt −→ lim←−
t

Nt −→ lim←−
t

Pt −→ 0

is exact.

Lemma 2.3 ([6, 2.7]). If M is a finitely generated R-module and {Ns} is an
inverse system of linearly compact R-modules with continuous homomorphisms,
then for all i ≥ 0, {TorRi (M,Ns)} forms an inverse system of linearly compact
modules with continuous homomorphisms. Moreover, we have

TorRi (M, lim←−
s

Ns) ∼= lim←−
s

TorRi (M,Ns).

Let I be an ideal of R, the I-adic completion ΛI(M) of an R-module M is
defined by ΛI(M) = lim←−

t

M/ItM. In [5], the i-th local homology module HI
i (M)

of an R-module M with respect to I is defined by

HI
i (M) ∼= lim←−

t

TorRi (R/It,M).

It is clear that HI
0 (M) ∼= ΛI(M).

Lemma 2.4 ([6, 3.3, 3.10, 4.1]). Let M be a linearly compact R-module. Then

(i) HI
i (M) is also a linearly compact R-module for all i ≥ 0.

(ii) HI
i (

⋂
t>0

ItM) ∼=

{
0, i = 0,

HI
i (M), i > 0.
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(iii) Assume in addition that M is a semi-discrete linearly compact R-
module. Then HI

0 (M) = 0 if and only if xM = M for some x ∈ I.

Let M and N be R-modules. In [20], the i-th generalized local homology
module HI

i (M,N) of M,N with respect to I is defined by

HI
i (M,N) = lim←−

t

TorRi (M/ItM,N).

When i = 0, HI
0 (M,N) ∼= ΛI(M,N) in which

ΛI(M,N) = lim←−
t

(R/It⊗RM⊗RN).

In particular, HI
i (R,N) = HI

i (N).

Lemma 2.5 ([28, 2.3(i)]). If M is a finitely generated R-module and N is a
linearly compact R-module, then for all i ≥ 0, HI

i (M,N) is a linearly compact
R-module.

Lemma 2.6 ([28, 3.4]). Let M be a finitely generated module and N a linearly
compact R-module. If N is complete in the I-adic topology (i.e., ΛI(N) ∼= N),
then for all i ≥ 0, there is an isomorphism

TorRi (M,N) ∼= HI
i (M,N).

The co-support CosuppR(M) of an R-module M is the set of primes p such
that there exists a cocyclic homomorphic image L of M with Ann(L) ⊆ p

([27, 2.1]). Note that a module is cocyclic if it is a submodule of E(R/m).
If 0−→N −→M −→K −→ 0 is an exact sequence of R-modules, then

Cosupp
R

(M) = Cosupp
R

(N) ∪ Cosupp
R

(K) ([27, 2.7]).

Lemma 2.7 ([21, 3.14] and [18, 3.8]). Let M be a finitely generated R-module
and N a linearly compact R-module. Then

CosuppR(HI
i (M,N)) ⊆ Supp(M)

⋂
CosuppR(N)

⋂
V (I)

for all i ≥ 0.

A prime ideal p is called co-associated to a non-zero R-module M if there is
an artinian homomorphic image T of M with p = AnnR T [27]. The set of co-
associated primes of M is denoted by CoassR(M). It follows that CoassR(M) ⊆
CosuppR(M). If 0−→N −→M −→K −→ 0 is an exact sequence of R-modules,
then CoassR(K) ⊆ CoassR(M) ⊆ CoassR(N) ∪ CoassR(K). If M is a semi-
discrete linearly compact R-module, then the set Coass(M) is finite ([6, 2.9]).

Lemma 2.8 ([27, 1.21]). Let M be a finitely generated R-module and N an
R-module. Then

CoassR(M⊗RN) = SuppR(M)
⋂

CoassR(N).
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3. The co-associated primes of generalized local homology modules

We first recall the concept of minimax module introduced by H. Zöschinger
[30]. An R-module M is called a minimax module if there is a finitely generated
submodule N of M such that the quotient module M/N is artinian. Thus
the class of minimax modules includes all finitely generated and all artinian
modules. Moreover, it also includes all semi-discrete linearly compact modules.

An R-module M is said to be I-coartinian if CosuppR(M) ⊆ V (I) and

TorRi (R/I,M) is an artinian R-module for each i [18]. This definition is in
some sense dual to R. Hartshone’s concept of I-cofinite modules [12]. In order
to state Theorem 3.3 the following lemma will be useful.

Lemma 3.1 ([23, 3.5]). Let M be a minimax linearly compact R-module with
Cosupp(M) ⊆ V (I). Then the R-module M is I-coartinian if and only if
M/IM is artinian.

Lemma 3.2 ([23, 3.6]). Let M be an I-coartinian minimax linearly compact
R-module. If N is a closed submodule of M, then N and M/N are I-coartinian
minimax linearly compact R-modules.

The following theorem is inspired by A. Grothendieck’s conjecture [10] and
C. Huneke’s question [14].

Theorem 3.3. Let M be a finitely generated R-module and N a semi-discrete
linearly compact R-module such that N/( ∩

t>0
ItN) is an artinian R-module. Let

s be a non-negative integer. If HI
i (M,N) is minimax for all i < s, then

HI
i (M,N) is I-coartinian for all i < s and HI

s (M,N)/IHI
s (M,N) is artinian.

In particular, Coass(HI
s (M,N)) is a finite set.

Proof. The proof is by induction on s. When s = 0, it is trivial that HI
i (M,N)

is I-coartinian for all i < 0. By Lemma 2.2 the short exact sequence of inverse
systems of linearly compact modules

0−→{ItN}−→{N}−→{N/ItN}−→ 0

induces a short exact sequence

0−→
⋂
t>0

ItN −→N −→ΛI(N)−→ 0.

Set K =
⋂
t>0

ItN, then ΛI(N) ∼= N/K which is an artinian R-module. From

Lemma 2.3 we have

ΛI(M,N) = lim←−
t

(R/It ⊗RM
⊗
R

N)

∼= lim←−
t

(M ⊗R N/ItN) ∼= M ⊗R ΛI(N).

It follows that ΛI(M,N) is artinian and then ΛI(M,N)/IΛI(M,N) is also
artinian.
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Let s > 0. It follows from the inductive hypothesis that HI
i (M,N) is I-

coartinian for all i < s − 1 and HI
s−1(M,N)/IHI

s−1(M,N) is artinian. More-

over, Cosupp(HI
s−1(M,N)) ⊆ V (I) by Lemma 2.7. We conclude from Lemma

3.1 that HI
s−1(M,N) is I-coartinian. Now the short exact sequence of linearly

compact R-modules

0−→K −→N −→N/K −→ 0

gives rise to a long exact sequence of generalized local homology modules

(∗) · · · −→HI
s (M,K)−→HI

s (M,N)
α−→HI

s (M,N/K)−→· · · .

It induces an exact sequence

HI
s (M,K)−→HI

s (M,N)−→ Imα−→ 0.

Then we have the following exact sequence

HI
s (M,K)/IHI

s (M,K)−→HI
s (M,N)/IHI

s (M,N)−→ Imα/I Imα−→ 0.

Since N/K is complete in I-adic topology, there is an isomorphism

TorRi (M,N/K) ∼= HI
i (M,N/K)

for all i ≥ 0 by Lemma 2.6. So HI
s (M,N/K) is an artinian R-module and then

Imα/I Imα is also an artinian R-module. In order to prove the artinianness
of HI

s (M,N)/IHI
s (M,N) we only need to prove that HI

s (M,K)/IHI
s (M,K)

is an artinian R-module.
By Lemma 2.4(ii), (iii) there is an element x ∈ I such that xK = K. Now

the short exact sequence

0−→ 0 :K x−→K
.x−→K −→ 0

gives rise to a long exact sequence

· · · −→ HI
i (M,K)

.x−→ HI
i (M,K) −→ HI

i−1(M, 0 :K x) −→ · · · .

Thus we have an induced short exact sequence

0−→HI
i (M,K)/xHI

i (M,K)−→HI
i−1(M, 0 :K x)−→ 0 :HI

i−1(M,K) x−→ 0.

According to the above argument, HI
i (M,N/K) is an artinian R-module for

all ≥ 0, so HI
i (M,N/K) is minimax. As HI

i (M,N) is minimax for all i < s,
it follows from the exact sequence (∗) that HI

i (M,K) is minimax for all i < s.
Then HI

i (M,K)/xHI
i (M,K) and 0 :HI

i−1(M,K) x are minimax for all i < s.

Hence HI
i−1(M, 0 :K x) is also minimax for all i < s. It should be noted by

[29, 1 (b0)] that 0 :K x is an artinian R-module. From the inductive hy-
pothesis, HI

i−1(M, 0 :K x) is I-coartinian for all i < s and HI
s−1(M, 0 :K

x)/IHI
s−1(M, 0 :K x) is artinian. We now have Cosupp(HI

s−1(M, 0 :K x)) ⊆
V (I) by Lemma 2.7 and HI

s−1(M, 0 :K x) is a minimax linearly compact mod-

ule. Therefore, HI
s−1(M, 0 :K x) is I-coartinian by Lemma 3.1 and then
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0 :HI
s−1(M,K) x is I-coartinian by Lemma 3.2. Now, the last exact sequence

induces an exact sequence

TorR1 (R/I, 0 :HI
s−1(M,K) x)→ HI

s (M,K)/IHI
s (M,K)→ HI

s−1(M, 0 :K x)/IHI
s−1(M, 0 :K x).

As TorR1 (R/I, 0 :HI
s−1(M,K) x) is artinian, HI

s (M,K)/IHI
s (M,K) is also ar-

tinian. Thus HI
s (M,N)/IHI

s (M,N) is artinian and then

Coass(HI
s (M,N)/IHI

s (M,N))

is a finite set. We also have by Lemma 2.7

Coass(HI
s (M,N)) ⊆ Cosupp(HI

s (M,N)) ⊆ V (I).

Therefore

Coass(HI
s (M,N)/IHI

s (M,N)) = Coass(HI
s (M,N)) ∩ V (I)

= Coass(HI
s (M,N))

by Lemma 2.8. The proof is complete. �

The following theorem gives us a more general result.

Theorem 3.4. Let M be a finitely generated R-module and N a semi-discrete
linearly compact R-module such that N/( ∩

t>0
ItN) is an artinian R-module. Let

s be a non-negative integer. If HI
i (M,N) is minimax for all i < s and G is a

closed submodule of HI
s (M,N) such that HI

s (M,N)/G is minimax, then G/IG
is artinian. In particular, Coass(G) is a finite set.

Proof. It should be noted by Lemma 2.5 that HI
s (M,N) is linearly com-

pact. Then HI
s (M,N)/G is also linearly compact by Lemma 2.1(i). Set

L = HI
s (M,N)/G, the short exact sequence

0−→G−→HI
s (M,N)−→L−→ 0

induces an exact sequence

TorR1 (R/I, L)→ G/IG→ HI
s (M,N)/IHI

s (M,N)→ L/IL−→ 0.

It follows from Theorem 3.3 that HI
s (M,N)/IHI

s (M,N) is artinian, so is L/IL.
On the other hand, Lemma 2.7 gives Cosupp(L) ⊆ Cosupp(HI

s (M,N)) ⊆ V (I).

Then L is I-coartinian by Lemma 3.1. So TorR1 (R/I, L) is artinian and then
G/IG is artinian. Finally, Coass(G) is a finite set. �

We say that an R-module M satisfies the finite condition for co-associated
primes if the set of co-associated primes of any submodule of M is finite. Note
that if an R-module M satisfies the finite condition for co-associated primes,
then any subquotient of M satisfies the finite condition for co-associated primes
([19, Remark 1]).

Let M be a finitely generated module and N a linearly compact R-module,
in [24, 1] we showed that if N and HI

i (N) satisfy the finite condition for co-
associated primes for all i < s, then Coass(HI

s (M,N)) is a finite set. In the
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following theorem, we give a stronger result in which we show that the mod-
ule HI

s (M,N)/IHI
s (M,N) also satisfies the finite condition for co-associated

primes.

Theorem 3.5. Let M be a finitely generated module and N a semi-discrete
linearly compact R-module. Let s be a non-negative integer. If HI

i (M,N) sat-
isfies the finite condition for co-associated primes for all i < s, then the mod-
ule HI

s (M,N)/IHI
s (M,N) also satisfies the finite condition for co-associated

primes. In particular, Coass(HI
s (M,N)) is a finite set.

Proof. We proceed by induction on s. When s = 0, the short exact sequence of
inverse systems of linearly compact modules

0−→{It(M ⊗R N)}t−→{M ⊗R N}t−→{(M ⊗R N)/It(M ⊗R N)}t−→ 0

induces by Lemma 2.2 a short exact sequence

0−→
⋂
t>0

It(M ⊗R N)−→M ⊗R N −→ΛI(M,N)−→ 0.

Note that (
⋂
t>0

It(M ⊗R N))/I(
⋂
t>0

It(M ⊗R N)) = 0 by Lemma 2.1(ii). Then

ΛI(M,N)/IΛI(M,N) ∼= (M ⊗R N)/I(M ⊗R N).

By [19, Remark 1(ii)], ΛI(M,N)/IΛI(M,N) satisfies the finite condition for
co-associated primes.

Let s > 0. The short exact sequences of linearly compact modules

0 −→
⋂
t

ItN −→ N −→ ΛI(N) −→ 0

gives rise to an exact sequence

HI
s (M,

⋂
t

ItN)
ϕ−→ HI

s (M,N)
ψ−→ HI

s (M,ΛI(N)).

Then we have the following exact sequences

HI
s (M,

⋂
t

ItN)
ϕ−→ HI

s (M,N) −→ Imψ −→ 0,

HI
s (M,

⋂
t

ItN)/IHI
s (M,

⋂
t

ItN)→ HI
s (M,N)/IHI

s (M,N)→ Imψ/I Imψ → 0.

Since ΛI(N) is complete in I-adic topology, there is an isomorphism

TorRs (M,ΛI(N)) ∼= HI
s (M,ΛI(N))

by Lemma 2.6. As N satisfies the finite condition for co-associated primes,
ΛI(N) also satisfies the finite condition for co-associated primes. By [19, Re-

mark 1(ii)], TorRs (M,ΛI(N)) satisfies the finite condition for co-associated
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primes. It means that HI
s (M,ΛI(N)) satisfies the finite condition for co-

associated primes and then Imψ/I Imψ satisfies the finite condition for co-
associated primes. Thus, it is sufficient to show that

HI
s (M,

⋂
t

ItN)/IHI
s (M,

⋂
t

ItN)

satisfies the finite condition for co-associated primes.
Set K = ∩

t
ItN, by Lemma 2.4(ii), (iii) there exists an element x ∈ I such

that xK = K. Now the short exact sequence

0 −→ 0 :K x −→ K
.x−→ K −→ 0

gives rise to a long exact sequence

· · · → HI
i+1(M,K)

gi−→ HI
i (M, 0 :K x)

ki−→ HI
i (M,K)

.x−→ HI
i (M,K)→ · · · .

It follows from the hypothesis that HI
i (M, 0 :K x) satisfies the finite condition

for co-associated primes for all i < s−1.HenceHI
s−1(M, 0 :K x)/IHI

s−1(M, 0 :K
x) also satisfies the finite condition for co-associated primes. The long exact
sequence induces two short exact sequences

0−→ Im gs−1−→HI
s−1(M, 0 :K x)−→ Im ks−1−→ 0

and
HI
s (M,K)

.x−→HI
s (M,K)−→ Im gs−1−→ 0.

These short exact sequences induce the following exact sequences

Tor1(R/I, Im ks−1)→ Im gs−1/I Im gs−1 → HI
s−1(M, 0 :K x)/IHI

s−1(M, 0 :K x)

and

HI
s (M,K)/IHI

s (M,K)
.x→ HI

s (M,K)/IHI
s (M,K)→ Im gs−1/I Im gs−1 → 0.

As x ∈ I, the last exact sequence implies that

HI
s (M,K)/IHI

s (M,K) ∼= Im gs−1/I Im gs−1.

Since Tor1(R/I, Im ks−1) and HI
s−1(M, 0 :K x)/IHI

s−1(M, 0 :K x) satisfy the
finite condition for co-associated primes, Im gs−1/I Im gs−1 also satisfies the fi-
nite condition for co-associated primes. Therefore HI

s (M,K)/IHI
s (M,K) sat-

isfies the finite condition for co-associated primes. It follows that

HI
s (M,N)/IHI

s (M,N)

satisfies the finite condition for co-associated primes. Finally, combining Lem-
ma 2.7 with Lemma 2.8 we obtain

Coass(HI
s (M,N)) = Coass(HI

s (M,N)) ∩ V (I)

= Coass(HI
s (M,N)/IHI

s (M,N))

which is a finite set. �

The following theorem provides some equivalent properties of minimax local
homology modules.
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Theorem 3.6. Let M be a finitely generated R-module and N a semi-discrete
linearly compact R-module such that N/( ∩

t>0
ItN) is an artinian R-module. Let

s be a non-negative integer. Then the following statements are equivalent:

(i) HI
i (M,N) is an I-coartinian minimax R-module for all i < s;

(ii) HI
i (M,N) is a minimax R-module for all i < s;

(iii) There exists a positive integer t such that
HI
i (M,N)/0 :HI

i (M,N) I
t is minimax for all i < s.

Proof. (i)⇒(ii) and (ii)⇒(iii) are clear.
(ii)⇒(i) follows from Theorem 3.3.
(iii)⇒(ii) The proof is by induction on s. When s = 0, the implication is

clear.
Let s > 0. From the inductive hypothesis HI

i (M,N) is minimax for all
i < s − 1. It remains to prove that HI

s−1(M,N) is minimax. It follows from

[8, 2.1] that ItHI
s−1(M,N) is minimax. Then there is a finitely generated

submodule G of ItHI
s−1(M,N) such that ItHI

s−1(M,N)/G is artinian. We
now have a short exact sequence

0−→ ItHI
s−1(M,N)/G−→HI

s−1(M,N)/G−→HI
s−1(M,N)/ItHI

s−1(M,N)−→ 0.

Note that HIt

s−1(M,N) ∼= HI
s−1(M,N). By Theorem 3.3

HIt

s−1(M,N)/ItHIt

s−1(M,N)

is artinian. Hence HI
s−1(M,N)/ItHI

s−1(M,N) is artinian. The last exact

sequence implies that HI
s−1(M,N)/G is artinian and then HI

s−1(M,N) is min-
imax. �

4. Applications to generalized local cohomology

In this section (R,m) will be a complete local noetherian ring with the
maximal ideal m. Let M be an R-module and E(R/m) the injective envelope of
R/m . The moduleD(M) = Hom(M,E(R/m)) is called the Matlis dual ofM. If
M is a Hausdorff linearly topologized R-module, then the Macdonald dual of M
is defined by M∗ = Hom(M,E(R/m)) the set of continuous homomorphisms of
R-modules ([17, §9]). The topology on M∗ is defined as in [17, 8.1]. Moreover, if
M is semi-discrete, then the topology of M∗ coincides with that induced on it as
a submodule of E(R/m)M , where E(R/m)M =

∏
x∈M

(E(R/m))x, (E(R/m))x =

E(R/m) for all x ∈M ([17, 8.6]).
A Hausdorff linearly topologized R-module is m-primary if each element of

M is annihilated by a power of m . A Hausdorff linearly topologized R-module
M is linearly discrete if every m-primary quotient of M is discrete. It should be
noted that if M is linearly discrete, then M is semi-discrete. The direct limit
of a direct system of linearly discrete R-modules is linearly discrete ([17, 6.2,
6.7]).
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Theorem 4.1 ([17, 5.8, 6.2, 9.3, 9.12, 9.13]).

(i) A Hausdorff linearly topologized R-module M is semi-discrete if and
only if D(M) = M∗.

(ii) If M is a linearly discrete R-module, then D(M) = M∗.
(iii) If M is linearly compact, then M∗ is linearly discrete (hence semi-

discrete). If M is semi-discrete, then M∗ is linearly compact.
(iv) If M is linearly compact or linearly discrete, then we have a topological

isomorphism ω : M
'−→M∗∗.

Part (iii) of Theorem 4.1 follows from [17, Proof of 9.3, page 235].

Lemma 4.2 ([23, 4.6]). Let M be a Hausdorff linearly topologized R-module.

(i) If M is I-coartinian, then M∗ is I-cofinite.
(ii) If M is minimax, then M∗ is also minimax.

Lemma 4.3 ([6, 6.7]). Let N be a finitely generated R-module and M a linearly
compact R-module. Then

(TorRi (N,M))∗ ∼= ExtiR(N,M∗),

TorRi (N,M∗) ∼= (ExtiR(N,M))∗

for all i ≥ 0.

It is well-known that the generalized local cohomology modules Hi
I(M,N)

of M,N was introduced by J. Herzog by defining

Hi
I(M,N) = lim−→

t

ExtiR(M/ItM,N) ([13], [26]).

Lemma 4.4 ([28, 3.4]). Let M be a finitely generated R-module. If N is a
semi-discrete linearly compact R-module, then Hi

I(M,N) is a linearly discrete
R-module for all i ≥ 0.

We have the duality theorem.

Theorem 4.5 ([22, 2.3 (ii)], [28, 4.5]). Let M be a finitely generated R-module.
Then

(i) For any R-module N and for all i ≥ 0,

HI
i (M,D(N)) ∼= D(Hi

I(M,N));

(ii) If N is a linearly compact R-module, then for all i ≥ 0,

HI
i (M,N∗) ∼= (Hi

I(M,N))∗,

Hi
I(M,N∗) ∼= (HI

i (M,N))∗;

(iii) If N is a semi-discrete linearly compact R-module, then we have topo-
logical isomorphisms of R-modules for all i ≥ 0,

Hi
I(M,N∗) ∼= (HI

i (M,N))∗,

HI
i (M,N∗) ∼= (Hi

I(M,N))∗.
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Corollary 4.6. ([28, 4.6]) Let M be a finitely generated R-module.

(i) If N is a linearly compact R-module, then for all i ≥ 0,

Hi
I(M,N) ∼= (HI

i (M,N∗))∗,

HI
i (M,N) ∼= (Hi

I(M,N∗))∗;

(ii) If N is a semi-discrete linearly compact R-module, then we have topo-
logical isomorphisms of R-modules for all i ≥ 0,

Hi
I(M,N) ∼= (HI

i (M,N∗))∗,

HI
i (M,N) ∼= (Hi

I(M,N∗))∗.

The following Theorems 4.7 and 4.9 are inspired by A. Grothendieck’s con-
jecture and C. Huneke’s question.

Theorem 4.7. Let M be a finitely generated R-modules and N a semi-discrete
linearly compact R-module such that ΓI(N) is a finitely generated R-module.
Let s be a non-negative integer. If Hi

I(M,N) is minimax for all i < s, then
Hi
I(M,N) is I-cofinite for all i < s and 0 :Hs

I (M,N) I is a finitely generated

R-module. In particular, Ass(Hs
I (M,N)) is a finite set.

Proof. From Theorem 4.5(ii) we have the following isomorphism for all i ≥ 0,

HI
i (M,N∗) ∼= Hi

I(M,N)∗.

Since Hi
I(M,N) is minimax for all i < s, HI

i (M,N∗) is also minimax for all
i < s by Lemma 4.2(ii). It should be noted by Theorem 4.1(iii) that N∗ is a
semi-discrete linearly compact R-module. Moreover, ΛI(N

∗) ∼= ΓI(N)∗ by [6,
6.4(ii)]. Then ΛI(N

∗) is an artinian R-module. But ΛI(N
∗) ∼= N∗/(

⋂
t>0

ItN∗).

It means that N∗/(
⋂
t>0

ItN∗) is an artinian R-module. By virtue of Theo-

rem 3.3, HI
i (M,N∗) is I-coartinian for all i < s and HI

s (M,N∗)/IHI
s (M,N∗)

is an artinian R-module. We now consider the isomorphisms

Hi
I(M,N) ∼= HI

i (M,N∗)∗

by Corollary 4.6(i) and

(HI
s (M,N∗)/IHI

s (M,N∗))∗ ∼= 0 :HI
s (M,N∗)∗ I ∼= 0 :Hs

I (M,N) I

by Lemma 4.3. Thus Lemma 4.2(i) provides that Hi
I(M,N) is I-cofinite for

all i < s and 0 :Hs
I (M,N) I is a finitely generated R-module. Note that for an

R-module L, we have Bourbaki’s result

Ass Hom(R/I, L) = V (I)
⋂

Ass(L).

Then we get

Ass(Hs
I (M,N)) = V (I)

⋂
Ass(Hs

I (M,N)) = Ass(0 :Hs
I (M,N) I).

Finally, Ass(Hs
I (M,N)) is a finite set. �
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Replacing the module M in Theorem 4.7 with the ring R, we have the
following corollary. Note that there is a similar result in [2, 2.3], but the
module N is finitely generated over a noetherian R.

Corollary 4.8. Let N be a semi-discrete linearly compact R-module such that
ΓI(N) is a finitely generated R-module. Let s be a non-negative integer. If
Hi
I(N) is minimax for all i < s, then Hi

I(N) is I-cofinite for all i < s and
0 :Hs

I (N) I is a finitely generated R-module. In particular, Ass(Hs
I (N)) is a

finite set.

Theorem 4.9. Let M be a finitely generated R-modules and N a semi-discrete
linearly compact R-module such that ΓI(N) is a finitely generated R-module.
Let s be a non-negative integer. If Hi

I(M,N) is minimax for all i < s and G
is a closed submodule of Hs

I (M,N), then 0 :Hs
I (M,N)/G I is finitely generated.

In particular, the set Ass(Hs
I (M,N)/G) is a finite set.

Proof. By Theorem 4.5(ii) we have the isomorphism

HI
i (M,N∗) ∼= Hi

I(M,N)∗

for all i ≥ 0. Since Hi
I(M,N) is minimax for all i < s, it follows from

Lemma 4.2(ii) that HI
i (M,N∗) is also minimax for all i < s. It should be

noted by Lemma 4.4 that since Hs
I (M,N) is linearly discrete, so are G and

Hs
I (M,N)/G. Set K = Hs

I (M,N)/G, we have the short exact sequence of
linearly discrete R-modules with the continuous homomorphisms

0−→G−→Hs
I (M,N)−→K −→ 0.

It induces by Theorem 4.1(ii), (iii) a short exact sequence of linearly compact
R-modules

0−→K∗−→Hs
I (M,N)∗−→G∗−→ 0

and the homomorphisms are continuous by [17, 8.2]. Furthermore, [17, 5.5]
provides that these homomorphisms are open. Thus K∗ can be considered as
a closed submodule of Hs

I (M,N)∗ and then

G∗ ∼= Hs
I (M,N)∗/K∗ ∼= HI

s (M,N∗)/K∗.

Hence HI
s (M,N∗)/K∗ is minimax. On the other hand, from the proof of

Theorem 4.7, N∗ is a semi-discrete linearly compact R-module such that

N∗/(
⋂
t>0

ItN∗)

is an artinian R-module. So K∗/IK∗ is artinian by Theorem 3.4. Now com-
bining Theorem 4.1 with Lemma 4.3 yields

(K∗/IK∗)∗ ∼= 0 :K∗∗ I ∼= 0 :K I.

Therefore 0 :K I is finitely generated. In particular,

Ass(K) = V (I)
⋂

Ass(K) = Ass(0 :K I)

is a finite set. �
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Replacing the module M in Theorem 4.9 with the ring R, we have the
following corollary. Note that there is a similar result in [2, 2.5], but the
module N is finitely generated over a noetherian R.

Corollary 4.10. Let N be a semi-discrete linearly compact R-module such
that ΓI(N) is a finitely generated R-module. Let s be a non-negative integer.
If Hi

I(N) is minimax for all i < s and G is a closed submodule of Hs
I (N), then

0 :Hs
I (N)/G I is finitely generated. In particular, the set Ass(Hs

I (N)/G) is a
finite set.

An R-module M is said to be weakly Laskerian if the set of associated primes
of any quotient module of M is finite ([7]).

Lemma 4.11. Let M be a linearly compact R-module. If M satisfies the finite
condition for co-associated primes, then M∗ is weakly Laskerian.

Proof. It should be noted by Theorem 4.1 that M∗ is a linearly discrete R-
module and M∗∗ ∼= M. Let G be a submodule of M∗, the surjective homomor-
phism M∗ → M∗/G induces an injective homomorphism (M∗/G)∗ → M∗∗ ∼=
M. As M∗ is a linearly discrete R-module, M∗/G is also linearly discrete and
(M∗/G)∗ = D(M∗/G) by Theorem 4.1(ii). It follows from [27, 3.1(b)] that
Ass(M∗/G) ⊆ Coass(M∗/G)∗. But (M∗/G)∗ can be considered as a submod-
ule of M. Therefore Coass(M∗/G)∗ is a finite set by the hypothesis and then
Ass(M∗/G) is also a finite set. It means that M∗ is weakly Laskerian. �

Theorem 4.12. Let M be a finitely generated module and N a semi-discrete
linearly compact R-module. Let s be a non-negative integer. If Hi

I(M,N)∗

satisfies the finite condition for co-associated primes for all i < s, then the
module 0 :Hs

I (M,N) I is weakly Laskerian. In particular, Ass(Hs
I (M,N)) is a

finite set.

Proof. It follows from Theorem 4.1(iii) that N∗ is a semi-discrete linearly com-
pact R-module. By Theorem 4.5(ii) we have the following isomorphism for all
i ≥ 0,

HI
i (M,N∗) ∼= Hi

I(M,N)∗.

It follows that HI
i (M,N∗) satisfies the finite condition for co-associated primes

for all i < s. Then HI
s (M,N∗)/IHI

s (M,N∗) satisfies the finite condition for
co-associated primes by Theorem 3.5. Now, combining Lemma 4.3 with Corol-
lary 4.6(i) yields

(HI
s (M,N∗)/IHI

s (M,N∗))∗ ∼= 0 :HI
s (M,N∗)∗ I ∼= 0 :Hs

I (M,N) I.

But HI
s (M,N∗)/IHI

s (M,N∗) is linearly compact by Lemma 2.5 and Lemma
2.1. It follows from Lemma 4.11 that 0 :Hs

I (M,N) I is weakly Laskerian and

then Ass(0 :Hs
I (M,N) I) is a finite set. Finally, we have

Ass(Hs
I (M,N)) = V (I)

⋂
Ass(Hs

I (M,N)) = Ass(0 :Hs
I (M,N) I)

which finishes the proof. �
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Replacing the module M in Theorem 4.12 with the ring R, we have the
following corollary.

Corollary 4.13. Let N be a semi-discrete linearly compact R-module. Let
s be a non-negative integer. If Hi

I(N)∗ satisfies the finite condition for co-
associated primes for all i < s, then the module 0 :Hs

I (N) I is weakly Laskerian.

In particular, Ass(Hs
I (N)) is a finite set.

Theorem 4.14. Let M be a finitely generated R-modules and N a semi-
discrete linearly compact R-module such that ΓI(N) is a finitely generated R-
module. Let s be a non-negative integer. Then the following statements are
equivalent:

(i) Hi
I(M,N) is an I-cofinite minimax R-module for all i < s;

(ii) Hi
I(M,N) is a minimax R-module for all i < s;

(iii) There exists a positive integer t such that ItHi
I(M,N) is minimax for

all i < s;

Proof. (i)⇒(ii) and (ii)⇒(iii) are clear.
(ii)⇒(i) By Theorem 4.5(ii) we have the isomorphism

HI
i (M,N∗) ∼= Hi

I(M,N)∗

for all i ≥ 0. Since Hi
I(M,N) is minimax for all i < s, it follows from

Lemma 4.2(ii) that HI
i (M,N∗) is also minimax for all i < s. From the proof

of Theorem 4.7 N∗ is a semi-discrete linearly compact R-module and

N∗/(
⋂
t>0

ItN∗)

is an artinian R-module. Then HI
i (M,N∗) is an I-coartinian minimax R-

module for all i < s by Theorem 3.6. On the other hand, Corollary 4.6 provides
the isomorphism

Hi
I(M,N) ∼= HI

i (M,N∗)∗

for all i ≥ 0. We conclude from Lemma 4.2 that Hi
I(M,N) is an I-cofinite

minimax R-module for all i < s.
(iii)⇒(ii) Assume that there exists a positive integer t such that ItHi

I(M,N)
is minimax for all i < s. We have the short exact sequence of Hausdorff linearly
topologized R-modules

0−→ ItHi
I(M,N)−→Hi

I(M,N)−→Hi
I(M,N)/ItHi

I(M,N)−→ 0,

in which the modules Hi
I(M,N) and Hi

I(M,N)/ItHi
I(M,N) are linearly dis-

crete. The module ItHi
I(M,N) is closed in Hi

I(M,N) by [17, 6.2]. It should
be noted by [17, 6.2] that if L is a linearly discrete R-module, then every ho-
momorphism M → E(R/m) is continuous. Then by an argument analogous to
that used for the proof of [6, 6.5], we get a short exact sequence of R-modules

0−→(Hi
I(M,N)/ItHi

I(M,N))∗−→Hi
I(M,N)∗−→(ItHi

I(M,N))∗−→ 0.
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Combining Lemma 4.3 with Theorem 4.5(ii) yields the following isomorphisms

HI
i (M,N∗) ∼= Hi

I(M,N)∗ and

(Hi
I(M,N)/ItHi

I(M,N))∗ ∼= 0 :Hi
I(M,N)∗ I

t ∼= 0 :HI
i (M,N∗) I

t.

Thus the last short exact sequence induces an isomorphism

HI
i (M,N∗)/0 :HI

i (M,N∗) I
t ∼= (ItHi

I(M,N))∗.

As ItHi
I(M,N) is minimax for all i < s, HI

i (M,N∗)/0 :HI
i (M,N∗) I

t is also

minimax for all i < s by Lemma 4.2(ii). From the proof above N∗ is a semi-
discrete linearly compact R-module such that N∗/(

⋂
t>0

ItN∗) is an artinian R-

module. HenceHI
i (M,N∗) is a minimaxR-module for all i < s by Theorem 3.6.

Finally, from the isomorphism Hi
I(M,N) ∼= HI

i (M,N∗)∗ we conclude that
Hi
I(M,N) is a minimax R-module for all i < s. �
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